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1 Université de Reims Champagne Ardenne, CRESTIC, Reims, France
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ABSTRACT

Electroencephalography (EEG) is widely used in routine clinical
practice. In particular, it is of the utmost importance for moni-
toring newborns suffering from acute neonatal encephalopathy. In
such a pathological context, continuous acquisitions during the first
days of life must be analyzed, which represents an insurmountable
workload for clinicians. Machine learning approaches are a way
of helping human experts in their work. More specifically, deep
learning models have the ability to segment specific physiological
and pathological patterns. The main obstacle to the development
of these models is their correct training from a sufficient number
of annotations. Indeed, building annotated EEG datasets involves
a time cost that is generally unacceptable. In this paper, a deep
learning model dedicated to the segmentation of multiple patterns
in newborn EEG is proposed. We study the impact of training
this model either with only human-defined annotations on the real
EEG, or with augmented datasets that also include synthetic patterns
embedded in the real signal, endowed with their annotations. The
mixed use of semi-synthetic and real data leads to insights about
future development of effective AI-based assistive tools for newborn
EEG assessment.

Index Terms— Electroencephalography, Deep-learning, Syn-
thetic patterns, Data augmentation, Newborn brain

1. INTRODUCTION

Assessment of brain function with Electroencephalography (EEG) is
routine practice in the management of newborns with acute neona-
tal encephalopathy. Electrophysiology provides critical diagnostic,
severity and prognostic information in infants exposed to a deleteri-
ous cascade of brain lesions following anoxic-ischemic insult. EEG
monitoring should be offered continuously to these newborns for at
least the first four days of life. Reliable information on brain func-
tion is needed as early as the first six hours of life in order to provide
neuroprotection with 72 hours of total-body, controlled, and mild hy-
pothermia. During therapeutic hypothermia, brain function should
be continuously monitored.

However, the amount of data recorded by EEG over several days
is overwhelming. Expert electrophysiologists available to evaluate
these traces are scarce and cannot interpret the day-to-day record
as it should be. Numerical tools may help interpret these traces by
computing quantitative metrics. The continuous evolution of these
quantitative metrics over the monitored period may greatly reduce
the time and efforts spent by electrophysiologist and intensivist in
managing these babies.

Deep Learning (DL) provides efficient solutions for EEG analy-
sis in various clinical applications (see Sect. 2). Beyond the develop-
ment of DL models designed with respect to the technical constraints
and properties of EEG acquisition, the main challenge, in the case of
pattern detection and segmentation tasks in EEG is related to the
training of these models. Indeed, these patterns are often specific
to a given clinical application. As a consequence, most often, there
does not exist datasets endowed with relevant annotations. Despite
the availability of EEG annotation tools [1, 2, 3], the construction
of annotated datasets remains a tedious and time consuming effort,
leading to small corpus of annotations compared to the requirements
of model training. A way to tackle this issue is to enrich the set of
manual annotations with computer-defined ones. To this end, a strat-
egy may consist to build synthetic patterns, associated to annotations
by construction. For the sake of coherence, such synthetic patterns
may be embedded in real EEG.

Considering this approach, our contributions are twofold. First,
we propose a DL architecture, based on U-Net [4], designed to
process EEG acquired in routine, under the technical and clinical
constraints of acquisitions in the case of neonatal encephalopathy.
In particular, this architecture is designed for multilabel segmen-
tation, i.e. the simultaneous analysis of various kinds of distinct
patterns. Second, we investigate the impact of training this model
with human-defined annotations, obtained in real conditions (lead-
ing to scarce, incomplete) sets of annotated datasets, vs. training
with additional semi-synthetic data, composed of real EEG enriched
with synthetic patterns, endowed with associated annotations.

This article is organized as follows. In Sect. 2, we present re-
lated work on DL models for EEG, neonatal EEG analysis and EEG
data augmentation. In Sect. 3, we describe the patient data and their
annotations, and we present our strategy for creating semi-synthetic
data, obtained by enriching real EEG with synthetic patterns. In
Sect. 4, we describe our DL model, adapted from U-Net for multil-
abel pattern segmentation from neonatal EEG. In Sect. 5 we propose
experimental results. In Sect. 6 we summarize our contributions and
discuss perspectives.

