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Abstract. The paper discusses a novel method, which addresses robust design optimization of dynamic and
static multi-objective processes. For a dynamic process, the optimal setting of the graded signal and input
parameters are sought so that it is least sensitive to internal and external noises. In addition to addressing
planned and unplanned experiments (cross-sectional and panel data), the method estimates the random and
nonrandom variance components variably (i.e., returns a non-constant uncertainty at each combination level or
treatment). The stochastic frontier model is utilized to ensure this purpose. For dynamic processes, the method
operates in three main steps, (i) data preparation by transforming the outputs to maximization functions, (ii)
estimate of the composed variation (random and non-random error components), (iii) and, composition of the
process uncertainty array for each output across the signal levels. The robust design optimization solution
corresponds to the levels combination of the signal and the input factors, which adds up to the lowest global
uncertainty score. The applicability of the approach is then illustrated with a case study that uses one signal
factor at two levels and four input factors (x1, x2, x3, and x4) at three levels each. The process responses, Y1, Y2,
and Y3 are of types Dynamic Larger the Best (DLB), Dynamic Nominal the Best (DNB), and Dynamic Smaller
the Best (DSB), respectively.

Keywords: Robust design optimization / dynamic and static systems/processes / Taguchi method /
stochastic frontier model / multi-objective processes / external and internal noises
1 Introduction

Multidisciplinary teams strive to develop designs that
comply with uncertainties coming from manufacturing,
environmental, deterioration, degradation sources. In
literature, studies on sustainable variability have a
connection with robust design optimization (RDO) [1–3]
and the reliability-based design optimization (RBDO) [4–
6] approaches. This research is included in the RDO,
especially, robustness for dynamic and static processes.
The goal of the research is to determine the input
parameter setting that desensitizes the process to the
effects of the internal and external noise factores.
Moreover, controlling the initiation of lattente effect
because of cross interaction. The tolerance design stage
is carried after to ensure a trade-off between the functional
requirements, the deterioration effect/rate, and the overall
cost of the product/process over the operating cycle time
mal@unistra.fr
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[7,8]. The deliverable is design, that accommodates
operating factors so that the system response gets closer
to the target value(s) with minimum variation in presence
of background noise [9]. The Taguchi [10–12] technique� a
groundbreaking piece of research in the realm of static and
dynamic robust optimization design, involves two conse-
cutive steps: (i) setting of the dispersion factors tominimize
a quality loss function or maximize a signal-to-noise ratio,
(ii) then, selection of the adjustment factors allowing to
shift of the average output onto a process target. However,
the Taguchi method can only answer mono-objective
problems, moreover, it does not guarantee the same
optimum at each stage unless the mean and the variance
of the response are uncorrelated [13]. The research efforts to
expand the Taguchi method’s to address static and
dynamic multi-objective processes are fuzzy and elusive
to understand [14]. Therefore, different techniques such as
the grey function, the desirability function and their
hybrids [15], the principal component analysis techniques
[15], the fuzzy logic [16], the meta-heuristic methods [17],
the multiple regression models [18], and more recently, the
monsAttribution License (https://creativecommons.org/licenses/by/4.0),
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frontier function [19] have been devised to bring viable
alterntives to the Taguchi method for multi-objective
processes. Even though these methods are effective in
anserwing robust design optimization of static multi-
objective processes, they are still in their infancy and to
some extent uncapable of addressing dynamic multi-
objective processes. Other methods such as the meta-
heuristic and datamining techniques have shown success in
this regard, but still, they failed to address issues such as
producing the ideal mix of control elements in continuous
space [20], for instance.

Dynamic multi-objective techniques for robust design
optimization can be divided into three main categories, i.e.,
meta-heuristic [21,22], multiple attribute decision-making
[23–26], and mathematical modeling [12,27,28]. Other
strategies that take advantage of the quality loss function
have also been developed to optimize both static and
dynamic problems at the same time [29]. Dynamic robust
design optimization consists of monitoring the output (Y)
to a target T (min, max, or nominal) under the dynamic
control of a signal factor (S). One solution is to determine
the setting of the input parameters, which minimizes the
average loss function L(Y,S,T). Formally, the dynamic
model for multi-objective processes is stated as in equation
(1):

Y js ¼ fjs X;Ssð Þ þ ejs ð1Þ

where X is a set of control factors, xi, i=(1,I). The response
Yjs is the output j, j=(1,J) at the signal level s, s=(1,S).
The fjs is the transfer function for the jth response while the
signal factor S is set at the sth level. The ejs is the composed
error for the Yjs process response.

