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Abstract

In the current state of the art regarding the Navier–Stokes equations, the existence of
unique solutions for incompressible flows in two spatial dimensions is already well-established.
Recently, these results have been extended to models with variable density, maintaining
positive outcomes for merely bounded densities, even in cases with large vacuum regions.
However, the study of incompressible Navier-Stokes equations with unbounded densities
remains incomplete. Addressing this gap is the focus of the present paper.
Our main result demonstrates the global existence of a unique solution for flows initiated

by unbounded density, whose regularity/integrability is characterized within a specific subset
of the Yudovich class of unbounded functions. The core of our proof lies in the application of
Desjardins’ inequality, combined with a blow-up criterion for ordinary differential equations.
Furthermore, we derive time-weighted estimates that guarantee the existence of a C1 velocity
field and ensure the equivalence of Eulerian and Lagrangian formulations of the equations.
Finally, by leveraging results from [9], we conclude the uniqueness of the solution.

Keywords: inhomogeneous fluid, incompressible flow, Navier–Stokes system, global exis-
tence, uniqueness.
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1 Introduction

A vast amount of research has focused on the mathematical analysis of the incompressible
inhomogeneous Navier–Stokes equations with bounded initial density. This system models a fluid
formed by mixing two incompressible, miscible fluids with different densities. For the derivation
of the model, we refer to [23]. Common example involves for example river dynamics, in particular
junction of water channels [1]. Another inhomogeneous fluid is blood, which is a suspension of
blood cells in plasma [15, 2, 24]. Recall that these equations read

(INS)


ρt + v · ∇ρ = 0 in R+ × Ω,
ρvt + ρv · ∇v − µ∆v +∇P = 0 in R+ × Ω,
div v = 0 in R+ × Ω.

∗the correspondence author p.mucha@mimuw.edu.pl
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The unknowns are the density ρ = ρ(t, x), the velocity v = v(t, x) and the pressure P = P (t, x).
The recent analysis of the above system motivates us to give the answer to the following

natural question:

How much can we extend the class of admissible densities,

to derive the same result as assuming that the density is bounded?

The most known and natural choice for extending the L∞ framework is the BMO space.
Here we mention the branch of results related to the so-called logarithmic Sobolev inequality
[6, 18] and marginal spaces [12, 26, 27]. In this paper, our aim is to extend the result from [9] to
a larger class of densities, in particular containing unbounded functions. Following the strategy
from the mentioned result, the BMO space seems to be not a suitable class for the initial density.
However, we are able to obtain the result in a narrower regularity class, but still larger than L∞.
We assume that the fluid domain Ω is either the torus T2 or a C2 simply connected bounded
domain of R2. The system (INS) is supplemented with initial data at time t = 0:

(1.1) ρ|t=0 = ρ0 and v|t=0 = v0.

In the case where Ω is not a torus, we additionally supplement the system with the boundary
condition v = 0 on ∂Ω. It is well-known that sufficiently smooth solutions to (INS) possess
several important properties, such as

• Conservation of the momentum : (for the torus case only)

(1.2)
∫
T2
(ρv)(t, x)dx =

∫
T2
(ρ0v0)(x)dx,

• Conservation of total mass:

(1.3)
∫
Ω
ρ(t, x)dx =

∫
Ω
ρ0(x)dx,

• Energy balance:

(1.4)
1
2
d

dt

∫
Ω
ρ|v|2 + µ

∫
Ω
|∇v|2 = 0,

• Conservation of Lebesgue norm: for all p ∈ [1,∞),

(1.5)
∫
Ω
ρp(t, x) dx =

∫
Ω
ρp0(x) dx.

The equations (1.2) and (1.3) follow straightforward from integrating the equation over Ω,
whereas (1.4) is derived by testing the momentum equation by v. Furthermore, calculating the
equation for ρp we get

∂tρ
p + div(ρpv) = 0,

which leads to identity (1.5).
When the density ρ of the solution is constant (corresponding to a monofluid), (INS) sim-

plifies to the so-called homogeneous Navier-Stokes system, which is written as follows:

(NS)

{
vt + v · ∇v − µ∆v +∇P = 0 in R+ × Ω,
div v = 0 in R+ × Ω.

