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Abstract

Generating realistic and diverse layouts of furnished indoor 3D scenes unlocks
multiple interactive applications impacting a wide range of industries. The inherent
complexity of object interactions, the limited amount of available data and the
requirement to fulfill spatial constraints all make generative modeling for 3D scene
synthesis and arrangement challenging. Current methods address these challenges
autoregressively or by using off-the-shelf diffusion objectives by simultaneously
predicting all attributes without 3D reasoning considerations. In this paper, we
introduce DeBaRA, a score-based model specifically tailored for precise, control-
lable and flexible arrangement generation in a bounded environment. We argue
that the most critical component of a scene synthesis system is to accurately es-
tablish the size and position of various objects within a restricted area. Based on
this insight, we propose a lightweight conditional score-based model designed
with 3D spatial awareness at its core. We demonstrate that by focusing on spatial
attributes of objects, a single trained DeBaRA model can be leveraged at test time
to perform several downstream applications such as scene synthesis, completion
and re-arrangement. Further, we introduce a novel Self Score Evaluation procedure
so it can be optimally employed alongside external LLM models. We evaluate our
approach through extensive experiments and demonstrate significant improvement
upon state-of-the-art approaches in a range of scenarios.

1 Introduction

Systems capable of generating realistic environments comprising multiple interacting objects would
impact several industries including video games, robotics, augmented and virtual reality (AR/VR)
and computer-aided interior design. As a result and in tandem with the growing availability of
synthetic datasets of indoor layouts [10, 44, 42, 63, 7], which can be populated with high-quality
3D assets [11, 63, 1], data-driven approaches for automatically generating and arranging 3D scenes
have been actively investigated by the computer vision community. Notably, the ongoing success of
deep generative models for controllable content creation in the text and image domains has recently
been extended to scene synthesis, allowing users to craft realistic indoor environments from a set of
multimodal constraints [38, 37, 55, 54, 27, 35].

Challenges associated with 3D indoor scene generation are numerous as the intricate nature of multi-
object interactions is difficult to capture and model precisely. Items should be placed, potentially
resized and oriented relative to one another, in a way that is both plausible and aligned with subjec-
tive and context-dependent priors such as style, as well as ergonomic and functional preferences.
Additionally, objects should fit within a bounded, restricted area, and a subtle mismatch can break
the perceived validity of the synthesized environment (e.g., overlapping, floating or out-of-bounds
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Figure 1: Application scenarios overview. Besides generating diverse and realistic 3D indoor
layouts, a single trained DeBaRA model can be employed to execute several related tasks by tweaking
the initial sampling noise level σmax and/or performing object or attribute-level layout inpainting. Our
novel SSE procedure enables 3D Scene Synthesis capabilities by efficiently selecting conditioning
semantics from external sources using density estimates provided by the pretrained model.

objects, inaccessible areas). Finally, the limited availability of high-quality data [10, 42] requires
learning-based approaches to make careful design choices and trade-offs.

Early data-driven approaches often rely on intermediate hand-crafted representations [43, 54, 36, 62]
that are closely related to the considered dataset, which introduces significant biases. Concurrently,
popular methods have been adopting autoregressive architectures that treat scene synthesis as a
set generation task [55, 38, 27, 21, 37] by sequentially adding individual objects. More recently,
score-based generative models (also known as denoising diffusion models) have shown promising
capabilities in various 3D scene understanding applications [18, 58] including controllable scene
synthesis [51, 62, 60] and re-arrangement [57]. In contrast to previous methods, denoising-based
approaches enable a stable and scalable training phase and can output all scene attributes simulta-
neously. The iterative sampling framework brings an improved consideration for the conditioning
information and an attractive balance between generation quality and variety. However, current
methods leveraging score-based generative models try to model all attributes (both categorical and
spatial) within a single framework, which, as we demonstrate below, is less data-efficient and leads to
suboptimal solutions.

In this context, our work aims to establish principled and robust capabilities for generating accurate
and diverse 3D layouts. Specifically, our key contributions are threefold:

1. We propose a score-based conditional objective and architecture designed to effectively learn
spatial attributes of interacting 3D objects in a constrained indoor environment. In contrast
to previous approaches [51, 38], we disentangle the design space and reduce the model’s
prediction to a minimal representation consisting solely of oriented 3D bounding boxes,
taking as conditioning input the room’s floor plan and list of object semantic categories.

2. We propose a set of approaches which allows a model trained following our method to
be flexibly employed at test time to perform several user-driven tasks enabling object or
attribute-level control. In particular, we demonstrate strong capabilities on controllable
scenarios such as scene re-arrangement or room completion, from a single trained network.

3. Finally, we introduce a novel Self Score Evaluation (SSE) procedure, which enables 3D
scene synthesis by selecting the set of inputs provided by external sources, such as a LLM,
that lead to the most realistic layouts.

We exhibit our model’s capabilities across a wide range of experimental scenarios and report state-of-
the art 3D layout generation and scene synthesis performance.

2 Related Work

Score-based Generative Models By smoothly perturbing training examples with noise, Diffusion
Models map a complex data distribution to a known Gaussian prior from which they sample back via
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iterative denoising using a neural network trained over multiple noise levels. This family of generative
models has been motivated by several theoretical foundations over the past years: DDPMs [16, 33]
parameterize the diffusion process as a discrete-time Markov chain, as opposed to continuous-time
approaches [49, 48]. The seminal EDM [19, 20] training and sampling settings later unified previous
methods into an improved ideal framework defined by a set of interpretable parameters. Originally
motivated by image generation, diffusion models have demonstrated impressive capabilities on
various conditional tasks such as text-to-image synthesis [34, 45], image-to-image generation from
various 2D input modalities [45, 64, 56], text-to-3D asset creation [40, 23] or environment-aware
human motion synthesis [18, 24]. Relevant to our work, diffusion models have been applied to the
generation of point clouds [31, 52] and other geometric representations involving 3D coordinates [59].

Lifting Pretrained Diffusion Models Knowledge of trained diffusion models can be leveraged
in various settings including content inpainting[30, 18], score distillation [40], exact likelihood
computation [49, 19] or teacher-student distillation [47, 32]. More relevant to our work, image-
domain diffusion priors have demonstrated compelling performance in discriminative tasks including
zero-shot image classification [22, 6, 5] and segmentation [4]. More precisely, Diffusion Classifiers
assign a label, from a finite set of possible classes {ci}Ni=1 to an observed sample x0 by computing
class-conditional density estimates from a pretrained diffusion model under the assumption of a
uniform prior p (ci) = 1/N . In practice, this is done by, for each class, iteratively adding noise to the
observed sample x0 and computing a Monte Carlo estimate of the expected reconstruction loss using
the class-conditioned model.