In general, it is accepted that the signal factor(s) and
the system output(s), Yjs have a linear relationship, as
shown in equation (2):

Y js ¼ b⋅S þ ejs: ð2Þ
In light of this constation, Taguchi proposes a two-step

procedure to optimize dynamic mono-objective processes
[12]: (i) maximization of the dynamic signal-to-noise ratio,
(ii) then, adjustment of the slope (b); i.e., b=0, 0� b�∞,
and b=∞ upon the objective function, i.e., Dynamic
Smaller the Best (DSB), Dynamic Larger the Best (DLB),
or Dynamic Nominal the Best (DNB), respectively.
However, the two-step procedure is unpractical, as argued
earlier since it is unpractical to find a set of control and
dispersion parameters, which manage multi-objective
responses, simultaneously. To solve the problem, one must
first define a global objective function and then optimize it
to bring each response variable as close to the target value
as feasible. At each of the signal levels, the goal value
should vary as little as possible [30].

In literature, many alternatives to the Taguchi
dynamic multi-objective systems have been developed
[31–33]. However, the frontier production approach has
only been considered in a few research works. The article
discusses the robust optimization design of dynamic
systems while utilizing the stochastic frontier paradigm
(SF). It attempts to expand on the ongoing research on the
static Robust Design of Products and Processes using the
Stochastic Frontier model (RDPP-SF) [34,35].

Most experimental research has adopted the design of
experiment (DoE) methodology. Ideally, robust processes
are laced with pure symmetrical random variation, solely,
thus, they are under statistical control and reliable in time.
However, nonrandom variation may initiate not only
because of internal and external noises but also because of a
violation of the premises of the DoE for industrial
processes, i.e., the replication blocking and the “full
randomization. In many scenarios such a hard-to-change
factors, frequent clamping-unclamping operations, non-
homogeneity in raw materials, etc., full randomization is
unpractical. The RDPP-SF method uses the stochastic
frontier model to estimate composed errors, i.e., random
and nonrandom components. The econometric studies,
which link technical inefficiency with nonrandom variabil-
ity among the Decision Making Units (DMUs), are the
source of the SF paradigm that the RDPP-SF method.
Thus, robustness in the RDPP-SF method to technical
inefficiency.

The rest of paper unfolds as follows. Section 2 outlines
the concept behind the stochastic frontier method.
Section 3 presents the RDPP-SF method for static and
dynamic multi-objective systems. In Section 4, a case study
is proposed to demonstrate the employability of the RDPP-
SF method for dynamic processes, hereinafter, called
Dynamic Robust Design of Processes and Products using
the Stochastic Frontier model (DRDPP-SF). The comput-
er program, FRONTIER 4.1® is used to estimate the
maximum likelihood of the parameters of the stochastic
frontier model and tests statistical hypotheses about the
functional form of the stochastic frontier, the robustness
metric (g-value), and the distributional forms of the non-
random variation component. Section 5 is the conclusion,
and it provides the scope and limitations of the RDPP-SF
method for static and dynamic robust optimization design.

2 Stochastic frontier model

The stochastic frontier methodology is a widely used
econometric technic for estimating the inefficiency of
DMUs. The method can define the current state of
technology in the industry and also measure the individual
performance of the DMUs [36]. Initially, Aigner et al. [37],
Meeusen and van Den Broeck [38], and Schmidt and Lovell
[39] developed the SF model. Aigner et al. [37] devised the
formal representation of a production frontier model is
given in equation (3).