The system (NS) shares with (INS) the properties of the energy balance given by (1.4) and the
conservation of momentum described by (1.2).
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The global existence theory of (NS) has been known since the work of Leray in 1934 [21]. In
the case Ω = R3, Leray proved that any divergence-free velocity v0 belonging to L2 generates a
global distributional solution of (NS). Moreover, it was shown that the constructed solution v
satisfies v ∈ L∞([0,∞);L2) ∩ L2([0,∞); Ḣ1).
Numerous papers have since been devoted to this topic in both bounded and unbounded

domains for dimensions d = 2 and d = 3. In 1959, O.A. Ladyzhenskaya [19], along with J.-L.
Lions and G. Prodi [22], established the existence and uniqueness of solutions in two dimensions.
While the two-dimensional case is now much better understood, the question of uniqueness of
finite energy solutions in the three-dimensional case (d = 3) remains unresolved to this day,
known as the VI-th Millennium Problem.
Concerning the inhomogeneous Navier-Stokes equations, the current state of the art indicates

that the weak (distributional) solution theory is quite similar to that of the homogeneous case.
In fact, when the density is bounded away from zero, the energy balance (1.4) suggests seeking
weak solutions within a framework similar to that of the homogeneous Navier-Stokes equations,
and the strong solution theory aligns with the homogeneous case as well. In this direction, A. V.
Kazhikhov [17] obtained, for the first time in 1974, the existence of global-in-time weak solutions,
with the energy balance replaced by an inequality. Later, in 1990, Simon [31] improved this result
by removing the lower bound on the density, assuming only that ρ is nonnegative. Subsequently,
P.-L. Lions [23] demonstrated that the density is a renormalized solution of the mass equation.
This insight allowed him to also consider cases where the viscosity µ depends on ρ (see also
[13]).
The aforementioned existence results did not address uniqueness, which was first established

by Ladyzhenskaya and Solonnikov in 1978 [20]. They considered the case where Ω is a smooth
bounded domain of R2 or R3, with smooth enough data, and the density is bounded from above
and away from zero. They proved the existence of a unique local-in-time smooth solution, which
is global in the two-dimensional case, or in higher dimensions if the initial velocity is sufficiently
small.
The uniqueness of solutions (ρ, v) for the inhomogeneous Navier-Stokes system (INS), start-

ing from initial data in the energy space (i.e., with finite initial energy), remains a significant
challenge. As Danchin notes in [7], unlike the homogeneous Navier-Stokes system (NS), where
uniqueness is typically achieved through energy methods combined with Gronwall’s inequality,
it is not clear how to prove the uniqueness of solutions to (INS) without the crucial estimate

∇v ∈ L1loc(0, T ;L∞).(1.6)

Thus, for (ρ1, v1) and (ρ2, v2) being two solutions to (INS), the difference in the densities
δρ = ρ1−ρ2 satisfies a transport equation governed by a divergence-free vector field. Additionally,
assuming the densities are merely bounded, the source term of this transport equation has
negative regularity with respect to the spatial variable (see also [10, 30, 16]). Consequently, the
estimate (1.6) is crucial to ensure the existence of a unique flow and to control the propagation
of negative regularity in the transport equation.
An alternative approach is to reformulate the system (INS) in Lagrangian coordinates, as in

[9]. In this case, the density remains constant along characteristic curves, and the velocity still
satisfies a parabolic equation. However, establishing the equivalence between the Eulerian and
Lagrangian formulations of (INS) in this low-regularity setting still depends on the validity of
(1.6), a condition that cannot be guaranteed when v0 is only in L2. In fact, this inequality even
fails for the heat flow.
For the heat equation, inequality (1.6) holds if the initial velocity v0, belongs to the appro-

priate functional space, such as:

■ L2 framework: the Sobolev spacesHs with s > d2−1 or the homogeneous Besov space Ḃ
d
2−1
2,1 .

In the latter case, ∇et∆v0 ∈ L1loc(0, T ; Ḃ
d
2
2,1) which is embedded in the set L

1
loc(0, T ;C0(Rd))
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of continuous functions on Rd vanishing at infinity ([3]).

■ Lp framework: the homogeneous Besov spaces Ḃ
d
p
−1
p,1 , with 1 ¬ p ¬ ∞ ([3]).