Controllable 3D Scene Synthesis Synthesizing indoor 3D layouts from a partial set of information
or constraints has come in various settings depending on provided vs. predicted entities and enabled
control granularity. A prolific line of research has been adopting intermediate 3D scene representations
such as graphs [25, 43, 54, 36, 62, 13, 26], furniture matrices [65] or multi-view images [35].
Autoregressive furnishing approaches [55, 38] have been supplemented by object attribute-level
conditioning [37, 27] and additional ergonomic constraints [21]. However, their one object at a time
strategy does not comprehensively capture complex relationships between all the interacting elements
and is known to easily fall into local minima in which new items fail to be accurately inserted to
the current configuration. Lately, methods have unfolded LLMs double-edged capabilities in this
area [9, 61] as they excel at generating sensible furniture descriptions while struggling in accurately
arranging them in the 3D space, which [12] addresses by introducing a costly refinement stage. In the
light of that, LLMs appear to be ideal candidates to supplement a specialized 3D layout generation
model.

Denoising Indoor Scenes Previous methods have explored diffusion-based approaches in the
context of 3D scene synthesis. Pioneering their usage, LEGO-Net [57] performs scene re-arrangement
(i.e., recovering a clean object layout from a noisy one) in the 2D space using a transformer backbone
that is not noise-conditioned, which we argue is the root cause of its main limitations. PhyScene[60]
augment diffusion-based 3D scene synthesis with additional physic-based guidance to enable practical
embodied agent applications. Most relevant to our work, DiffuScene [51] achieves 3D scene synthesis
by fitting a DDPM [16] on stacked 3D object features, resulting in a high-dimensional composite
distribution that is hard to learn and interpret. It does not enforce spatial configurations over other
predicted features. More importantly, its generative process is not conditioned on the room’s floor
plan (i.e., bounds) that constrains objects to be placed within a restricted area.

3 Method

3.1 3D Scene Representation

Our method is based on encoding the state of a 3D indoor scene S that is defined by a floor plan (i.e.,
bounds) F and an unordered set of N objects O = {o1, . . . , oN}, each being modeled by its typed
3D bounding box oi = {xi, ci} where ci ∈ {0, 1}k is the one-hot encoding of the semantic category
among k classes and xi = (pi, ri,di) ∈ R8 comprises 3D spatial attributes. More specifically,
pi ∈ R3 denotes the object’s center coordinate position, ri = (cos θi, sin θi) ∈ R2 is a continuous
encoding of the rotation of angle θi around the scene’s vertical axis [66] and di ∈ R3 is the dimension.
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Figure 2: DeBaRA architecture and training overview. At each iteration, 3D bounding boxes
parameters (p, r,d) of indoor scene’s objects O are perturbed with Gaussian noise σϵ. The floor
plan F , noise level σ and resulting objects Oσ are processed by respective encoders to form an
unordered set of representations T fed as input to a transformer encoder. Novel object embeddings
T̂o are finally decoded back to their predicted clean spatial configuration (p̂, r̂, d̂). Trainable modules
are optimized by minimizing a semantic-aware Chamfer loss. Input object categories c are randomly
dropped to model both the class-conditional and unconditional 3D layout distributions.

3.2 Diffusion Framework and Architecture

We describe in this section our score-based layout generation framework, relevant design choices and
network architecture, that are summarized in Figure 2. Remarkably, unlike previous approaches [51,
38, 37] that output a range of attributes lying in different spaces, we focus on accurately modeling
3D spatial layouts of bounded indoor scenes from a set of input object categories.

Learning 3D spatial configurations from object semantics We adopt a diffusion-based approach
to yield a conditional generation model that outputs 3D object spatial features {xi}Ni=1 from an
input floor plan and set of semantic categories y = (F , c) with c = {ci}Ni=1. During training,
3D spatial attributes are perturbed with Gaussian noise ϵ ∼ N (0, I) at various noise levels (i.e.,
magnitudes) σ. A trainable noise-conditioned denoiser model Dθ(xσ;y, σ) maps noisy spatial
attributes xσ = x+ σϵ to their clean counterparts x̂ ≈ x ∈ RN×8.

We notice that each object spatial attribute has an individual real-world interpretation (e.g, p and d can
be expressed in meters, r in degrees). To preserve their measurable nature at intermediate perturbed
configurations xσ, we want our diffusion parameterization to support a continuous range of noise
levels, correlated to the scale of the input signal. This will be particularly convenient at test time (see
Section 3.5). To guarantee both properties, we adapt the score-based EDM [19] framework. In our
context, this formulation is more natural than the DDPM framework employed by previous work [51].
The latter is based on discretizing noise levels and does not offer a straightforward interpretability of
the scene’s state at arbitrary timesteps. Our parameterization is further detailed in Appendix A.

Estimating the unconditional layout density Inspired by classifier-free guidance [17] in the
image domain, we model both the class-conditional density pθ

(
x|F , c

)
and the unconditional density

pθ
(
x|F , ∅) by a single network of parameters θ. At each training iteration, we perform conditioning

dropout on the set of semantic categories, by setting c = ∅ with probability pdrop else {ci}Ni=1. We
found that this mechanism helps to reduce overfitting of the training layouts pdata(x) and enables
novel capabilities that we introduce in Section 3.4.

Denoiser Network Architecture Our lightweight architecture is inspired by previous work [57]
to which we make key changes. Similar to [38] and [51], we use a shared object encoder in order
to obtain per-object token Toi as a concatenation of the object oi attributes embedded by sinusoidal
positional encoding and linear layers. Following [57], we uniformly sample P points on the edges of
the floor plan and feed them into a PointNet [41] model, resulting in a floor token TF . This choice of
feature extractor backbone is natural as it allows to maintain all the input scene’s spatial features in a
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common 3D space. Importantly, a noise token Tσ is computed from the current noise level σ, making
our architecture noise-aware, i.e., able to denoise layouts xσ at any perturbation magnitude.

All the previously encoded tokens form a sequence T = {TF , Tσ, Toi , . . . , ToN } from which a global
scene encoder Tθ computes rich representations T̂ . We design the method without any token ordering
and use padding mask for scene with fewer objects than the transformer capabilities. A final shared
decoder MLP takes as input object tokens {T̂oi}Ni=1 and returns denoised spatial attribute values
x̂ = {(p̂i, r̂i, d̂i)}Ni=1. We provide implementation details on the denoiser in Appendix B.1.

3.3 3D Spatial Objective

Our noise-conditioned model Dθ is optimized towards a novel semantic-aware Chamfer Distance
objective that does not penalize permutation of 3D bounding boxes sharing the same semantic
category between the predicted scene objects layout Ô and the ground truth one O:

LCD(Ô,O) = 1

2N

∑
ô∈Ô

min
o∈O

l(ô, o) +
∑
o∈O

min
ô∈Ô

l(ô, o)

 , (1)

where l(ô, o) = ∥x̂− x∥22 + κ
(
1− δc(ô, o)

)
. (2)

Here, κ is a large value so that a significant penalty is applied to objects that do not share the same
semantic category c, preventing them to be returned by the min operator.