2. RELATED WORKS

In the medical setting, EEG signal processing is used for sleep stage
classification or to diagnose conditions such as epilepsy [5, 6]. It
is also used with newborn patients, as a tool to assess the post-
menstrual age [7] or study the outcome of prematurity [8]. For term
patients, EEG is also useful to diagnose rare conditions, and espe-
cially Hypoxic Ischemic Encephalopathy (HIE) [9]. While simpler
tools such as amplitude-EEG [10] can already present relevant infor-



mation about the patient, the full signal remains useful for special-
ized tasks. The neonatal seizure detection is a difficult task that often
requires the full EEG [11, 12, 13, 14, 15]. The additional complex-
ity of neonatal sleep stage classification [16] emphasizes the need to
detect bursts and inter-burst periods in the signal [17]. For rare con-
ditions, specific EEG patterns may be present in the signal. When
these patterns are not well understood, EEG processing may also
consist of classifying them [9].

The EEG biosignal is often pre-processed with appropriate filter-
ing in a referenced setting. Complexity metrics are computed over
loosely overlapping windows of the signal, and the low-frequency
evolution of these metrics helps perform the detection task. For the
detection of physiological and pathological figures of HIE, this set-
ting is unfortunately not precise enough. EEG processing is also
sometimes pre-processed with a normalization step [18], however
this normalization is not suitable for neonatal EEG as it may blur
the difference between bursts and inter-bursts. The signal amplitude
also depends on the patient’s age, which correlates with other rele-
vant features of the signal related to brain maturation.

Unlike raw sensor data, processing aggregated features can
be done efficiently by a machine at the patient’s bed, with post-
processing improving the results [12]. Deep learning architectures
are being tried [16], such as LSTM [14], Graph Neural Networks
with attention [5]. If temporal insights are requested, Convolutional
Neural Networks may process the signal as a time series [19].

3. REAL VS. SEMI-SYNTHETIC DATA

3.1. Patient data

The patient data comes from the Lytonepal cohort, where the EEGs
were recorded in the first 6 hours of life. Nine of these EEGs have
been reviewed by an expert who has annotated some occurences of
Front Sharp Transients, Anterior Slow Dysrythmia and Spikes. The
expert read the signal in a standard bipolar referenced setting.

The clinician was asked to record the onset and duration of the
observed figures, as well as the derivations that supported the obser-
vation. The location of these figures are thus expressed as bipolar
references and not raw electrodes.

During the annotation phase, many instances were found to be
ambiguous. Since exhaustivity would not be feasible, the clinician
was asked to skip ambiguous sections of the signal, and annotate as
many occurences as possible in the less ambiguous sections.

3.2. Semi-synthetic data

Since the annotated data is scarce, more data has been generated
on the signal. The raw signal has been split into non-overlapping
10-second windows, and random instances of a diversity of the most
precisely described physiological and pathological figures have been
added to it at random. The signal is linearly attenuated in the first
and last seconds of the window, so that all channels artificially start
and end at 0 µV. Non-overlapping windows ensure that no validation
input has previously been seen during learning, even in part. The 9
annotated signals plus 10 additional non-annotated signals have been
chosen as support for synthetic data. This limit has been chosen so
that learning can be achieved with 32 GB of memory.

Since the signal has been selected from the first 6 hours of life
of the patient, it contains many burst and inter-burst periods. In or-
der to add a synthetic figure to the signal, the first step is to decide
whether the segment is active enough. The average absolute ampli-
tude over the 10 seconds is computed. Channels that are always 0

(due to missing electrodes) are not considered in the following. If the
channel with the largest amplitude has an amplitude 5 times as high
as the channel with the least amplitude, then the window is rejected
on suspicion of a high-voltage artifact. Otherwise, the window is
rejected if the average amplitude over the non-zero channels is less
than 3.6 µV, the average amplitude of the 10% most active windows.

For each selected active windows, each of the 5 selected figure
types are independently selected with a 25% chance. If a figure is
selected, it is added to the signal, and its time support is recorded.

The selected figure types are:
• Slow Continuous (physiological)
• Front Sharp Transient (physiological)
• Anterior Slow Dysrythmia (physiological)
• Positive Temporal Spike (unknown)
• Rolandic Positive Spike (type B) (unknown)

These figures have been selected for the precision of their de-
scription in [20], in terms of location, amplitude, duration or fre-
quency, and smoothness of the spikes, for term neonates. Instances
of these figures are meant to represent some of the knowledge of the
clinicians and need not be perfectly realistic.