This observation has inspired numerous works on the well-posedness theory for the inhomo-
geneous Navier-Stokes system (INS). In [29], the authors proved the existence and uniqueness
of solutions of (INS) when v0 ∈ Hs(R2), with s > 0, and ρ0 is bounded from above and from
below ( i.e. 0 < c0 ¬ ρ0 ¬ c1 <∞).
In the three-dimensional case, the authors constructed a unique local-in-time solution for

initial data, which becomes global if the initial data satisfies a smallness condition. This result
was later improved in [4], [32]. Recently, R. Danchin and S. Wang in [11] established the global-

in-time well-posedness for initial velocity v0 in the critical Besov space Ḃ
d
p
−1
p,1 with p ∈ (1, d),

and for ρ0 close to a positive constant.
In the presence of vacuum, local and global well-posedness in bounded domains was demon-

strated in [9]. As a by-product, they provided a complete answer to the question posed by Lions
in his book [23], concerning the evolution of a ”patches of density” (i.e drop of incompressible
viscous fluid in vacuum). More recently, Prange and Tan studied the existence and uniqueness
of solutions on Rd (with d = 2, 3) under certain special vacuum configurations in [30].
The aim of this paper is to go beyond the result in [9] by considering unbounded, nonnegative

initial density, while maintaining the regularity of the initial divergence free velocity v0. We
observe that the method used in [9] can also be applied when the density is just in any Lebesgue
space Lp(Ω) (with 1 ¬ p < ∞) yielding local existence and uniqueness. A remarkable feature
of our result is that, even though the density is rough and does not need to be bounded, one
can exhibit a framework in which we get global existence and uniqueness result. Moreover, we
succeed in exhibiting gain of regularity for the velocity, which entails that (1.6) holds, thereby
leading to uniqueness.

2 The Results

In this paper, we construct a global in time, unique solution to the system (INS) with the
initial velocity belonging to H10 . Our assumptions on initial density involve a new functional
space, which contains L∞ but also admits unbounded functions, provided that the blow-up is
sufficiently controlled.
We assume that the initial data (ρ0, v0) satisfy

(2.1) v0 ∈ H10 (Ω), div v0 = 0 and
√
ρ0v0 ∈ L2(Ω).

Moreover, ρ0 is such that

(2.2) ρ0  0,
∫
Ω
ρ0 dx =M > 0.

To determine the space of functions describing the class of the initial data for the density we
introduce the class L, defined as follows

(2.3) L :=

f ∈ ⋂
p1

Lp(Ω) : lim
p→∞

1
log p
∥f∥2p log(1 + ∥f∥p) = 0

 .
Obviously L∞ ⊂ L. On the other hand, one can show that L ⊂ BMO. In the Appendix B we
analyze the key examples to explain the main features of this space.

Let us now state our main result.
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Theorem 2.1. Let Ω be a C2 bounded subset of R2 or the torus T2. Assume that the initial
data (ρ0, v0) satisfy (see (2.3))

v0 ∈ H10 (Ω), div v0 = 0,

ρ0 ∈ L, ρ0  0, M :=
∫
Ω
ϱ0 dx > 0.

(2.4)

Then there exists a unique solution (ρ, v,∇P ) to system (INS) with data (ρ0, v0) fulfilling the
conservation of momentum (1.2) (in the case Ω = T2), the conservation of mass (1.3), the
balance energy (1.4) and the conservation of Lebesgue norm (1.5). Moreover, the following prop-
erties of regularity hold true:

ρ ∈ L∞(R+, Lp(Ω)) for all 1 ¬ p <∞, v ∈ L∞(R+, H10 (Ω)),
√
ρvt ∈ L2(R+, L2(Ω)), ∇2v,∇P ∈ L2(R+, Lr(Ω)), for all r < 2.

In addition, for all T > 0
√
tρvt ∈ L∞(0, T ;L2(Ω)),

√
t∇vt ∈ L2(0, T ;L2(Ω)),

∇2(
√
tv), ∇(

√
tP ) ∈ Lq(0, T ;Lλ(Ω)) for 2 ¬ q ¬ ∞ and λ <

2q
q − 2

.

Finally, we have
√
ρv ∈ C(R+;L2(Ω)), ρ ∈ C(R+;Lp1(Ω)) and v ∈ Hγ(0, T ;Lp2(Ω)), for all

p1 <∞, p2 <∞, γ < 12 and T > 0.

Remark 2.2. The exact condition for the initial data that we need states that

(2.5) lim
p→∞

1
log p
∥ϱ0∥

2+ 6
p−3

p log1+
2
p−3

(
e+
∥ρ−M∥22

M2
+ ∥ρ0∥p ∥

√
ρ0v0∥22

)
= 0.

However, since
√
ρ0v0 ∈ L2(Ω), this estimate is satisfied if ρ0 ∈ L.

