
HAL Id: hal-04863271
https://hal.science/hal-04863271v1

Submitted on 3 Jan 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Whitening Effects for ML-DoA Estimation using a
Sparse Representation of Array Covariance

Thomas Aussaguès, Anne Ferréol, Alice Delmer, Pascal Larzabal

To cite this version:
Thomas Aussaguès, Anne Ferréol, Alice Delmer, Pascal Larzabal. Whitening Effects for ML-DoA
Estimation using a Sparse Representation of Array Covariance. IEEE 50th International Conference on
Acoustics, Speech and Signal Processing (ICASSP 2025), Apr 2025, Hyderabad, India. �hal-04863271�

https://hal.science/hal-04863271v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Whitening Effects for ML-DoA Estimation using a
Sparse Representation of Array Covariance
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Abstract—Maximum Likelihood (ML) Direction-of-Arrival
(DoA) estimation on the Vectorized Covariance Matrix Model
(VCMM) exhibits enhanced performance in severe conditions
compared to standard methods. Indeed, it benefits from the vec-
torized covariance matrix model capacities summarized through
the Virtual Array (VA) concept. Due to finite number of samples,
the VCMM is corrupted by a coloured Gaussian noise. As a rem-
edy, we previously introduced a pre-whitening noise transform
converting the coloured noise into white Gaussian noise. Using
the whitened model, we recently shown equivalence between
sparse DoA estimators and the ML thereby enabling efficient
implementation of ML DoA estimation under white Gaussian
noise.

In this work, the noise pre-whitening transform is shown to
significantly improve the sparse problem conditioning by spatially
decorrelating the dictionary vectors associated to sources direc-
tions thus simplifying the implementation of ML DoA estimation
with a sparse representation. To this end, the expression of the
spatial correlation coefficient after whitening is derived.

Numerical simulations confirm the performance increase of
sparse DoA estimators after whitening for closely separated
sources.

Index Terms—regularization parameter, optimization, resolu-
tion, orthogonal dictionary

I. INTRODUCTION
DoA estimation is a fundamental signal processing problem

arising in various fields such as telecommunications or radar.
Over the past few decades, a wide range of estimators have
been proposed [1] with some of the most well-known being
Capon’s beamformer [2] as well as High Resolution (HR)
techniques such as MUSIC [3], [4], ESPRIT [5] and the ML
estimator [6].

Although aforementioned HR methods outperform classical
DoA estimation techniques, they all rely on an array of N
antennas which restricts the number of identifiable sources
to N − 1 sources. Chevalier et al. described in [7] the VA
concept, with space diversity only, relying on at most N2−N
non-redundant antennas hence increasing the maximal number
of sources to be processed to N2−N −1 and simplifying the
resolution of poorly angularly separated sources. Extensions
of the MUSIC algorithm to higher order moments such as
4-MUSIC [8], [9] have been proposed to exploit the VA.
Alternatively, the VCMM can be employed to leverage the
VA [10].

To estimate DoAs from the VCMM, the signal processing
community investigated sparse estimators through last decades
[11], [12]. Although to our knowledge there exists no the-
oretical performances for these estimators, several authors

illustrate by simulation performances improvements in difficult
scenarios (low Signal-to-Noise Ratio (SNR), few available
array snapshots) compared to traditional DoA estimators [13]–
[16]. Nonetheless, the separation of closely spaced sources
remains challenging as the corresponding dictionary vectors
are highly correlated.

As outlined in [16], the VCMM is corrupted by a coloured
noise vector due to the finite number of samples. The presence
of coloured noise can significantly degrade performances
[17], [18]. As a remedy, several authors proposed modified
estimators [19]–[21]. When sufficient data is available, a
pre-whitening noise transform is applied transforming the
initially coloured noise into white noise [6]. A such perform is
performed in [16] on the VCMM leading to a whitened model
corrupted by white noise.