Y i ¼ f xi;bð Þ þ ðvi � uiÞ ð3Þ
where,

–
 Yi and xi are naturally logged variables representing the
outputs and the inputs of the DMUi (i=1,N), respec-
tively. The log transformation is employed to ensure the
convexity of the stochastic production function as well as
mitigate of the variability in the Yis:
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Fig. 1. Output-oriented technical efficiency using the stochastic
frontier method (SF).
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–
 b= [b0b1…bk]
’ is a (k+1) column vector coefficients to

be estimated;

–
 vi represents the statistical noise distributed as
V i ∼N 0; s2

v

� �
. In production processes, the vi captures

part-to-part variation, gauges repeatability, and the
combined effects of unseen factors;
–
 ui is a one-sided random term distributed as Ui ∼ N(0,
su

2) and represents the technical inefficiency of the
DMU, i. In production processes, the ui stands for the
variance brought on by noise factors such as environ-
mental conditions, tool wear, material deviation from
specifications, drift of parameter setting from the
nominals because of time and/or manufacturing varia-
tion, lack of expertise/management performance, etc.

For output-oriented technical inefficiency, the ui term
explains why a given DMUi cannot achive the feasible
maximum output beyond random noise. As expressend in
equation (1) and illustrated in Figure 1, the composed error
term is the focus of the model. It allows for the conventional
symmetrical random variation, V iid

i ∼N 0; s2
v

� �
, and a

positive one-sided disturbance term, Ui∼ iid|N(m, s2|,
which represents the nonnatural variation occurring in a
process.

3 Static and dynamic RDPP-SF method

3.1 RDPP-SF method for static processes

The static RDPP-SF method, which is devised by Trabelsi
and Rezgui [34,35], is dedicated to estimating the inherent
random and nonrandom variation in a signal-free process
that is rife with internal and external noise sensitivity. The
output-oriented production model, which is given in
equation (3) is adopted by the RDPP-SF method. Table 1
shows how the static RDPP-SF technique and the
econometric stochastic frontier model map out.

The procedural scheme of the RDPP-SF method for
static and dynamic multi-objective problems is shown in
Figure 2 and it involves four steps.

Step 1 (data preparation): Define the DoE strategy
and assign factor levels. Different formattings are accept-
able, even though, a±3s coding is preferred. The reason is
that the three sigma quality level is adopted by major
Design For Six Sigmas (DFSS) procedures. By analogy to
the econometric model, every combination of the factor
levels (run) in the designed experiment, is seen as a
decision-making unit (DMU), which makes use of the
resources xi (process inputs). The process responses, Yjer
are scaled and translated depending on whether a
nominalization, maximization, or minimization target is
sought. The outputs of the types smaller the best (STB)
and nominal the best (NTB) should be transformed and
scaled beforehand since the stochastic function initially
aims to produce themaximum output for each combination
of the inputs (xi).

Equation (4) states the transformation for the NTB
outputs.

Y i ¼ exp �abs yi � yTð Þ½ �: ð4Þ
For the STB outputs, the transformation is given in

equation (5).

Y i ¼ 1

yi
: ð5Þ

The original interval of the raw data for the STB and
NTB cases is recovered using equation (6).

Y scaled ¼ Ub � Lbð Þ Y i � Ymin

Y Max � Y min
; ð6Þ

where yi, yT, Yi, Yscaled, Ub, and Lb represent, in that order,
the actual output (not transformed), the target value, the
transformed output (not scaled), the transformed and
scaled output, and the upper and lower bounds of the
original data interval.

Step 2 (data analysis): The input-output function is
used to account for both the interaction and the individual
effects of the input parameters, xi. The following hypothe-
ses are tested at a 95% confidence level for each output
(Yjer) using the FRONTIER 4.1

®

program.

–
 (H0: bk=0 vs. H1: bk ≠ 0). The goal is to test the
statistical significance of the two-way interactions among
the process parameters.
–
 (H0: g=0 vs. H1: g > 0). The test checks, for each Yjer,
the statistical significance of non-random variations in a
process, which could be brought on by both internal and
external noises. In any case, the test establishes whether
there is confounding between the stochastic frontier (SF)
and the average line model (RSM).
–
 The test (H0: Ui∼half normal vs. H1: Ui ∼ truncated
normal distribution) ascertains the distributional form of
the non-random variation component. The RDPP-SF
method for static and dynamic processes assumes that
the ui(s) are following a half-normal distribution as
suggested in Aigner et al. [37].