Remark 2.3. Assuming only that ρ0 ∈ Lp(Ω) for some fixed 3 < p < ∞, we obtain a local
existence result. In that case, the solution exists on [0,∞) provided that the initial data satisfy

∥ρ0∥
2p
p−3
p ∥√ρ0v0∥

2(p−1)
p−3
2 log

p−1
p−3

(
e+
∥ρ−M∥22

M2
+ ∥ρ0∥p ∥

√
ρ0v0∥22

)
∥√ρ0v0∥22

< c′0

∫ ∞
e

dx

(x log x)
p−1
p−3

for some positive constant c′0 independent of the data. Alternatively, for arbitrary large initial
data we obtain a solution on the interval [0, T ∗], where T ∗ is such that

∥ρ0∥
2p
p−3
p ∥√ρ0v0∥

2(p−1)
p−3
2 log

p−1
p−3

(
e+
∥ρ−M∥22

M2
+ ∥ρ0∥p ∥

√
ρ0v0∥22

)∫ T ∗
0
∥∇v(τ)∥22dτ

< c′0

∫ ∞
e

dx

(x log x)
p−1
p−3

.

Our second result addresses the issue of global well-posedness of (INS) when the initial
density is bounded away from vacuum. Specifically, we assume that the initial density belongs
to the following space:

Y0 :=

f ∈ ⋂
p1

Lp(Ω) : lim
p→∞
1
p
∥f∥p = 0

 .(2.6)
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Note that both L and Y0 are the subspaces of some Yudovich spaces YΘ(p) with suitable Θ(p).
Defining the Yudovich space as (see e. g. [5])

YΘ(p) :=

f ∈ ⋂
p1

Lp(Ω) : sup
p1

∥f∥p
Θ(p)

<∞

 ,
we immediately see that Y0 ⊂ Yp, and moreover Y(

√
log p)1−ε ⊂ L ⊂ Y

√
log p, for any 0 < ε < 1.

In order to find a connection with some more classical functional spaces, we prove in Appendix
B that

L∞(Ω) ⊊ L ⊂ Y0 ⊊ Lexp(Ω).(2.7)

Our second global existence and uniqueness statement reads as follows:

Theorem 2.4. Let Ω be a C2 bounded subset of R2 or the torus T2. Assume that the initial
data (ρ0, v0) satisfy

v0 ∈ H10 (Ω), div v0 = 0,

ρ0 ∈ Y0, ρ0  ρ∗ > 0, M :=
∫
Ω
ϱ0 dx > 0.

(2.8)

Then there exists a unique solution (ρ, v,∇P ) to (INS) with data (ρ0, v0) fulfilling the con-
servation of momentum (1.2) (in the case Ω = T2), the conservation of mass (1.3), the balance
energy (1.4) and the conservation of Lebesgue norm (1.5).
Furthermore, the density ρ satisfies the condition ρ  ρ∗, and the solution (ρ, v,∇P ) adheres

to all regularity properties detailed in Theorem 2.1.

Let us report on the main ideas leading to Theorems 2.1 and 2.4. We focus here on the case
Ω = T2. Assuming that we are given a solution (ρ, v) to (INS), the first step is to establish
global-in-time a priori estimates for the H1 norm of v in terms of the data and of the parameters
of the system. The overall strategy has some similarities with the work [9] dedicated to system
(INS) with bounded initial density and v0 ∈ H1. Performing a basic energy method on the
momentum equation, we will succeed in extracting some parabolic smoothing effect even if the
density is rough and vanishes. This enables us to get a control on ∇v in L∞(L2), √ρvt in L2(L2)
and ∇2v,∇P in L2(Lr) for r < 2; it is worth mentioning that the restriction on r comes from
the fact that the density may be unbounded - for ρ0 ∈ L∞(Ω) one obtains ∇2v,∇P in L2(L2),
as it was done in [9]. In fact, the proof of Theorem 2.4 uses the same argument expected for
propagating the Sobolev regularity.
The main tool to obtain the above regularity, if the density ρ contains regions of vacuum (i.e

ρ  0), is the following logarithmic interpolation inequality

(2.9)
(∫

T2
ρv4

) 1
2
¬ Cp ∥

√
ρv∥2

∣∣∣∣∫
T2
ρv

∣∣∣∣
+ Cp ∥

√
ρz∥2 ∥∇v∥2 log

1
2

(
e+
∥ρ−M∥22

M2
+ ∥ρ∥p

∥∇v∥22∥∥√ρv∥∥22
)
,

where M stands for the average of the density ρ and p > 1. It is important to emphasize that
inequality (2.9) has been discovered by B. Derjardins [14] and is an appropriate substitute of
the classical Ladyzhenskaya inequality for constant density

∥v∥2L4 ¬ C ∥v∥2 ∥∇v∥2 .