We can finally rewrite the usual score-based training objective [49, 19] as:

Epdata(x),ϵ,σ

[
λ(σ)LCD(Dθ(x+ σϵ;y, σ),x)

]
(3)

where λ(σ) is a noise-dependent loss weighting function.

3.4 Self Score Evaluation

While specifying complete conditioning information such as the set of object semantics c could
be tedious, it can be provided by either a LLM or a separately trained sequence generation model.
However, using independent models is inherently suboptimal since it does not guarantee that the
generated conditioning input will be aligned with the score model knowledge. As a result, we propose
a novel method to select conditioning inputs that are attuned with the model’s capabilities.

More specifically, we evaluate a finite set of C object semantic categories candidates, where each
candidate is associated to a 3D spatial layout sampled from the learned conditional density, i.e.,

candidates =
{(

cj ,xj ∼ pθ
(
x|F , cj)

)}C

j=1

(4)

Then, the optimal conditioning candidate c∗ is derived from a density estimate of its corresponding
3D spatial layout x∗ provided by the unconditional network:

x∗ = arg min
xi

Eϵ,σ

[
LCD{Dθ(xi + σϵ ; F , ∅, σ),xi}

]
(5)

Algorithm 1 Self Score Evaluation

Require: a diffusion prior Dθ trained with conditioning dropout and by optimizing LCD

Input: conditioning candidates {cj}Cj=1, number of score evaluation trials Tsse

1: sample xj ∼ pθ(x|F , cj) for each candidate cj using iterative sampling
2: initialize scores[cj ] = list() for each cj
3: for trial t = 1, . . . , Tsse do
4: sample σ ∼ N (0, σs); ϵ ∼ N (0, I)
5: for candidate ck, sample xk do
6: scores[ck].append(LCD[Dθ(xk + σϵ, ; F , ∅, σ),xk])
7: end for
8: end for
9: return arg mincj

mean(scores[cj])
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(a) ATISS [38] (b) DiffuScene [51] (c) DeBaRA

Figure 3: We compare our method with established baselines for generating a 3D layout from a floor
plan and set of object categories. DeBaRA produces less failure cases while consistently generating
regular arrangements within the room’s bounds.

In practice, we compute an unbiased Monte Carlo estimate of each candidate expectation using
Tsse fixed (σ, ϵ) pairs. Although similar in some aspects, SSE fundamentally differs from diffusion
classifiers [22] as in our case, the uniform assumption over conditioning probabilities does not hold.
Indeed, in our setting some input signals cannot lead to a plausible arrangement at all. As a result,
density estimates of observed samples generated by the class-conditioned model are computed using
the unconditional one, while diffusion classifiers compute density estimates of a single observed
sample using the class-conditioned model. The SSE procedure is detailed in Algorithm 1. It is further
illustrated and discussed in Appendix C.

3.5 Application Scenarios

As shown in Figure 1, a single trained DeBaRA model can be used at test time to perform multiple
downstream interactive applications. Usual generation procedures, such as EDM 2nd order stochastic
sampler [19] can be applied using our trained denoiser to generate novel 3D layouts via T -step
iterative denoising at discretized noise levels σ0 = σmax > . . . > σT = 0.

In particular, several applications can be performed by inpainting [30], i.e., predicting missing spatial
features from those specified (i.e., fixed) in the input layout x ∈ RN×8. To do so, we introduce a
binary mask m ∈ {0, 1}N×8 specifying values to retain from the input. The predicted layout at any
sampling iteration t can be expressed as:

x̃σt
= x̂σt

⊙ (1−m) + xσt
⊙m (6)

3D Layout Generation Novel and diverse 3D layouts can be generated from an input set of
semantic categories c and a floor plan F by sampling from a high initial noise level σmax >> σdata,
arbitrarily initialized 3D spatial features xσ0

and with m = 0N×8.

3D Scene Synthesis DeBaRA can perform 3D scene synthesis via 3D layout generation from
semantic categories provided by external sources such as a LLM [9]. Input conditioning candidates
can further be optimally selected using the Self Score Evaluation procedure.

Scene Completion Additional objects oa can be inserted to an existing scene partially furnished
with k objects oe. To do so, their 3D spatial attributes xa are inpainted from the existing ones xe

with Dθ conditioned on the updated set of semantic categories c = ce∥ca using m(i, j) = 1{i≤k}.

Re-arrangement In the context of scene synthesis, re-arrangement [57] consists in recovering
the closest clean spatial configuration of existing objects from a messy one, which has practical
applications in robotics [2]. DeBaRA can perform re-arrangement by sampling from an initial noise
σmax that depends on the scene perturbation magnitude. During denoising, object positions and
rotations (p, r) ∈ RN×5 are inpainted from the known object dimensions using m(i, j) = 1{j>5}.
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(a) Ground Truth (b) Noisy (c) Re-arranged (d) Partial (e) Completed

Figure 4: Qualitative results on scene re-arrangement (left) and completion (right). DeBaRA is able
to recover a plausible layout from a messy one, and to finely take into account initial configurations.

Optimal Object Retrieval 3D scene synthesis systems depend on external 3D asset databases for
furnishing rooms. For each object of semantic class c, a textured furniture is retrieved by minimizing
the mismatch with the generated dimension dσT

. This is inherently suboptimal as the resulting
scene quality is limited by the size of the external database. To overcome this issue, we introduce a
post-retrieval refinement stage by performing additional re-arrangement steps starting from a noise
level σmax derived from the mismatch between generated and retrieved object dimensions.

Generation from Coarse Specifications We propose a time-dependent masking approach to
synthesize layouts from rough input spatial features (i.e., instead of exact ones), that are adjusted in
the late denoising iterations. To indicate approximate e.g., object dimensions, we set, at any sampling
step t, m(i, j) = 1{j>5 and t<Ts}. The denoising step Ts from which m is relaxed (i.e., set to 0) can
be derived from its corresponding noise level σTs and the precision of specified input features.

4 Experiments

In this section, we provide a comprehensive experimental evaluation of DeBaRA that we compare
with established baselines from different model families. We also demonstrate the capabilities of our
approach in various practical scenarios, enabling a wide range of applications.

Datasets Our experiments are conducted on the 3D-FRONT [10] synthetic indoor layouts, furnished
with assets from 3D-FUTURE [11] that we use as the object retrieval database. Out of the available
room types in the dataset, we independently consider living rooms and dining rooms which are more
densely furnished and feature complex floor plans. We follow the preprocessing from ATISS [38],
leading respectively to 2338/587 and 2071/516 train/test splits.