Step 3 (constitute the uncertainty arrays for
each Yjer): The components of the composed error term
(ui and vi) are estimated using the test on the g-value (test
b in step 2). For each Yjer, the uncertainty array is created
as follows. If g ≥ 95% then the vi≈ 0, and the ui(s) estimates
compose the uncertainty array (ei). The variations in the



Table 1. Mapping between the econometric and the RDPP-SF approach.

Econometric model RDPP-SF method

Set of DMUs Design plan (DoE)
DMU(i) Run, i, in the DoE
Panel/cross data Replicated/non-replicated dataset
vi: random variation Statistical random variation
ui: technical inefficiency Non-random variation (measurement of robustness in the process)

Metric for the RDPP-SF*: (H0 : g=0 vs. H1 : g > 0) where g ¼ s2u
s2
vþs2u

, Rejected H0 at a=5% level if the Likelihood Ratio (LR) exceeds
x2
1;2a¼10%:

* Hypothesis test on robustness. If it is proven statistically significant we should reject the hypothesis saying that the process is fully
robust, i.e., under statistical control, solely.

Start

a) Choose the DoE strategy and coding for 

the input factors.

b) For the process outputs of NTB and 

STB types, transform them to meet the 

SF maximization goal. 

Use the Frontier 4.1
®

to test the following 

hypotheses (at 5% level):

a) Linear vs Polynomial

b) γ=0 vs H
1
: γ>0 

c) Estimates of the coefficients of the SF 

regression model

End

Same as in step 1 (a) and (b). For each 

signal level Ss (s=1,S), format each Y
jer

for (j=1,J) so that it reflects the 

combination levels of the control 

factors, x
ei

(e=1,E and i=1,I), the 

replications, r (r=1,R) and the 

maximization goal (DNTB, DLTB or 

DSTB).

For each Y
jer

, constitute the uncertainty 

array ε
e
=(v

e
-u

e
) across the runs, e (e=1,E)

The robust solution corresponds to run, 

which tots minimum (∑ ( ))

a) For each signal level S (s=1,S) and 

Y
jer

, constitute the uncertainty array 

ε
e
=(v

e
=u

e
) across the runs, e (e=1,E).

b) Constitute the global uncertainty 

array by adding up the individual 

variation scores over the S^J 

factorial combination levels of the 

signal factor throughout the E 

executions of DoE plan.

Step 1 
(revised)

Step 3
(revised)

Step 4

Step 2

Step 1

Step 3

Dynamic RDPP-SF

Dynamic RDPP-SF

Fig. 2. Procedural scheme of the RDPP-SF method for static and dynamic processes.
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process is entirely non-random. If g � 5% then the ui ≈ 0
and the process is experiencing pure random unit-to-unit
variations, solely. The uncertainty array (ei) is then
composed of the vi(s) estimates at each run. The average
line model (RSM) is confounding with the SF model in this
case. If 5% � g � 95%, the two types of variations-random
unit-to-unit and nonrandom, are there and should be
accounted for. The uncertainty array (ei) is composed of
the estimates (ei = vi � ui) for each run. In the
FRONTIER4.1

®

program, the individual inefficiency
(exp(–u)) is used to calculate the ui(s) terms for each run.

Step 4 (determination of the robust design
solution): The robust optimization design solution
correlates with the run in the DoE layout, which adds



Table 2. Data formatting for Frontier 4.1
®

at a signal level S= s.

Yjer x1 x2 ……… xI

DMU1 Yj11s x11 x21 ……… xI1
……… ……… ……… ……… ……… ………

……… ……… ……… ……… ……… ………

DMUE YjE1s x1E x2E ……… xIE
……… ……… ……… ……… ……… ………

……… ……… ……… ……… ……… ………

DMU1 Yj1Rs x11 x21 ……… xI1
….… ……… ……… ……… ……… ………

….… ……… ……… ……… ……… ………

DMUE YjERs x1E x2E ……… xIE

*i: process inputs, j: process output, e: execution (run), and r: replication.
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up to a minimum (S abs(ei)) across the Yjer(s). Trabelsi
and Rezgui [34,35] have compiled applications of the
RDPP-SF method for static processes.