To be more clear, after testing (INS)2 by vt, we are able to get a priori global in time bound on
∇v in L∞(L2). The key is to estimate the trouble-making term

∥∥√ρv · ∇v∥∥22, which is handled
differently, depending whether the density is distant from vacuum or not. Below we signal the
differences between these two cases:
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• The density contains regions of vacuum (ρ  0). In this case, the estimate (2.9) comes
into play. In fact, thanks to Hölder and Young’s inequality we get that∫

T2
ρ|v · ∇v|2 ¬ Cr,p ∥∇v∥22 ∥ρ∥

1
2(1−α)
p

∥∥∥√ρ|v|2∥∥∥ 1
1−α

2
+

1
4Cr ∥ρ∥p

∥∥∥∇2v∥∥∥2
Lr

with

1
1− α

=
2− 2p
1− 3p

.

The last term may be absorbed, and the first one may be handled by the inequality (2.9).
Consequently, one gets that

d

dt
∥∇v∥22 + c0

(
∥√ρv∥22 +

∥∥∥∇P,∇2v∥∥∥2
r

)
¬ 1
p
f ∥ρ∥p ∥∇v∥

1
1−α
2 log

1
2(1−α) (e+ ∥∇v∥22),

where f ∈ L1(R+) and c0 > 0. Since 1
1−α > 2, there appears a higher power of ∥∇v∥

2
2

in the right- hand side of the above inequality. In consequence, for fixed p this estimate
provides only a local estimate, which will go to infinity in finite time. However, we can
control the blow-up with respect to p, and taking p → ∞ we obtain a global estimate
provided that (2.5) holds.

• The density is distant from vaccum (ρ  ρ∗ > 0). In this case, we automatically obtain
the information that v ∈ L∞(L2(Ω)), which follows directly from (1.4). Hence combining
Sobolev inequality and Hölder inequality, we have, for all ε > 0

∫
T2
ρ|v · ∇v|2 ¬ ε

∥ρ∥p

∥∥∥∇2v∥∥∥2
Lr
+ ε−

2
p−3 ∥ρ∥

p+1
p−3
p ∥v∥

2 p−1
p(p−3)
L2 ∥∇v∥2(2+εp)2 ,

where εp ≃ 1p as p→∞.
Choosing suitably ε we can absorb the first term in the right- hand side. At the end we
arrive at,

d

dt
∥∇v∥22 + c0

(
∥√ρv∥22 +

∥∥∥∇P,∇2v∥∥∥2
r

)
¬ g(t)X1+εp

with g(t) := C ∥ρ∥
p+1
p−3
p ∥v∥

2 p−1
p(p−3)
L2 ∥∇v∥22 ∈ L

1(R+).

Solving this inequality and using the fact that the density ρ satisfy ∥ρ∥p = o(p), as p→∞,
we obtain a global estimate for the velocity v in H1.

The next step is to recover the regularity (1.6) which is essential to reformulate the system
(INS) in Lagrangian coordinates and in consequence get uniqueness of solutions. To achieve it,
the general idea is to use time weighted estimates to glean some regularity on vt. Then, we are
able to transfer the time regularity to space regularity thanks to elliptic estimates and functional
embeddings. The main idea is to differentiate the momentum equation (INS)2 with respect to
time and multiply it by tvt. Next, using Gagliardo-Nirenberg-Sobolev inequality to handle the
trouble-making terms, one may exhibit the following estimates:∫

T2
ρt|vt|2 +

∫ T
0

(∫
T2
t|∇vt|2

)
dt ¬ C0,T ,(2.10)

where C0,T depending only on ∥ρ0∥p,
∥∥√ρv∥∥2, ∥∇v0∥2 and T . Consequently, by Sobolev embed-

ding and weighted Poincaré inequality (A.1),

∥
√
tvt∥L2(0,T ;Lq) ¬ C0,T,q, for all q <∞.(2.11)
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Another consequence of (2.10) is that we have some control on the regularity of v with respect
to the time variable. This is given by the following estimate:

∥v∥
H
1
2−α(0,T ;Lq)

¬ C0,T,q, for all q <∞, α ∈
(
0,
1
2

)
.(2.12)

Then we also have a third consequence of estimate (2.10). Indeed, from the classical maximal
regularity properties of the following Stokes system, as in [8] (or in [25, 28] in the context of the
compressible Stokes system),{

−∆
√
tv +∇

√
tP = −ρ

√
tvt −

√
tρv · ∇v in T2,

div
√
tv = 0 in T2.