Baselines We compare DeBaRA with ATISS [38] autoregressive transformer and DiffuScene [51]
denoising network. To ensure a fair comparison with our method, we retrained both models with
floor plan conditioning on each 3D-FRONT subset using their official implementations. To perform
3D arrangement generation with DiffuScene, we implemented DDPM inpainting [30] of object
spatial features from their known semantic categories. Additionally, we report experimental results
obtained by LayoutGPT [9] that we implemented with a Llama-3-8B backbone [8] that we also
use to provide semantic categories in scene synthesis scenarios. Following the paper, we perform
prompting with supporting examples: for each test scene, we retrieve top-k samples from the training
set that have the most similar floor plan and include their spatial configuration as few-shot exemplars.
Note that LayoutGPT adopts a training-free approach and is therefore not directly comparable to our
method. However, we show how it can be used alongside a specialized model such as DeBaRA. Full
implementation details and LLM prompting strategies are reported in Appendix B.3.

Evaluation Metrics We follow previous work [43, 38, 51, 9, 55] and evaluate the realism and
diversity of generated arrangements by reporting the 2562 Fréchet Inception Distance (FID) [15],
Kernel Inception Distance (KID ×1, 000) [3] and Scene Classification Accuracy (SCA, values closer
to 50% are better) computed on top-down orthographic renderings. Resulting projections feature
the scene’s floor plan and objects colored according to their semantic class [51]. The generation
spatial validity is further assessed by reporting the cumulated out of bounds objects area (OBA, in
m2). Related indicators are provided and discussed in Appendix D.1. Metrics are computed across
each test subset, for which we generate the same number of scenes as the number of real ones.
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4.1 3D Layout Generation

The primary task of DeBaRA is to generate diverse and valid 3D layouts within a given floor plan and
a list of object semantics. We showcase qualitative generation results and comparisons in Figure 3. As
highlighted by previous work [57, 51], denoising-based methods better capture the interplay between
interacting objects. We also observe that DeBaRA largely outperforms baselines at respecting the
scene’s bounds while consistently producing more natural arrangements. These observations are
quantitatively verified in Table 1 and visualized in Figure 3.

Table 1: Quantitative experiment results on bounded 3D layout generation (providing a floor plan
and a list of object semantic categories). We compare our method against other learning-based
approaches and additionally indicate results obtained from a training-free LayoutGPT.

Methods
Living Rooms Dining Rooms

FID (↓) KID (↓) SCA (%) OBA (↓) FID (↓) KID (↓) SCA (%) OBA (↓)
LayoutGPT [9] 35.53 13.69 72.8 2913.6 32.80 8.99 67.6 2447.4

ATISS [38] 25.67 8.91 71.8 857.3 28.05 9.26 63.2 702.4
DiffuScene [51] 21.54 6.40 69.7 341.1 23.06 5.35 57.7 266.4
DeBaRA (ours) 18.89 3.57 68.3 167.8 22.04 4.41 52.4 132.8

4.2 3D Scene Synthesis and Self Score Evaluation

We demonstrate competitive or state-of-the-art capabilities on 3D scene synthesis against methods
that have been specifically trained for this task. We consider several settings depending on the
source of input object categories and report our results in Table 2. First, we observe that randomly
picking input semantics from the training set (Dataset Random) or taking the set c generated by
LayoutGPT [9] outperform baselines by a significant margin on the 3D-FRONT living rooms test set.
Then, to measure the individual impact of SSE, we compare a setup in which input semantics are
selected from a set of LLM-generated ones, either randomly (LLM) or by applying SSE. As LLMs
often hallucinate or produce out-of-distribution sets, our procedure consistently improves realism and
validity of the synthesized indoor scenes, which can also be qualitatively observed in Figure 5. These
results further validate our choice to focus solely on 3D spatial features of objects.

Table 2: Quantitative experiment results on 3D scene synthesis. DeBaRA is evaluated in various
settings based on the source of object semantic categories c. Precise settings are detailed and
discussed in Appendix B.4. DeBaRA outperforms established baselines on most evaluation metrics.

Methods
Living Rooms Dining Rooms

FID (↓) KID (↓) SCA (%) OBA (↓) FID (↓) KID (↓) SCA (%) OBA (↓)
LayoutGPT [9] 34.26 10.17 72.1 2902.7 37.78 11.31 60.2 1982.1

ATISS [38] 27.02 10.99 73.0 848.4 28.26 9.28 58.2 759.1
DiffuScene [51] 21.64 5.94 66.0 323.1 23.85 5.66 54.6 289.8

DeBaRA LayoutGPT 20.97 3.53 69.8 193.0 26.67 7.14 56.6 151.8
Dataset Random 19.52 3.53 67.6 159.0 25.45 5.11 52.5 139.5

DeBaRA LLM 21.58 3.53 72.4 154.3 27.09 7.38 60.5 140.4
LLM + SSE 20.59 3.47 70.7 152.0 24.50 5.34 54.0 134.4

0,080 0,094 0,1750,0790 0,1470,1240,07230,059 0,060 0,078

Figure 5: Top-down views of scenes generated by DeBaRA from several conditioning candidates
provided by a LLM and their associated SSE values. We qualitatively observe that lower scores
(green) corresponds to more natural layouts while higher scores (red) can be filtered out.
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4.3 Other Application Scenarios

We present DeBaRA’s capabilities at performing additional controllable tasks. Notably, we include
quantitative (Table 3) and qualitative (Figure 7) experimental evaluations against LEGO-Net [57] on
scene-rearrangement. Results highlight that our method is able to recover more realistic arrangements,
while being closer to their initial, messy configurations. This is remarkable as the LEGO-Net baseline
has been specifically trained to perform this task.

(a) Ground Truth (b) Noisy

(c) LEGO-Net [57] (d) DeBaRA

Figure 7: Qualitative comparison against LEGO-
Net [57] on scene re-arrangement.

Table 3: Quantitative evaluation on scene re-
arrangement. DeBaRA is able to recover more
realistic arrangements, closer to their initial noisy
configurations.

Method FID (↓) KID (↓) Distance
Moved (↓)

LEGO-Net [57]
grad w/o noise 26.81 13.18 0.094

DeBaRA 24.92 9.47 0.082

We also provide additional re-arrangement results and showcase DeBaRA’s scene completion capa-
bilities, by inserting objects from a list of additional semantics, in Figure 4.

4.4 Ablations

We evaluate the individual contributions of some of our framework’s key components on the base
3D layout generation task. Notably, results reported in Table 4 highlight the advantage of our novel
objective (Section 3.3) over common formulations as well as the benefits of modeling both the
unconditional and class-conditional densities of 3D layouts during training (Section 3.2).