Sparse DoA methods [13]–[16] rely on the minimization
of a ℓ0-regularized objective function parametrized by λ an
hyperparameter referred as the regularization parameter. Using
the whitened model, a novel regularization parameter choice
is derived ensuring the equivalence between sparse and ML
DoA estimators under white Gaussian noise [16]. This equiv-
alence enables efficient implementation of the deterministic
ML through sparse optimization.

However, the noise pre-whitening transform has additional
consequences on the VCMM for which no study has been
provided.

This paper aims to fill this gap by providing a detailed
theoretical analysis of the pre-whitening noise transform ef-
fects on the VCMM In addition to ensuring equivalence
with the ML, the whitening has notable consequences as it
brings the dictionary matrix closer to an orthogonal matrix
by decorrelating the dictionary vectors corresponding to the
sources directions. Consequently, the problem conditioning is
significantly improved thereby increasing the resolution power.

II. THE VECTORIZED COVARIANCE MATRIX
MODEL

Assuming a noisy mixture of M independent narrowband
plane waves of directions θ = {θ1, . . . , θM} impinging on an
array of N antennas, the received signal is:

x(t) =

M∑
m=1

a(θm)sm(t) + n(t) = A(θ)sθ(t) + n(t) (1)

where A(θ) = [a(θ1), . . . ,a(θM ))] is the steering matrix
formed by the steering vectors a(θm), 1 ≤ m ≤ M , sθ(t) =
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[s1(t), . . . , sM (t)]
T the complex envelopes of the emitted sig-

nals and n(t) a complex circular Gaussian noise, independent
of sθ (t), with covariance matrix E

[
n(t)nH(t)

]
= σ2IN with

E [·] the temporal mean and IN the identity matrix of size N .
The covariance matrix of (1) is then:

Rx = E
[
x(t)xH(t)

]
= A(θ)RsA

H(θ) + σ2IN (2)

where Rs = E
[
sθ(t)s

H
θ (t)

]
denotes the sources covariance

matrix.
As outlined in section I, the VA [7], which has higher

resolution and maximal number of identifiable sources, can
be accessed using the VCMM [10]. Under the hypothesis
of temporally uncorrelated sources (ie. Rs is diagonal), the
vectorized covariance matrix observation is:

r = vec
(
Rx − σ2IN

)
=

M∑
m=1

b(θm)γm = B(θ)γθ (3)

with vec(·) the column-wise vectorization operator, B(θ)
the VA steering matrix formed by the vectors b(θm) =
a∗(θm) ⊗ a(θm) where ⊗ is the Kronecker product and
γθ = diag(Rs) = [γ1, . . . , γM ]

T the sources powers vector.
In practice, the covariance matrix Rx is estimated using

K identically and independently distributed array snapshots
x(tk), 1 ≤ k ≤ K. Assuming temporally white noise
(E

[
nH(ti)n(tj)

]
= 0, i ̸= j), the estimate R̂x of Rx can

be decomposed as:

R̂x =

K∑
k=1

x(tk)x
H(tk) = Rx +∆Rx (4)

where ∆Rx is a complex Wishart noise matrix due to finite
number samples [22]. Consequently, model (3) is corrupted by
noise δ = vec (∆Rx) leading to:

r = B(θ)γθ + δ (5)

As a result of the Central Limit Theorem [23], the complex
Wishart distribution of δ (5) can be approximated by a com-
plex Gaussian law CN (0N2×1,Γ,C) for sufficiently large
number of array snapshots with the following moments [24]:

Γ = E
[
δδH

]
=

1

K

(
RT

x ⊗Rx

)
C = E

[
δδT

]
= KΓ

(6)

where K denotes the permutation matrix such that vec(MT ) =
Kvec(M) for any square matrix M ∈ CN2×N2

[25].
Following the approach of [16], a pre-whitening noise

transform (7) is performed on (5) converting the initially
coloured noise (as Γ ̸= IN2 (6)) into white Gaussian noise
and thereby enabling equivalence with the ML under white
Gaussian noise [16].

y = Ŵr = ŴB(θ)γθ + Ŵδ = Bw(θ)γ + δw (7)

where Ŵ = Γ̂−1/2 =
√
K

(
R̂

−T/2
x ⊗ R̂

−1/2
x

)
is the whiten-

ing matrix, Bw(θ) = ŴB(θ) denotes the whitened dictionary

and δw = Ŵδ the whitened noise satisfying E
[
δwδ

H
w

]
=

IN2 .
Remark 1: Using the vectorization property of the Kro-

necker product vec (ABC) =
(
C⊗AT

)
vec (B) [26], the

whitened observation (7) can be rewritten as:

y =
√
Kvec

(
IN − σ2R̂−1

x

)
(8)

showing that the pre-whitening noise transform preserves (7)
the DoA information as it is contained within R̂−1

x .