3.2 RDPP-SF method for dynamic processes

In dynamic multi-objective processes, the control factors
should be set at suitable levels so that the signal-output
relationship is insensitive to internal and external noise.
The dynamic DRDPP-SF process, which still adheres to
the functional scheme depicted in Figure 2, modifies steps 1
and 3.

Step 1 revised (data preparation): In dynamic
processes, each output, Yjer, is correlated to a signal factor
level (S= s). The designed experiment is formatted so that
it reflects the combination levels of the control factors, xei
(e=1, E and i=1, I), the replication, r (r=1, R), and the
signal set, S (s=1, S). The apdated DoE layout formatting
for a dynamic output, Yjer, at a signal level, S= s is
displayed in Table 2.

Step 3 revised (determination of the robust
design solution): The uncertainty array for evry output,
Yjer, and signal level, (S= s) is composed is composed using
the estimate of the g-value (refer to step 3 above). The
global uncertainty array is obtained by totaling the
individual uncertainty scores for the outputs Yjer over
the S^J factorial combinations across the E executions
(runs) of the designed experiment runs. The level
combination of the input factors (xie, i=1, I, and e=1,
E) and the signal level (S= s), giving the minimum global
uncertainty score corresponds to the robust solution.

4 The DRDPP-SF method: an illustrative
example

A simulated dataset, which is retrieved from Chang and
Chen [20] is used to demonstrate the employability of the
DRDPP-SF method for dynamic processes. The DoE plan
is an L18OA, which is replicated once. The process has four
control factors xi, (i=1, 4); each at three discrete levels (1,
2, and 3). The process outputs Yjer (j=1, 3, e=1, 18, and
r=1, 2) are of DLB, DNB, and DSB types, respectively.
The signal factor has two levels, s=0.1, and s=0.2.
Table 3 shows the L18 dataset. TheDRDPP-SF is executed
in the samemanner as the static RDPP-SF, except for steps
1 and 3, which are revised in the following section.

Step 1 revised: The dataset is templated as in Table 2
for each signal level (S= s). Because the rationale behind
the stochastic frontier function (SF) drew on the
maximization of the production level, the dynamic outputs
Y2er (DNB) and Y3er (DSB) are transformed and mapped
to their original bounds using equations (4), (5), and (6).
The target value for the output, Y2er, is decided to be the
average of the raw data, i.e., Ȳ2= 0.987 at s=0.1 and
s=0.2. Table 4 shows the prepared dataset with s=0.1 and
the original and transformed outputs (Y2er) and (Y3er).

Step 2 (data analysis): The xi and Yjer values given in
Table 4 should be logged before the FRONTIER4.1

®

program starts processing. The Neperian log transforma-
tion is applied to eliminate extrema, correct skewness, and
assure convexity of the stochastic frontier. TheDRDPP-SF
method considers two input-outputmodels: the Translog, a
quadratic regression in log(xi), which takes interactions
into account, and the Cobb Douglas, a multiple linear
regression in log(xi), which does not. The hypotheses tests
(H0: CD vs TL) in Table 5 show the Cobb-Douglas model is
the best fit for Y1er, and Y3er when the signal levels are set
at s=0.1 or s=0.2, indistinctly. This is because the LR
statistics (13.23, 14.50, �49.10, and 7.20, respectively) are
smaller than the critical value, x2

10 ¼ 18:31. However, a TL
model provides a superior fit for Y2er at signal levels, s=0.1
and s=0.2 (LR 18.96, and 41.48, respectively). In the
remainder, we apply the TL model to all outputs. For the
robustness index (g_estimate), Table 5 indicates that the
test (H0: g=0 vs H1: g > 0) is statistically significant at a
95% confidence interval regardless of the signal levels, i.e.,
the Log Ratios are higher than the critical value
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Table 4. Data formatting (non-logged) at s= 0.1.

Run
(DMUi) Repl.

Factors Y1er (DLB) Y2er (DNB) Y3er (DSB)

x1 x2 x3 x4 Orig. Orig. Transf. Orig. Transf.