Fig. 1: Instances of synthetic Front Sharp Transient and Positive
Temporal Spike



For each instance of a figure, the temporal onset, the spatial
location, and the shape parameters are sampled uniformly in the
prescribed range, except for the amplitude which favors the lowest
bound of the range.

The figure detector is expected to understand some basic physi-
ological facts about the EEG signal:

• some figures can only be characterized in some regions of the
brain (frontal, parietal, temporal, occipital);

• figures occurring on a specific electrode may be visible in all
bipolar references involving the specific electrode;

• some figures may occur on left or right electrodes with similar
characteristics;

• the characterization of figures depends on observed amplitude
and frequency or duration.

4. MULTI-CHANNEL MULTI-TARGET SEGMENTATION
OF EEG

The learning task aims to simultaneously learn the segmentation of
the 5 synthetic labels, and of the 3 real labels. The input signals are
the 10-second windows (sampled at 256Hz) with added synthetic
figures, and the 8 labels are the binary presence or absence of each
figure at a given time point in a given channel. As an exception, due
to the ambiguous problem of real annotations, learning of each of the
3 real labels is disabled for that whole input if the 10-second window
contains no instance of any of the figure types of interest.

More specifically, the input is a tensor of dimension N×2560×
10, where N is the size of the training set. Out of the 6320 unique
10-second signal windows, 4424 have been selected for training and
the 1896 remaining serve as validation. Each instance of the training
set is the 2560 observations of the 10 channels. The output of the
network is a tensor of dimension N × 2560× 80. For each instance,
for each time point, for each channel and for each figure (synthetic or
real), a binary score indicates whether a figure of this type is present
at this point on this channel.

The architecture that was chosen is a one-dimensional CNN ar-
ranged in a U-Net [4] shape (Fig. 2). It features simple layers:

• 1-D convolutions: the input is padded so that output and input
tensors have the same shape;

• ReLU non-linearity layers;
• temporal maximum pooling in the downward branch, and tem-

poral upsampling (in which every observation is repeated twice).
It is optimized with respect to the binary cross-entropy across all
time points and all labels on all channels. The optimizer is the simple
gradient descent algorithm with no moment term. At each epoch,
after each training instance is considered (the order is changed at
each epoch), the network weights are updated.

5. EXPERIMENTS AND RESULTS

Two parameters of the network are tuned based on the F-score on
the validation dataset. First, the learning rate is tuned so as to maxi-
mize the final F-score (computed as the average of the F-score in the
last 50 epochs) of the synthetic label yielding the minimal F-score,
considering the maximum number of synthetic data. Then, the num-
ber of generated synthetic annotations is reduced from the maximum
that can be added with our proposed approach down to 0. In the latter
case, the synthetic data cannot influence the learning of the real la-
bels, so this case shows the effect of learning the real labels directly.
In the former case, the real labels are learnt along with the synthetic
labels, but the profusion of synthetic labels may distort the signal so
much that the real labels cannot be learnt meaningfully.
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Fig. 2: Simple CNN-based U-net for simultaneous learning of 5 syn-
thetic and 3 real labels

The value for the learning rate is 10, for a final F-score of the
Synthetic Anterior Slow Dysrythmia of 4% (which is the label with
the worse F-score). The worst synthetic F-score drops to 2.8% (re-
spectively 2.7%) for a learning rate of 20 (respectively 5).

Due to the small number of annotated Anterior Slow Dysryth-
mia, the performance of the model (Fig. 3) is poor, regardless of the
amount of synthetic data introduced. Adding synthetic data does not
have a great impact on the performance for the Front Sharp Tran-
sient. It has an effect on the performance for the detection of Spikes
though. In any case, we observe for all three real labels that the
performance is not maximal with 0% synthetic data, nor 100% syn-
thetic data. Learning the real labels is made easier by introducing a
relatively small amount of synthetic data.
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Fig. 3: Varying the synthetic data frequency

The shape of the Spike is easier to model, explaining the large
effect of synthetic data, and it is also more visible even with an added
synthetic wave, explaining why the effect lasts with a large amount
of synthetic data. In contrast, the Front Sharp Transient is a complex
wave susceptible to being deformed by other synthetic data, which
challenges our understanding of its shape.