(2.13)

and (2.10) one derives for all 0 < ε < 1 and 2 ¬ η ¬ ∞ that

(2.14) ∥∇2
√
tv∥Lη(0,T ;Lλ−ε) + ∥∇

√
tP∥Lη(0,T ;Lλ−ε) ¬ C0,T,ε with λ =

2η
η − 2

.

Finally, having (2.14) and ∇v in L∞(L2) ensures that
√
t∇v is bounded in L2+εT (L∞) for

small enough ε > 0, and thus, by Hölder inequality

∥∇v∥L1T (L∞) =
∫ T
0

∥∥∥√t∇v∥∥∥
L∞

dt√
t
¬ CεT

ε
2(2+ε) ∥

√
t∇v∥L2+ε(L∞).

The final step focuses on proving the uniqueness of the system (INS). The estimate (1.6)
allows us to reformulate the system (INS) in Lagrangian coordinates without imposing higher
regularity requirements on the data than those needed for existence. As highlighted in [9], the
hyperbolic nature of the mass equation results in the loss of one derivative for the density,
preventing the application of a direct method based on stability estimates for (INS). This
derivative loss for the density also leads to a corresponding loss for the velocity. Since ρ lacks
sufficient regularity, any derivative loss is intolerable. To illustrate, if (ρ1, v1) and (ρ2, v2) are
two solutions of (INS) originating from the same initial data, and we denote by (δρ, δv) the
difference between these two solutions, then we obtain from (INS)1

d

dt
δρ+ v2 · ∇δρ = − δv︸︷︷︸

L2

·
Ẇ−1,p︷︸︸︷
∇ρ1 .(2.15)

Therefore, it is not immediately clear whether uniqueness can be proven using this formulation.
To overcome this challenge, as done in [9], we rewrite the system (INS) in Lagrangian coordi-
nates. In this framework, the loss of derivative does not occur when comparing two solutions of
(INS) originating from the same initial data. An additional benefit of using Lagrangian coor-
dinates is that the density remains constant along the flow. Estimating the difference between
solutions can be approached through basic energy arguments. The main challenge lies in the
fact that the divergence is no longer zero, requiring the resolution of a ”twisted” divergence
equation to eliminate the non-divergence-free component. By applying the Gronwall’s lemma,
we establish uniqueness over a sufficiently small time interval, and by induction, extend this
uniqueness over the entire existence time interval.

Remark 2.5. For simplicity, we focus on the case Ω = T2 in the following sections. A similar
analysis applies to bounded domains with no-slip boundary conditions, but we omit those details
here to enhance readability.
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3 Sobolev regularity

The main goal of this section is to prove the following a priori estimates:

Proposition 3.1. Let (ρ, v) a regular solution of (INS) on [0, T ]×T2 that satisfies (2.4). Then
there exists a positive constant c0 depending only on the initial data such that for all t ∈ [0, T ]

sup
τ∈(0,t)

∫
T2
|∇v|2(τ) + 1

2

∫ t
0

∫
T2
ρ|vt|2 ¬ c0.(3.1)

Moreover, for any r < 2 we have

(3.2)
∫ t
0

∥∥∥∇2v∥∥∥2
r
+
∫ t
0
∥∇P∥2r ¬ C(∥ρ0∥p)

where p = r
2−r and C(∥ρ0∥p)→∞ as ∥ρ0∥p →∞.

Remark 3.2. From Proposition 3.1 and Poincaré inequality (A.1) it follows that for all q <∞

∥v∥L∞(0,T ;Lq) ¬ C0,

where C0 depends only on the initial data. Using additionally the fact that ∥ρ∥p = ∥ρ0∥p < ∞
for all p <∞, we further obtain for all 0 ¬ α <∞, 1 ¬ q <∞

(3.3) ∥ραv∥L∞(0,T ;Lq) ¬ C0,

where again C0 depends only on (ρ0, v0).
In the case when ρ0 ∈ Lp(Ω) for fixed p, the estimate (3.3) holds for any 0 ¬ α < p and
1 ¬ q < p

α instead.