Table 4: Ablation study on DeBaRA training setup. We evaluate the individual impact, on 3D
layout generation, of different learning objectives L and of applying conditioning dropout with rate
pdrop. Notably, the use of our novel Chamfer distance results in a significant performance increase.

Ablation Setting Living Rooms Dining Rooms

L(Ô,O) pdrop FID (↓) KID (↓) SCA (%) OBA (↓) FID (↓) KID (↓) SCA (%) OBA (↓)
MSE 0.0 21.66 6.55 70.9 237.0 23.89 5.51 56.9 136.5

CD standard 0.0 21.76 7.05 71.7 225.1 25.21 6.75 59.4 294.7
CD semantic-aware (ours) 0.0 19.89 4.82 63.5 220.0 22.60 4.87 53.4 159.4

CD semantic-aware (ours) 0.2 18.89 3.57 68.3 167.8 22.04 4.41 52.4 132.8

4.5 Additional Results

Complex Floor Plans We notice that the 3D-FRONT dataset mostly contains simple floor maps
(i.e., single room, squared, rectangular) both for training and evaluation. As a result, we manually
designed irregular floor shapes and report DeBaRA’s generation in Figure 8, which further highlights
the robustness of our method and its consideration for the conditioning input.

Fl
oo

r P
la

n 
ℱ

G
en

er
at

ed

Figure 8: Generated layouts from a given set of objects and complex floor plans, selected from
the 3D-FRONT test set or handcrafted to irregular, out-of-distribution shapes. While challenging,
DeBaRA is able to output plausible layouts in which objects are scattered across the input floor plans.
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Iterative Sampling We provide a visualization of the iterative denoising process over time when
generating a 3D layout from arbitrarily initialized object bounding boxes in Figure 9.

0 (init)      5     10     15      20       30        40         50      Result
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Figure 9: Visualization of intermediate layouts throughout the DeBaRA denoising process. Coarse
object attributes (positions, rotations and dimensions) are determined in the early steps, and then
refined in the late iterations.

Generation Variety and Validity We also perform scene completion by adding a bookshelf and a
coffee table, repeat the experiment ten times and report in Figure 10 the denoising object trajectories,
intermediate and final positions (colored and black dots respectively). This allows to observe the
variety of predicted layouts. Notably, we can see that the bookshelf ends up in various different
positions, always next to a wall, while the coffee table, which is functionally constrained by its
surrounding objects, is placed at similar valid locations.

Figure 10: Visualization of sampling trajec-
tories and final positions of a pair of objects,
inserted into a scene across ten trials.

Table 5: Generation times are averaged on the 3D-
FRONT [10] living room test subset. DeBaRA is im-
plemented with T = 50 sampling steps and Tsse = 100
Self Score Evaluation trials.

Method Network
Parameters (106)

Generation
Time (s)

ATISS [38] 36.1 0.160
DiffuScene [51] 89.7 32.796

DeBaRA 12.2 0.488
DeBaRA + SSE 12.2 0.894

Network Efficiency Finally, we compare the number of parameters as well as the sampling (i.e.,
generation) time, measured on the 3D layout generation task, of our DeBaRA backbone with those
of other recent data-driven approaches in Table 5. We can see that our lightweight architecture is
bridging the gap with autoregressive methods in terms of inference efficiency.

5 Conclusion, Limitations and Future Work

In this paper we proposed DeBaRA, a novel score-based framework, which achieves state-of-the-
art results in 3D layout generation. Our approach is distinctive in its design choices, which both
favor data-efficiency with enhanced spatial reasoning, while, at the same time, enabling a range of
applications such as scene re-arrangement and completion. Furthermore, we introduce a novel Self
Score Evaluation procedure, which allows us to leverage a trained model to select the conditioning
signals, which lead to the most plausible results. Overall, our work is the first to unify the conditioning
and prediction spaces of score-based models within the context of 3D generative layout.

While powerful, our method currently does not enforce physical constraints between interacting
objects, which can lead to collisions. We also assume that object semantic classes are selected among
a finite set of predefined categories. Finally, we do not enforce style consistency between objects,
which can, nevertheless, be performed at retrieval time.

We believe that our approach can enhance other generative models (e.g., architectural layouts, images)
by both evaluating the quality and by promoting more plausible 3D layout designs. Furthermore,
it will be interesting to combine our approach with encoders from other modalities for a unified
multi-modal layout generation.
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Appendix

A Score-based Framework

In this section, we give additional details on the score-based parameterization that we adopt to learn
the distribution of 3D layouts pdata(x) and the sampling strategy used to generate new samples from
the resulting trained denoiser Dθ.

A.1 Training

Score-based approaches model the score (i.e., the gradient of log-probability density w.r.t. the data)
of marginal distributions pσ(x) obtained by perturbing the data with Gaussian noise ϵ ∼ N (0, I) at
magnitudes σ. In practice, the score can be effectively approximated by a noise-conditioned denoiser
that outputs clean samples from noisy ones, then,∇x log pσ(x) = (Dθ(x;y, σ)− x)/σ2.

Parameterizing the denoiser to output x from its corrupted version directly is not ideal as the input
magnitude varies greatly depending on the current noise level. Instead, Karras et al. [19] propose in
their EDM diffusion framework a preconditioning of the denoiser whose output is now derived from
a trainable network Fθ that either predicts the clean signal x, the noise ϵ or something in between,
depending on the value of σ. More formally, it can be expressed as:

Dθ(x;y, σ) = cskip(σ)x+ cout(σ)Fθ

(
cin(σ)x;y, cnoise(σ)

)
(7)

The preconditioning function cskip amplifies the network error as little as possible while cin and cout
scale respectively the input and output to have unit variance. Following [19], we set:

cskip =
σ2

data

σ2
data + σ2

; cin =
1√

σ2
data + σ2

; cout =
σ · σdata√
σ2

data + σ2
; cnoise =

ln(σ)

4
(8)

Note that in our case, the value of σdata should preferably be computed channel-wise for each
attribute of x = (p, r,d) ∈ R8, as object positions, rotations and dimensions typically have different
standard deviations. In practice, we compute σp

data and σd
data from the training data and arbitrarily set

σr
data = (0.5, 0.5). During training, noise values σ are drawn from a centered normal distribution

of variance 0.25, which concentrates training on medium noise levels. Spatial values p and d of
each training layout x are normalized based on the maximum extent of the scene’s floor plan F ,
which ensures that all the network’s inputs and outputs are scaled in [−1, 1]. To model both the
class-conditional and unconditional layout densities, we perform conditioning dropout on object
categories c with a rate pdrop = 0.2.

Finally, the training objective can be expressed by introducing our semantic-aware Chamfer recon-
struction loss following Equation 3. As in EDM, we use λ(σ) = 1/c2out to get a uniform weighting
across noise levels.