1 1 1 1 1 1 7.800 0.980 0.993 15.000 0.067
2 1 1 2 2 2 8.630 1.020 0.968 16.000 0.063
…… …… …… …… …… …… …… …… …… …… ……

18 1 3 3 2 1 8.710 1.140 0.858 19.000 0.053
1 2 1 1 1 1 8.130 1.090 0.902 16.560 0.060
2 2 1 2 2 2 7.530 1.050 0.939 16.300 0.061
…… …… …… …… …… …… …… …… …… …… ……

18 2 3 3 2 1 6.370 0.980 0.993 12.430 0.080

Orig.: Original Data, and Transf.: Transformed Data.

Table 5. Hypothesis tests for the regressional model (Y1er, Y2er, and Y3er) and significance of non-random variation.

Tests Y1er Y2er Y3er
s = 0.1 s = 0.2 s = 0.1 s = 0.2 s = 0.1 s = 0.2

*(H0: CD vs H1: TL) (CD) (CD) (TL) (TL) (CD) (CD)
LR statistic 13.22 14.50 18.96 41.48 –49.10 7.20
**(H0: g = 0 vs H1: g > 0) Significant Significant Significant Significant Significant Significant
LR statistic 153.1 184.32 53.63 105.40 83.03 156.44

*At the 5% level, (H0: CD vs H1: TL) test has x2
c ¼ x2

10 =18.31 and (H0: g=0 vs H1: g > 0) has x2
c ¼ x2

1 10%ð Þ ¼ 2:71.
**TL (TransLog): Quadratic model, and CD (Cobb-Douglas): Linear model.

Table 6. Estimates of the TL SF models’ parameters for the responses Y1er, Y2er, and Y3er.

Var. Param. Y1er Y2er Y3er
s = 0.1 s = 0.2 s = 0.1 s = 0.2 s = 0.1 s = 0.2

Cte. b0 2.059 2.704 0.181 0.181 –2.457 –3.583
ln(x1) b1 2.914* 4.020* 0.235 0.235 –4.213 –4.785*
ln(x2) b2 0.123 0.219 –0.133 –0.133 –0.584 0.313
ln(x3) b3 2.614* 3.577* 0.563 0.563 –2.744 –4.437*
ln(x4) b4 –2.652* –3.638* –0.492 –0.492 3.572 4.867*
ln(x1)^2 b5 –1.268 –1.515 –0.107 –0.107 0.972 1.739
ln(x1)*ln(x2) b6 –0.123 0.048 –0.006 –0.006 0.935 0.292
ln(x1)*ln(x3) b7 –4.000* –5.789* –0.585 –0.585 5.635 6.752*
ln(x1)*ln(x4) b8 2.680* 3.725* 0.546 0.546 –2.953 –4.483*
ln(x2)^2 b9 0.063 –0.123 0.151 0.151 0.501 –0.449
ln(x2)*Ln(x3) b10 –0.204 0.045 0.019 0.019 –0.409 0.074
ln(x2)*Ln(x4) b11 –0.074 –0.232 –0.025 –0.025 –0.019 0.162
ln(x3)^2 b12 –0.823 –1.448 –0.260 –0.260 0.957 1.746
ln(x3)*Ln(x4) b13 2.622* 4.161* 0.371 0.371 –3.478 –4.679*
ln(x4)^2 b14 –1.675 –2.482* –0.205 –0.205 2.102 2.343*
s2 ¼ s2

v þ s2
u 2.85.10–2 0.76.10–2 0.60.10–3 0.32.10–2 2,54 –0.37.10–1

g 10–8 10–8 0.14 0.16.10–7 0.98 10–8

Log (likelihood) 34.72 36.73 84.32 52.04 –23.50 8.03

t-test critical value (5% level)=2.12.
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Table 7. Composition of the uncertainty arrays for the outputs Y1er, Y2er, and Y3er

Run
(DMU)