Proof of Proposition 3.1. As in [9] the proof consists in performing an energy method and intro-
ducing a suitable ’energy’ functional that contains H1 information on the velocity. Note that in
contrast with [9], the density is not necessary bounded, therefore in order to succeed in getting
a time-independent control on the solution in terms of the data, we will need to combine an
interpolation inequality and condition (2.5).
Testing the momentum equation of (INS) by vt yields

1
2
d

dt

∫
T2
|∇v|2 +

∫
T2
ρ|vt|2 = −

∫
T2
(ρv · ∇v) · vt

¬ 1
2

∫
T2
ρ|vt|2 +

1
2

∫
T2
ρ|v · ∇v|2.

So we deduce that

d

dt

∫
T2
|∇v|2 +

∫
T2
ρ|vt|2 ¬

∫
T2
ρ|v · ∇v|2.(3.4)

From the momentum equation, we can rewrite the second derivative and the gradient of the
pressure as follows:

−∆v +∇P = −ρvt − ρv · ∇v.

In conclusion, from the maximal regularity of (INS) on the torus T2, we have for 1 < r < 2∥∥∥∇2v∥∥∥2
r
+ ∥∇P∥2r ¬ Cr ∥

√
ρ(
√
ρvt +

√
ρv · ∇v)∥2r .

Now, thanks to Hölder’s inequality, we get∥∥∥∇2v∥∥∥2
r
+ ∥∇P∥2r ¬ Cr ∥ρ∥p (∥

√
ρvt∥22 + ∥

√
ρv · ∇v∥22)(3.5)
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with 1r =
1
2 +

1
2p . Combining (3.4) and (3.5), we deduce that

d

dt

∫
T2
|∇v|2 + 1

2

∫
T2
ρ|vt|2 +

1
2Cr ∥ρ∥p

(∥∥∥∇2v∥∥∥2
r
+ ∥∇P∥2r

)
¬ 3
2

∫
T2
ρ|v · ∇v|2.(3.6)

To handle the right- hand side of (3.6), we use Hölder’s inequality and Sobolev inequality that
states

(3.7) ∥∇v∥2p ¬ C∥∇2v∥r.

We deduce that: ∫
T2
ρ|v · ∇v|2 ¬

∥∥∥√ρ|v|2∥∥∥
2

∥∥∥ρ 14∇v∥∥∥2
L4

¬ ∥ρ∥
1
2
p

∥∥∥√ρ|v|2∥∥∥
2
∥∇v∥2Lq4

¬ ∥ρ∥
1
2
p

∥∥∥√ρ|v|2∥∥∥
2
∥∇v∥2(1−α)2

∥∥∥∇2v∥∥∥2α
Lr
.

and q4 ∈ (4, 2p) and α ∈ (0, 1) verify

(3.8)
1
4
=
1
4p
+
1
q4
and

1
q4
=

α

2p
+
1− α
2

.

Let us remark that (3.8) provides

(3.9)
1

2− 2α
=
1− 1p
1− 3p

and p > 3.

Hence, using Young inequality yields∫
T2
ρ|v · ∇v|2 ¬ 1

4Cr ∥ρ∥p

∥∥∥∇2v∥∥∥2
Lr
+ Cr,p ∥∇v∥22 ∥ρ∥

1+2α
2(1−α)
p

∥∥∥√ρ|v|2∥∥∥ 1
1−α

2
(3.10)

with

(3.11) Cr,p
def
= (1− α)

( 1
4α
Cr
)− α

1−α
.

Note that since α → 1
2 when p → ∞, the constant Cr,p can be bounded independently of p.

Using the lemma A.2, we are able to bound the term
∥∥√ρ|v|2∥∥2. Remarking that the function

z 7→ z log(e+ Az ) (with A > 0) is increasing over [0,∞), and remembering (1.4), (1.5) (1.2), we
have∥∥∥√ρ|v|2∥∥∥

2
¬ C ∥√ρ0v0∥2

(∫
T2
ρ0v0 + Cp ∥∇v∥2 log

1
2

(
e+
∥ρ−M∥22

M2
+ ∥ρ0∥p

∥∇v∥22∥∥√ρ0v0∥∥22
))

¬ C ∥√ρ0v0∥2 (e+ ∥∇v∥2) log
1
2

(
e+
∥ρ−M∥22

M2
+ ∥ρ0∥p ∥

√
ρ0v0∥22

)
log

1
2

(
e+ ∥∇v∥22

)
(3.12)

Hence, inequality (3.10) becomes

∫
T2
ρ|v · ∇v|2 ¬ 1

4Cr ∥ρ∥p

∥∥∥∇2v∥∥∥2
Lr
+K0 ∥∇v∥22

(
e+ ∥∇v∥22

) 1
2(1−α) log

1
2(1−α)