A.2 Sampling

At test time, the reverse SDE [19, 49] associated to the continuous-time diffusion process is used to
generate novel samples from a standard normal distribution using numerical solvers. It depends on
the score approximated during training:

dx =
[
f(x, t)− g(t)2∇x log pt(x)

]
dt+ g(t)dw (9)

where f(·, t) : Rd → Rd and g(·) : R→ R are respectively the drift and diffusion coefficients and w
is the standard stochastic Wiener process.

In practice, we use EDM [19] 2nd order Runge-Kutta stochastic sampler (see Algorithm 2), that
resembles the predictor/corrector framework from Song et al. [49] and provides a good trade-off
between generation quality and number of function evaluations (NFE).

It is based on a T -step discretization of the reverse SDE [19, 49], with timesteps ti∈{0,...,T−1}
decreasing from σmax (i = 0) to σmin (i = T − 1). Following [19], we use:

ti<T =

(
σmax

1
ρ +

i

T − 1

(
σmin

1
ρ − σmax

1
ρ

))ρ

, tT = 0 (10)
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Algorithm 2 EDM Stochastic Sampler [19]

1: procedure LAYOUTSAMPLER(Dθ(x;y, σ),x0, ti∈{0,...,T−1}, γi∈{0,...,T−1}, Snoise)
2: for i ∈ {0, . . . , T − 1} do
3: sample ϵi ∼ N (0, S2

noiseI)
4: t̂i ← ti + γiti

5: x̂i ← xi +
√

t̂2i − t2i ϵi

6: gi ←
(
x̂i −Dθ(x̂i;y, t̂i)

)
/t̂i

7: xi+1 ← x̂i + (ti+1 − t̂i)gi
8: if ti+1 ̸= 0 then
9: g′

i ← (xi+1 −Dθ(xi+1;y, ti+1)) /ti+1

10: xi+1 ← x̂i +
1
2 (ti+1 − t̂i)(gi + g′

i)
11: end if
12: end for
13: end procedure

Note that t and noise level σ can be used interchangeably. The ρ parameter is tuned to dedicate
more steps of the denoising process to smaller or larger noise levels. The σmin value should be small
enough so that the model estimates the best approximation of the score and sample a precise layout.
On the other hand, σmax should be large enough to sample various layouts. The amount of fresh noise
injected at the beginning of each denoising step is defined by γi∈{0,...,N−1}. Similar to Wei et al. [57]
and Karras et al. [19], we qualitatively observed that adding noise in the final timesteps, i.e., when
the layout is close to its final configuration, leads to less precise results. As a result, an additional
Smin parameter is set so that γi = 0 when ti < Smin.

For 3D layout generation, we use T = 50 timesteps and set σmax = 1.0, σmin = 0.005, ρ = 7, and
Smin = 0.005. Note that, although we perform conditioning dropout during training, we didn’t find
the need to amplify the strength of the input categories using any classifier-free guidance [17] scale at
sampling time.

Additionally, Table 6 shows that sampling from DeBaRA using EDM [19] 2nd order stochastic
procedure (Algorithm 2) outperforms ancestral DDPM [16] sampling using a fraction of the denoising
steps. This, combined with our lightweight architecture, enables real-time (<1s) generation.

Table 6: Ablation study on DeBaRA sampling strategy. Metrics are computed on the 3D layout
generation task.

Sampler Living Rooms Dining Rooms

Alg. Steps FID (↓) KID (↓) SCA (%) OBA (↓) Time (s) FID (↓) KID (↓) SCA (%) OBA (↓) Time (s)

DDPM 1000 21.12 5.65 67.4 268.9 5.144 23.18 5.78 53.3 202.9 4.925
EDM 25 19.53 3.95 69.4 159.5 0.247 21.95 4.26 54.7 140.5 0.248
EDM 50 18.89 3.57 68.3 167.8 0.488 22.04 4.41 52.4 132.8 0.514

B Implementation

We provide in this section additional implementation details on our model architecture and training
configurations, illustrated in Figure 2. We also detail how baselines have been retrained and used at
test time to ensure a fair and relevant comparison with our approach.

B.1 Network Architecture

Shared Object Encoder The shared object encoder embeds each object oi from its input 3D spatial
values xi and semantic category ci. Triplets of scalar values of the object’s position pi and dimension
di are encoded with fixed sinusoidal positional encoding of 32 frequencies following [57]:

PE(s) =
{
sin(128j/31s), cos(128j/31s)

}31

j=0
∈ R64 (11)

Applying this module projects pi and ri in R192. It is similarly applied to ri = (cos(θi), sin(θi)) to
get a feature in R128, that is additionally fed to a linear layer to obtain a 192-dimensional attribute.
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The object semantic class ci, represented as a one-hot vector among k classes is encoded in R192 by
an MLP with 2 a hidden layer of 128 units and LeakyReLU activation. Respective object spatial and
semantic encodings are then concatenated to form an object token Toi of dimension 4× 192 = 768.

Floor Encoder The scene’s conditioning floor plan F is embedded by a PointNet [41] module,
similar to [57]. To do so, we first extract the floor’s 2D polygon using the output of ATISS [38]
preprocessing and sample P = 100 evenly spaced points on its contour. The PointNet backbone2

produces a 1024-dimensional feature, that is further passed to a linear layer to get the appropriate
floor token TF ∈ R768.

Noise Level Encoder We encode the noise level σ as a token Tσ ∈ R768 obtained by subsequently
applying PE(σ) and a linear layer with LeakyReLU activation.

Transformer Encoder Our transformer encoder that computes new representations T̂ is composed
of multi-head self-attention and feedforward layers, following the original paper [53] and implemen-
tation from the PyTorch [39] API. Importantly, we don’t enforce ordering of any input token and pass
an additional padding mask to handle sequences of different lengths. We stack 3 encoder layers, each
having 4 attention heads and a feedforward hidden dimension of 512.

Shared Object Decoder The final shared object decoder produces the network’s predicted spatial
values x̂i ∈ R8 for each of the N objects from their respective T̂oi embeddings. It is implemented as
an MLP with three layers of 512, 128, and 8 units, using LeakyReLU activations and a dropout rate
of 0.1.

B.2 Training Protocol

During training, the network is optimized towards our semantic-aware Chamfer loss, that can be
efficiently implemented with appropriate broadcasting. We trained our models separately on the
3D-FRONT [10] living room and dining room subsets for 3000 epochs, with a batch size of 32 and
monitor the validation loss to avoid overfitting of the training set in the late iterations. We use the
AdamW [29] optimizer with its PyTorch default parameters and learning rate η = 10−4, scheduled
with a linear warmup phase for the first 50 epochs, starting at η × 0.01. Following this, a cosine
annealing schedule [28] reduces η to a minimum of 10−8 over 2200 epochs. Finally, we randomly
apply rotations to the training scenes as data augmentation.