6. CONCLUSION

In this work, we presented a way to generate synthetic annotations
on EEG signals to help learn the detection of physiological or patho-
logical figures of the neonatal EEG. The synthetic labels and the
real labels are learnt simultaneously. Adding some synthetic data
improves the detection F-score, especially for the Spikes which are
easy to model, and less so for the Front Sharp Transient which is
more complex. If too much synthetic data is generated, the detection
of the real labels is made more difficult by the synthetic wave to the
signal, especially for figures with a longer time support.

Further development of the simultaneous segmentation of real
and synthetic data should make the synthetic data more physiologi-
cally correct, in particular for the Front Sharp Transient. The effect
of each of the 5 synthetic annotation types on each of the 3 real labels
needs to be studied more closely.
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[5] S Mazurek, R Blanco, J Falcó-Roget, and A Crimi, “Explain-
able graph neural networks for EEG classification and seizure
detection in epileptic patients,” in ISBI, 2024, pp. 1–5.

[6] M McCumber, K Tyner, S Das, W C Stacey, G C Smith, M Al-
fatlawi, and S V Gliske, “Seizure onset localization from ictal
intracranial EEG data using online dynamic mode decomposi-
tion,” in ISBI, 2023, pp. 1–4.

[7] M Gschwandtner, M M Hartmann, L Oberdorfer, F Fürbass,
K Klebermaß-Schrehof, T Werther, N J Stevenson, G Gritsch,

H Perko, A Berger, T Kluge, and V Giordano, “Deep learn-
ing for estimation of functional brain maturation from EEG of
premature neonates,” in EMBC, 2020, pp. 104–107.

[8] Y Hajjar, M El-Sayed, A E S Al Hajjar, and B Daya, “Cor-
relation analysis between EEG parameters to enhance the per-
formance of intelligent predictive models for the neonatal new-
born sick effects,” in ICIST, 2019, pp. 1–5.

[9] B M Murphy, Data mining and machine learning techniques
for neonatal EEG event recall, Ph.D. thesis, University College
Cork, Republic of Ireland, 2019.

[10] Z A Vesoulis, P G Gamble, S Jain, N M El Ters, S M Liao,
and A M Mathur, “WU-NEAT: A clinically validated, open-
source MATLAB toolbox for limited-channel neonatal EEG
analysis,” Comput Methods Programs Biomed, vol. 196, pp.
105716, 2020.

[11] A Hossein Ansari, P J Cherian, A Caicedo Dorado, K Jansen,
A Dereymaeker, L De Wispelaere, C Dielman, J Vervisch,
P Govaert, M De Vos, G Naulaers, and S Van Huffel,
“Weighted performance metrics for automatic neonatal seizure
detection using multiscored EEG data,” IEEE J Biomed Health
Informatics, vol. 22, pp. 1114–1123, 2018.

[12] N J Stevenson, K T Tapani, and S Vanhatalo, “Hybrid neonatal
EEG seizure detection algorithms achieve the benchmark of
visual interpretation of the human expert,” in EMBC, 2019,
pp. 5991–5994.

[13] K T Tapani, S Vanhatalo, and N J Stevenson, “Time-varying
EEG correlations improve automated neonatal seizure detec-
tion,” Int J Neural Syst, vol. 29, pp. 1–15, 2019.

[14] M U Abbasi, A Rashad, A Basalamah, and M Tariq, “Detec-
tion of epilepsy seizures in neo-natal EEG using LSTM archi-
tecture,” IEEE Access, vol. 7, pp. 179074–179085, 2019.

[15] A O’Shea, G Lightbody, G B Boylan, and A Temko, “Neonatal
seizure detection from raw multi-channel EEG using a fully
convolutional architecture,” Neural Networks, vol. 123, pp.
12–25, 2020.

[16] S F Abbasi, J Ahmad, A Tahir, M Awais, C Chen, M Irfan,
H A Siddiqa, A B Waqas, X Long, B Yin, S Akbarzadeh, C Lu,
L Wang, and W Chen, “EEG-based neonatal sleep-wake clas-
sification using multilayer perceptron neural network,” IEEE
Access, vol. 8, pp. 183025–183034, 2020.

[17] S A Raurale, G B Boylan, G Lightbody, and J M O’Toole,
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