Y1er Y2er Y3er

ee=(ve-ue) ee=(ve-ue) ee=(ve-ue)
s=0.1 s=0.2 s=0.1 s=0.2 s=0.1 s=0.2

1 0.016 –0.050 0.004 0.745 –0.299 –0.011
2 0.016 0.058 0.025 0.600 –0.328 –0.094
3 0.001 0.031 0.011 0.521 –0.537 –0.053
4 –0.019 0.068 –0.024 0.829 –0.127 0.039
5 0.022 –0.165 –0.029 0.467 –0.766 0.125
6 0.031 0.102 –0.007 0.477 –0.392 0.023
7 –0.001 0.004 –0.015 0.516 –0.076 0.028
8 –0.016 0.073 –0.017 0.698 –0.651 0.017
9 –0.015 0.140 –0.016 0.618 –0.959 0.037
10 0.001 –0.050 –0.025 0.776 –1.128 0.064
11 –0.008 0.056 –0.018 0.436 –0.265 0.042
12 –0.014 0.105 –0.042 0.453 –0.189 0.177
13 –0.014 0.125 0.014 0.558 –1.098 –0.048
14 –0.023 0.130 –0.007 0.559 –0.435 0.033
15 0.019 0.027 0.010 0.776 –0.414 –0.028
16 0.025 –0.079 –2.608 0.537 –0.532 –0.022
17 0.037 0.028 –2.608 0.597 –0.590 0.011
18 0.013 –0.152 –2.677 0.664 –0.426 –0.020

Table 8. Global error as per signal combination for the outputs Y1er, Y2er, and Y3er.

Run
(DMUi)

Sum (Abs(ei))

[S1, S1,
S1]

[S2, S1,
S1]

[S1, S2,
S1]

[S2, S2,
S1]

[S1, S1,
S2]

[S2, S1,
S2]

[S1, S2,
S2]

[S2, S2,
S2]

1 0.320 0.353 1.061 1.095 0.032 0.065 0.773 0.807
2 0.370 0.412 0.944 0.986 0.136 0.177 0.710 0.752
3 0.548 0.578 1.058 1.088 0.064 0.094 0.574 0.604
4 0.170 0.220 0.975 1.024 0.082 0.132 0.887 0.937
5 0.817 0.959 1.256 1.398 0.176 0.318 0.615 0.757
6 0.430 0.501 0.900 0.971 0.061 0.132 0.531 0.602
7 0.091 0.095 0.592 0.596 0.044 0.047 0.545 0.549
8 0.685 0.742 1.366 1.423 0.051 0.108 0.732 0.789
9 0.990 1.116 1.592 1.717 0.068 0.193 0.670 0.795
10 1.154 1.203 1.905 1.954 0.090 0.139 0.841 0.890
11 0.291 0.339 0.708 0.757 0.067 0.116 0.485 0.534
12 0.245 0.335 0.655 0.746 0.233 0.323 0.643 0.734
13 1.125 1.236 1.669 1.780 0.075 0.186 0.619 0.730
14 0.464 0.572 1.017 1.124 0.063 0.171 0.615 0.723
15 0.442 0.451 1.209 1.217 0.057 0.065 0.823 0.832
16 0.561 0.614 1.095 1.148 0.051 0.105 0.585 0.639
17 0.629 0.620 1.224 1.214 0.050 0.040 0.644 0.635
18 0.440 0.579 1.102 1.241 0.034 0.173 0.697 0.836
Min 0.091 0.095 0.592 0.596 0.032 0.040 0.485 0.534
Exp(Min) 1.096 1.100 1.808 1.815 1.032 1.041 1.624 1.705
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x2
c ¼ x2

1 10%ð Þ ¼ 2:71: Therefore, the RSM model does not
confound with the stochastic frontier for all outputs Y1er,
Y2er, and Y3er.

The regressional models for the process responses, Y1er,
Y2er, and Y3er are provided in Table 6.