III. SPARSE MODELING AND SPARSE ESTIMATION

A. Sparse modeling

Let us consider a grid of G pre-defined directions φ =
{φ1, . . . , φG}. Assuming that the sources directions θ lie
within φ, a sparse equivalent of (7) can be obtained:

y = Bw(φ)γ0 + δw (9)

where Bw(φ) = ŴB(φ) with B(φ) = [b(φ1), . . . ,b(φG)]
an overcomplete dictionary of size N2 × G,G ≫ N2. γ0 is
an M -sparse vector which has only M non-zero components
associated to sources directions.

B. Sparse estimation

A DoA estimator can be formulated from (9) as grid direc-
tions φg corresponding to non-null entries of the sparse vector
γ0. Consequently, an estimate of γ0 is needed to estimate θ.
Given that the G unknown coefficients of γ0 are estimated
from an observation of length N2, the problem is ill-posed
and thus can not be resolved through classical least squares
minimization. Hence, the sparsity prior must be exploited to
ensure the uniqueness of the solution. As [15], [16] suggested,
γ0 is estimated through the minimization of the following ℓ0-
regularized objective:

min
γ∈CG

{
Jℓ0(λ,γ) =

1

2
∥y −Bw(φ)γ∥22 + λ∥γ∥0

}
(10)

where λ > 0 refers to the regularization parameter which
balances the solution sparsity towards data fidelity. In [16],
authors proposed a new regularization parameter choice ensur-
ing that the global minimizer of (10) is the ML DoA solution.
Thus, both estimators are said equivalent. As a by-product, this
equivalence allows the theoretical characterization the sparse
estimator by the way of ML performances [27], [28].

IV. WHITENING EFFECTS ON THE DICTIONARY

To study the consequence of whitening on the dictionary
Bw(φ) = ŴB(φ) (7), let us introduce the spatial correlation
function:

rE (φi, φj) =

∣∣eH(φi)e(φj)
∣∣

∥e(φi)∥2∥e(φj)∥2
(11)

which measures the spatial correlation between pairs of direc-
tions {φi, φj} of a given dictionary E = [e (φ1) , . . . , e (φG)].

Throughout this paper, a circular array with N = 4
antennas among which 3 are uniformly distributed around
a circle of radius 0.5λ0 with λ0 the wavelength and one



central antenna is considered. Fig. 1 depicts the squared spatial
correlation coefficients obtained for a scenario with M = 2
sources of directions θ1 = 180◦ and θ2 = 195◦ (leading
to |rA(θ1, θ2)|2 = 0.8) with the same SNR of 10 dB and
K = 200 array snapshots. Note that K is sufficiently large
so that Ŵ ≈ W where W =

√
K

(
R

−T/2
x ⊗R

−1/2
x

)
is

the true whitening matrix defined from (6). In the following,
|rA|2, |rB|2, |rBw

|2 respectively denote the spatial correlation
coefficients obtained for the classical array, the VA prior the
noise transform and the VA after the noise transform.
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Fig. 1. Squared spatial correlation as a function of the steering vector direction
φ. The sources positions {θ1 = 180◦, θ2 = 195◦} are represented by dashed
lines.

As shown by Fig. 1, the chosen array (|rA|2) exhibits
many sidelobes and a large beamwidth. The corresponding
VA (|rB|2) reduces both flaws since |rB| = |rA|2 [7]. The
VA after whitening (|rBw

|2) has almost no sidelobes and a
reduced non-symmetric mainlobe. Furthermore, the whitening
introduces a null value in the sources directions {θ1, θ2}.