B.3 Baselines

ATISS ATISS [38] is an autoregressive, permutation-invariant transformer that treats 3D scene
synthesis as an unordered set generation task. The model is natively conditioned on the room’s floor
plan, from which it extracts features using a ResNet-18 [14] applied on a top-down binary projection.
The model predicts the semantic class, location, rotation and dimension of the next object to be
inserted to the current layout configuration. As our method, it also supports inserting objects from
their semantic categories given as input, which is the setting that we used to report experimental
results on the 3D layout generation task (see Table 1 and Figure 3). We retrained the model on each
3D-FRONT subset using the authors’ implementation.3

DiffuScene DiffuScene [51] employs a DDPM to perform 3D scene synthesis, by learning to
denoise unordered sets of objects that are each represented by all their attributes, i.e., location, size,
orientation, semantic category and shape code. Although the paper specifically mentions not being
conditioned on the room’s bounds, we found out the official implementation supports this feature
that we enabled to retrain the model on the 3D-FRONT subsets, with other settings set to those of
the authors. In practice and similar to ATISS [38], a ResNet-18 backbone is used to extract features
from the floor plan’s projection mask. The resulting encoding is passed to an MLP whose output is
added to the diffusion timestep embedding, as in [46]. To assess the effectiveness of this conditioning
mechanism and validate the relevance of this baseline, we report metrics obtained for the 3D layout

2https://github.com/fxia22/pointnet.pytorch
3https://github.com/nv-tlabs/ATISS
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generation task, using both a floor-conditioned and an unconditional (vanilla) trained DiffuScene
model on the living room subset in Table 7. Note that, top-down view of scenes, that we use to
evaluate e.g., FID and KID scores, feature the floor plan, which penalizes generated configurations
that don’t properly take it into account.

Table 7: Quantitative impact of DiffuScene [51] floor plan conditioning on 3D layout generation.
Results indicate that the additional input has successfully been learned, resulting in a solid baseline.

Model FID (↓) KID (↓) OBA (m2)

DiffuScene vanilla 41.30 22.92 1621.5
DiffuScene floor 21.54 6.40 341.1

To perform 3D layout generation from input semantic categories using DiffuScene (Table 1, Figure 3),
we implemented DDPM inpainting of the object spatial features from their categories as an additional
method within the official implementation4 and using default sampling settings with 1000 timesteps.

LayoutGPT LayoutGPT [9] is a training-free approach that utilizes Large Language Models to
generate layouts both in the image and the 3D scene domains, demonstrating competitive performance
with learning-based approaches on 3D scene synthesis. To do so, the method consists in prompting
a LLM with specific instructions and by adding supporting examples from the training set, i.e.,
few-shot exemplars of expected, valid layouts. These examples are retrieved from the train set based
on floor plan similarity computed from the binary masks with a test sample. We reimplemented
LayoutGPT, using the official implementation5 for exact prompt and supporting examples retrieval,
but using a Meta Llama-3-8B6 backbone instead of ChatGPT variants for local execution and better
reproducibility.

To perform 3D layout generation, we include in the prompt the list of object semantic categories.
Here is a typical LayoutGPT prompt for this task on the living room subset:

Instruction: synthesize the 3D layout of an indoor scene. The generated 3D 
layout should follow the CSS style, where each line starts with the furniture 
category and is followed by the 3D size, orientation and absolute position. 
Formally, each line should follow the template:  
FURNITURE {length: ?m: width: ?m; height: ?m; left: ?m; top: ?m; depth: ?m; 
orientation: ? degrees;} 
All values are in meters but the orientation angle is in degrees. 
 
Condition: 
Room Type: livingroom 
Room Size: max length 1.00m, max width 1.53m 
Furniture categories: console_table multi_seat_sofa corner_side_table 
corner_side_table coffee_table tv_stand pendant_lamp 
Layout: 
console_table {length: 0.28m; height: 0.31m; width: 0.14m; orientation: -90 
degrees; left: 0.93m; top: 0.41m; depth: 0.15m;} 
[…] 
 
[OTHER SUPPORTING EXAMPLES] 
 
Condition: 
Room Type: livingroom 
Room Size: max length 1.00m, max width 1.62m 
Furniture categories: tv_stand corner_side_table coffee_table dining_table 
dining_chair dining_chair dining_chair dining_chair armchair pendant_lamp 
pendant_lamp multi_seat_sofa 
Layout: 

For 3D scene synthesis, we follow the paper and include the training set’s object frequencies in the
prompt. We set the LLM sampling temperature to 0.7 and maximum output tokens to 1024. We

4https://github.com/tangjiapeng/DiffuScene
5https://github.com/weixi-feng/LayoutGPT
6https://huggingface.co/meta-llama/Meta-Llama-3-8B
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Figure 11: Self Score Evaluation (SSE) Pipeline. The method allows to leverage the knowledge of a
model trained following our method to select valid sets of object categories.

report LayoutGPT performance on this task in Table 2, where we also indicate metrics obtained by
DeBaRA when using as conditioning input the same semantic set as the one generated by LayoutGPT
for the corresponding test scene. In this setup, we largely outperform the baseline and even report
state-of-the-art FID, KID and OBA scores on 3D-FRONT living room.

LEGO-Net The LEGO-Net [57] model is specifically designed to perform 2D scene re-arrangement,
i.e., recover a close clean layout configuration from a messy, perturbed one. It is trained using a
regression loss on object position and rotation values, and proposes a Langevin dynamics-like
iterative sampling procedure. In order to produce the results reported in Table 3, we used authors’
implementation,7 in the grad without noise setting (which is the best performing in the original paper),
on the 3D-FRONT living room test subset and with a scene perturbation level of 0.25.

B.4 LLM Prompting

As mentioned in the main submission, we perform 3D scene synthesis using DeBaRA conditioned on
LLM-generated sets of object semantics, that we optionally select via Self Score Evaluation (Table 2,
Figure 5). In practice, the generated categories have been obtained using Llama-3-8B [8] following
the LayoutGPT [9] prompting strategy. We experienced asking the language model to generate solely
lists of object semantics using a few supporting examples and providing the dataset statistics, but we
noticed that it was more prone to hallucinate and drift towards inconsistent generations than when
generating complete layout configurations (i.e., including object position and orientation values).

The DeBaRA LLM reported in Table 2 corresponds to the setup where we filter from the LLM-
generated sets of categories those having the same number of objects as the considered test scene and
randomly select one to condition DeBaRA. The DeBaRA LLM + SSE setting is similar, but instead of
picking a set randomly, the selection is performed by applying the SSE procedure.

