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Context: The SPARTE project aims to propose a solution based on highly efficient porous scintillators enabling the detection and the quantification of
several critical radioactive rare gas isotopes of primary importance. Radionuclides are instable and naturally lead to the emission of ionizing radiations at a
certain decay rate stated as half-life (from ns to billions of years). These ionizing radiations are photons or particles such as g, X-ray, b, a particles. While
technologies to detect g and X-rays is mature and commercially available, b and a particles are trickier to detect because of their short mean free path in the
matter. This short mean free path strongly depends on the energy of the particle, in the case of B it can be some um in water up to some cm for higher energy
one and become some cm up to a meter in air. When their energy is reduced, their detection becomes critical because they have to be almost in contact with
the sensor to be detected. Beyond detecting the presence of radioactive elements, metrology requires to quantify the activity which involves the modelling of
the matter radiation, and for most of the b-active critical elements, reliable and widely deployable technology does not exist.
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