The spatial decorrelation between sources directions ob-
served on Fig. 1 has remarkable effects on the problem
conditioning. Indeed, the whitening modifies the eigenvalues
of H = BH

w (θ)Bw(θ) the sparse criterion projection on
sources directions Hessian matrix thus improving the problem
conditioning as depicted by Fig. 2.

0
10

20

0
10

20

γ1
γ
2

Observation r

0
10

20

0
10

20

γ1
γ
2

Observation z

1

5

8

12

15

19

22

25

29

32

36

P
ro

je
ct

io
n

of
J `

0
[d
B
]

Fig. 2. Projections of the sparse criterion in directions {θ1, θ2} before (left)
and after (right) the noise pre-whitening transform. Dashed lines and the red
circle represent the global minimum γ̂ = [γ̂1, γ̂2]

T coordinates for each
criterion. Both criteria are represented using the Bartlow colormap [29].

The whitening refines the problem conditioning by re-
shaping elliptical level lines into circles thus facilitating the

criterion optimization. For this single noise realization, the
whitening divides the problem conditioning by a factor 6 (the
Hessian eigenvalues for this example are {61.9, 10.1} before
and {2, 1.8} after whitening) hence leading to almost circular
contour lines which confirms the criteria behaviors on Fig. 2.

In the following, the spatial correlation coefficient between
sources direction {θ1, θ2}, on which depend the Hessian
matrix eigenvalues, is derived to analyze the influence of the
scenario parameter on the problem conditioning.

Property 1: Assuming that the number of samples is suf-
ficiently large such that Ŵ ≈ W, the spatial correlation
coefficient after the pre-whitening noise transform between
sources of directions {θ1, θ2} is:

rBw (θ1, θ2) =
|Q12|2

Q11Q22
(12)

where Q =
(
Rs + σ2

(
AH(θ)A(θ)

)−1
)−1

.
Proof: Let us first compute the inner product

bH
w (θi)bw(θj):

bH
w (θi)bw(θj)

= (a∗(θi)⊗ a(θi))
H
WHW (a∗(θj)⊗ a(θj)))

= K (a∗(θi)⊗ a(θi))
H (

R−T
x ⊗R−1

x

)
(a∗(θj)⊗ a(θj))

= K
(
aT (θi)R

−T
x a∗(θj)

)
⊗

(
aH(θi)R

−1
x a(θj)

)
= K

∣∣aH(θi)R
−1
x a(θj)

∣∣2
= K |Qij |2 (13)

where we used Q = AH(θ)R−1
x A(θ), (7) and (AC) ⊗

(BD) = (A⊗B) (C⊗D) the mixed-product property of
the Kronecker product [30]. Finally, substituting (13) in (11)
yields (12). Using both orthogonal projectors onto signal
and noise subspaces of Rx (2) respectively denoted Πs and
Πn = IN −Πs, Rx (2) can be rewritten as:

Rx = A(θ)RsA
H(θ) + σ2 (Πs +Πn)

= A(θ)
(
Rs + σ2

(
AH(θ)A(θ)

)−1
)
AH(θ)

+ σ2Πn (14)

where Πs = A(θ)A#(θ) with (·)# the Moore-Penrose
pseudo-inverse. Finally, the orthogonality between signal and
noise subspaces of Rx yields:

R−1
x =

(
AH(θ)

)# (
Rs + σ2

(
AH(θ)A(θ)

)−1
)−1

×A#(θ) +
1

σ2
Πn (15)

Substituting (15) into (13) leads to:

Q = AH(θ)
(
AH(θ)

)# (
Rs + σ2

(
AH(θ)A(θ)

)−1
)−1

×A#(θ)A(θ) +
1

σ2
AH(θ)ΠnA(θ)

=
(
Rs + σ2

(
AH(θ)A(θ)

)−1
)−1

(16)
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Fig. 3. Spatial correlation coefficient prior (left) and after (right) the pre-
whitening noise transform as a function of the angular spacing between
sources ∆θ = |θ1 − θ2| and the SNR.