B.5 Computational Requirements

All the training and evaluation experiments as well as the computation of generation times reported in
Table 5 have been performed on a single NVIDIA RTX A6000 GPU. When comparing our number
of network parameters and generation times with those of ATISS [38] and DiffuScene [51], we notice
that DeBaRA is bridging the gap with autoregressive methods in terms of inference efficiency. This
is made possible by our restricted output space that requires a more lightweight backbone as well as
our choice of sampling procedure that leads to a favorable NFE / generation quality tradeoff.

7https://github.com/QiuhongAnnaWei/LEGO-Net
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C Self Score Evaluation

In this section, we provide additional content regarding our SSE procedure (Section 3.4), by illustrat-
ing it and by further assessing its expressive power.

C.1 Pipeline

The SSE formulation is expressed by Equations 4 - 5. It follows the procedure outlined in Algorithm 1.
We additionally illustrate the SSE pipeline in Figure 11. In our experiments, SSE is implemented
using Tsse = 100 trials, with noise levels σ drawn as in training.

C.2 Additional Evaluation

We additionally evaluate the expressive power of the SSE procedure in a toy binary classification task:
for each scene of the test set, we create a corrupted version by replacing a proportion prand of the
scene’s object categories by random ones. We report the binary classification score obtained by SSE
when asked to discriminate the corrupted set of semantics from the ground truth one. We perform the
experiments 10 times to account for the inherent stochasticity of the experimental setup and report
the results for several values of prand in Table 8.

Table 8: SSE performance at discriminating ground truth sets of categories from perturbed ones.

Perturbation None Single prand = 0.35 prand = 0.50 prand = 0.75 All

Accuracy (%) 50.6± 4.39 71.7± 2.20 73.8± 3.38 78.5± 1.84 80.9± 2.62 84.0± 2.90

We observe a significant gap in accuracy between the control experiment (none object is perturbed,
meaning that the sets are equals) and the setting where only a single object has been swapped. It
means that SSE is able to identify subtle misalignments between the network’s knowledge and the
provided conditioning candidates.

D Additional Results

In this section, we provide supplementary quantitative indicators measuring the validity of generated
layouts with respect to the conditioning floor plan. We also showcase additional qualitative results
and comparisons in multiple application scenarios.

D.1 Bounding Metrics

In addition to the cumulated out of bounds objects area (OBA, in m2) reported in Table 1, we indicate
the rate of scenes having at least one object out of its bounds (OBR), and the cumulated number of
out-of-bounds objects in the generated layouts (OBN) in Table 9. For OBR and OBN, we consider an
object to be out-of-bounds if at least 20% of its 2D bounding box surface is outside the floor’s limits.

Table 9: Quantitative bounding metrics on the 3D layout generation task. We observe that DeBaRA
is consistently better at respecting the indoor floor plan by a significant margin.

Methods
Living Rooms Dining Rooms

OBA (↓) OBR (↓) OBN (↓) OBA (↓) OBR (↓) OBN (↓)
LayoutGPT [9] 2913.6 0.695 2119 2447.4 0.659 1720

ATISS [38] 857.3 0.744 1195 702.4 0.891 1603
DiffuScene [51] 341.1 0.652 742 266.4 0.628 640
DeBaRA (ours) 167.8 0.390 497 132.8 0.403 401
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D.2 Qualitative Results

(a) ATISS [38] (b) DiffuScene [51] (c) DeBaRA

Figure 12: Additional 3D layout generation results. We compare our method by generating layouts
from a list of object semantic categories and a floor plan. DeBaRA consistently produces more
realistic arrangements while respecting the room’s outline.
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(a) ATISS [38] (b) DiffuScene [51] (c) DeBaRA
Dataset Random

(d) DeBaRA
LayoutGPT

(e) DeBaRA
SSE

Figure 13: Additional scene synthesis results. We compare DeBaRA with state-of-the-art ap-
proaches in various settings. Since object semantics are not part of our output space, they are randomly
drawn from the training dataset (Dataset Random), generated by an external LLM (LayoutGPT) or
selected from LLM-generated sets by our density estimate procedure (SSE), which helps to get more
natural layouts for the considered floor configuration.
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(a) Ground Truth (b) Perturbed (c) Re-arranged

Figure 14: Additional re-arrangement results. Our method can recover a plausible arrangement
from a noisy one using iterative sampling with fixed dimension attributes and low initial noise level.
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Figure 15: Additional scene completion results. From a list of additional objects semantics,
DeBaRA is able to finely introduce the relevant items into an existing layout.

D.3 Statistical Analysis

We can observe in our qualitative results, e.g., in Figure 3, that objects are most of the time parallel or
perpendicular to walls, meaning that their rotation attributes r mainly take cardinal angle values, i.e.,
0°, 90°, 180° or 270°.

Radial histograms of object rotation values reported in Figure 16 indicate that 3D-FRONT [10]
subsets contain rooms in which objects, in their vast majority, exhibit this property and don’t have
much exotic angles, i.e., different from cardinal ones. These restricted rotation distributions are
consequently learned and resembled by generative models at sampling time.
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Figure 16: Distributions of object rotation values extracted from the dataset or generated following
our method, reported for both test subsets. We can see that the original data predominantly features
objects rotated by 0°, 90°, 180° or 270° around the scene’s vertical axis, which, as a result, is also the
tendency induced by the generative model.

E Societal Impact

We believe that our method will predominantly yield positive societal impact by enhancing accessi-
bility, controllability and efficiency in 3D indoor design and creation, benefiting both non-experts and
professionals in several industries.

Nevertheless, it raises common concerns associated with deep generative models. Specifically, users
should be warned about using the model for furnishing real-world rooms as generated layouts may
result in unsafe designs. Additionally, privacy safeguards should systematically be implemented
along our method in order to prevent unauthorized replication of personal spaces.

F Licenses

In this section, we list licenses of datasets, open-source code artifacts and pretrained models that
were used in the context of our experiments.

Datasets

• 3D-FRONT [10]: CC BY-NC-SA 4.0 License
• 3D-FUTURE [11]: CC BY-NC-SA 4.0 License

Code

• ATISS [38]: NVIDIA Source Code License for ATISS8

• DiffuScene [51]: Sony Group Corporation License for DiffuScene9

• LayoutGPT [9]: MIT License
• LEGO-Net [57]: MIT License
• PointNet [41]: MIT License

Models

• Llama-3-8B [8]: Meta Llama 3 Community License Agreement10

• Inception-v3 [50]: Apache 2.0 License

8https://github.com/nv-tlabs/ATISS/blob/master/LICENSE
9https://github.com/tangjiapeng/DiffuScene/blob/master/LICENSE

10https://huggingface.co/meta-llama/Meta-Llama-3-8B/blob/main/LICENSE
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