Step 3 revised (constitute the uncertainty arrays for the
outputs Y1er, Y2er, and Y3er): Using ei=(vi � ui) for each
run, i, the uncertainty arrays for the dynamic outputs,
Y1er, Y2er, and Y3er at the signal levels s=0.1 and s=0.2
are obtained. Table 7 shows the uncertainty scores (ei) as
generated by the FRONTIER

®

4.1 program.
There are six uncertainty arrays in total since the

uncertainty arrays are arranged based on the signal level
for each output. The global error at each run, i, of the L18
layout is calculated by totting the uncertainty scores over
the factorial combinations of the signal levels for the
outputs Y1er, Y2er, and Y3er as shown in Table 8. It
represents the number. of applications from the set of
{Y1er, Y2er, and Y3er} to the set of two signal levels {s=0.1
and s=0.2}, i.e., 23 combinations. Because the purpose is
to determine the control and signal factor settings, which
produce the least amount of variation in magnitude rather
than direction, the absolute values of the uncertainty
scores are considered.

The global uncertainty of 0.986 (line 2 in Tab. 8), for
instance, is obtained when summing up the absolute errors
in run 2 while setting Y1er at s= s2= 0.2 (e2 =|0.058|), Y2er
at s= s2= 0.2 (e2= |0.600|), and Y3er at s= s1= 0.1 (e2= |–
0.328|). According to Table 8, when the signal factor is set
at s=0.1 forY1er andY2er and s=0.2 for Y3er, respectively,
the minimum global error of 0.032 is met. This corresponds
to run 1 (x1= x2= x3= x4=1), which is deemed as a
robust optimization solution. Another workable solution is
run 17 (x1=3, x2=2, x3=1, and x4=3), which has a
global uncertainty score of 0.040. In certain operational
scenarios, it is often advised to consider the same signal
sitting for all outputs. In this scenario, run 7 (x1=3, x2=1,
x3=2, and x4=1) with a signal setting of s=0.1 for Y1er,
Y2er, and Y3er is the proper alternative. The global
uncertainty error is 0.091.

5 Conclusion

The RDPP-SF approach for dynamic systems is covered in
this article. The method’s novelty may be seen in how the
stochastic frontier composed error is decomposed, i.e.,
random and nonrandom components. So, the control of
dynamic processes, which are vulnerable to environmental
noise, unseen control factors, and violation of the DoE
premises such as the randomization, replication, and
blocking principles is affordable. A major application of
the static and dynamic RDPP-SF method is estimatimg
the design and manufacturing process maturity. This is
performed using the test on the g-value (H0: g=0 vs. H1: g
> 0). So, at a 5% level, for instance, if g � 5%, the process is
mature since it only experiences random variance and may
be tested for long-term statistical process control. If the
g-value falls between 5% and 95%, then, the sensitivity is
marginal, and both natural and non-natural sources of
variation are accountable for. If the g ≥ 95%, the
nonrandom sources of variation are predominating,
meaning the process is immature and should be im-
proved/redesigned. The presence of non-random variation
is the main cause of short-term drift and bias in a process.
The additional advantages and limitations of the DRDPP-
SF are outlined below.

a.
 The RSM optimization technique, which uses the

statistical Ordinary Least Square method, yields a
constant uncertainty estimate. On the other hand, the
stochastic frontier model provides a variable (and often
better) estimate of the uncertainty; i.e., each pairing of
the input and signal parameters has its uncertainty
estimate.
b.
 The stochastic frontier model is parametric, uses flexible
functional models, can estimate the standard errors, and
makes use of the hypotheses tests to ascertain the
statistical significance of the non-natural variation using
the Maximum Likelihood Method. In that regard, it is
superior to other frontier-based methods such as Data
Envelopment Analysis [19], which incorporates noise as
part of the efficiency score.
c.
 The proposed DRDPP-SF method can provide the link
between robustness and the signal-to-noise metric,
which is used in many robust design and reliability
methods. The estimate of the g-value in the DRDPP-SF
method can be used to do this. Furthermore, the method
holds the most promise for engineering fields, such as
reliability, versatility, resilience, adaptability, and
flexibility.
d.
 The DRDPP-SF method uses a Translog as a transfer
function to account for the interactions among the
control factors. Nevertheless, more research is still
needed to figure out other functional forms that aremore
suitable to manufacturing processes.
e.
 The DRDPP-SF technique has considered robust
optimization design of processes but in discrete space.
Research using Latin hypercube sampling and ANN-GA
algorithm is launched to address optimization in
continuous space.
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