Applying the property (12) in the special case of M =
2 temporally decorrelated sources of directions {θ1, θ2} with
Rs = γIM where γ = E

[
sm(t)s∗m(t)

]
is the source power

gives:

rBw
(θ1, θ2) =

|rA(θ1, θ2)|2

N2 (1− |rA(θ1, θ2)|)2

×

ρ+
1

N
(
1− |rA(θ1, θ2)|2

)
−2 (17)

where ρ = γ
σ2 is the SNR in linear units. |rBw

(θ1, θ2)|2 is
represented on Fig. 3.

For sufficient SNR, the pre-whitening noise transform can
achieve low spatial correlation even for highly correlated
sources and consequently approach an orthogonal dictionary
matrix.

V. NUMERICAL SIMULATIONS

A. Experimental setup

To illustrates the performance improvement due to whiten-
ing, both detection probability P(θm) and Root Mean Square
Error RMSE(θm) of the sparse estimator defined in section
III without and with whitening are estimated with respect to
∆θ = |θ1 − θ2|. The two sources are considered resolved if
two peaks are detected and max

{∣∣∣θ̂1 − θ1

∣∣∣ , ∣∣∣θ̂2 − θ2

∣∣∣} < 10◦

where 10◦ is the half beamwidth of the VA. For the non-
whitened observation r (5), λ is selected using the framework
of [15] whereas we rely on [16] for the whitened observation
y (7). Note that an oracle grid containing the ML estimate
is employed to seek the equivalence [16] with a stepsize of
1◦. Array and all scenario parameters are identical to those of
section IV.

The optimization of (10) is performed using the Forward-
Backward Splitting algorithm [31]. To alleviate the flaws
inherent to the ℓ0-norm, we replaced it with the CEL0 func-
tional introduced by Soubies et al. [32] which is a continuous
approximation of the ℓ0-norm. Furthermore, authors proved
that the corresponding sparse criterion exhibits less local
minima while having the same global minimizer as Jℓ0 .
The CEL0 penalty was developed assuming an orthogonal

dictionary ie. BH
w (φ)Bw(φ) = IN2 . Although, the whitened

dictionary does not satisfy this property, whitening makes
it closer to an orthogonal dictionary by orthogonalizing the
sources directions and so to the convex optimal of [32].

B. Simulation results

Fig. 4 presents the simulation results for direction θ1. As
expected, the estimator obtained with the whitened dictionary
outperforms the non-whitened one. Indeed, it reaches a de-
tection probability of 1 for angular spacings greater than 13◦

whereas without whitening, the required angular spacing is
equal to 20◦. Furthermore, the whitened estimator achieves a
lower RSME for all angular spacings.
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Fig. 4. Top: probability of detection. Bottom: RMSE represented for angular
spacing leading to a detection probability greater than 0.8. Performances are
only represented for direction θ1 since the chosen array is θ-invariant and
both sources have equal power.

The lack of resolution without whitening can additionally be
explained by the behaviour of the CEL0 functional for highly
correlated directions. As shown by simulation in [33] for
closely spaced sources, the CEL0 penalized criterion exhibits
large regions where the criterion value remains approximately
constant. These regions contain solutions for which the few
non-null components of the sparse vectors are associated to
directions around the middle of the true directions 1

2 (θ1 + θ2).
By orthogonalizing the sources directions, the whitening trans-
form reduces flat regions thus improving the resolution.

VI. CONCLUSION

In this paper, we studied the effects of the noise pre-
whitening transform on the VCMM for sparse estimators. The
transform significantly simplifies the estimator implementation
by bringing the dictionary matrix closer to an orthogonal ma-
trix thereby enhancing the problem conditioning. To analyze
our findings, an analytical expression of the spatial correlation
coefficient between sources after pre-whitening is derived.
Finally, numerical experiments confirmed the performance
increase of sparse DoA estimators.

In a future paper, we will provide theoretical analysis of the
connection between spatial correlation, problem conditioning
and dictionary orthogonality.
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