(
e+ ∥∇v∥22

)(3.13)

with K0 =: Cp ∥ρ0∥
1+2α
2(1−α)
p

∥∥√ρ0v0∥∥ 1
1−α
2 log

1
2(1−α)

(
e+ ∥ρ−M∥

2
2

M2 + ∥ρ0∥p
∥∥√ρ0v0∥∥22) .
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Plugging (3.13) into (3.6), we get that in particular

d

dt

∫
T2
|∇v|2 + 1

2

∫
T2
ρ|v|2 ¬ f(t)

(
e+ ∥∇v∥22

) 1
2(1−α) log

1
2(1−α)

(
e+ ∥∇v∥22

)
,

where f(t) := ∥∇v∥22K0. Denoting

(3.14) X(t) := e+
∫
T2
|∇v|2 + 1

2

∫ t
0

∫
T2
ρ|vt|2,

we end up with

d

dt
X(t) ¬ f(t)(X logX)1+s,(3.15)

where s = 1
2(1−α) − 1 =

2
p−3 . Solving this ODE, we get

(3.16)
∫ X(t)
X0

dx

(x log x)1+s
¬
∫ t
0
f(τ)dτ.

Now we proceed by contradiction: assuming that the solution X cannot be extended for the
whole interval [0, T ], there has to exist some T ∗ < T such that X(t)→∞ as t→ T ∗. Then we
would have ∫ ∞

X0

dx
(x log x)1+s

¬
∫ T ∗
0

f(τ)dτ.

Therefore the sufficient condition to have a global solution at the interval [0, T ], i. e. for the
blow-up to not occur, is∫ T

0
f(τ)dτ <

∫ ∞
X0

dx

(x log x)1+s
for s =

2
p− 3

.(3.17)

Since f(t) = ∥∇v∥22K0, and (1.4) provides
∫ T
0
∥∇v∥22dτ ¬ ∥

√
ρ0v0∥22, we can replace this

condition by

(3.18) K0∥
√
ρ0v0∥22 <

∫ ∞
X0

dx

(x log x)1+s
for s =

2
p− 3

.

For a fixed s, the integral on the right- hand side of (3.18) is finite, therefore for large enough
data the blow-up may occur in finite time. On the other hand, the definition of K0, condition
(2.5) and the fact that s ∼ 2p (when p→∞) provide that

lim
s→0

1
| log s|

K0∥
√
ρ0v0∥22 = 0.

Therefore in order for (3.18) to be satisfied for large p, it is enough to show that

lim
s→0

1
| log s|

∫ ∞
X0

dx

(x log x)1+s
 l

for some l > 0. This is however provided by Lemma 3.3 below, with l = 1. In conclusion,
condition (3.18) is fulfilled for some small enough s0 > 0, which, since this condition does not
depend on t, completes the proof of (3.1).
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Now, to prove (3.2), we revert back to (3.6). Integrating (3.6) in time and using (3.13), we
get

1
4Cr∥ρ0∥p

∫ t
0
∥∇2v∥2r +

1
2Cr∥ρ0∥p

∫ t
0
∥∇P∥2r

¬ ∥∇v0∥22 +K0∥
√
ρ0v0∥22

(
e+ ∥∇v(t, ·)∥22

)1+s
log1+s

(
e+ ∥∇v(t, ·)∥22

)
.

Since from (3.1) we have ∥∇v∥2L∞(0,T ;L2) ¬ c0 and s ∼
2
p , we end up with

∫ t
0
∥∇2v∥2r +

∫ t
0
∥∇P∥2r ¬ C∥ρ0∥p

(
∥∇v0∥22 +K0

(
(c0 + e) log(e+ c0)

)1+ 2
p
)

∼ ∥ρ0∥3p log(e+ ∥ρ0∥p),

for ∥ρ0∥p →∞, which ends the proof of (3.2).

The following result allows us to clarify the condition (3.18):

Lemma 3.3. It holds
lim
s→0

1
| log s|

∫ ∞
X0

dx

(x log x)1+s
 1.

Proof. For a fixed x  X0, let

Hx(s) =
1

(x log x)1+s
, s ∈ [0, 1].

It is easy to check that s 7→ Hx(s) is convex and the derivative of Hx satisfies

H ′x(s) = −
1

x1+s log(x)s
− log(log(x))
x1+s log(x)1+s

.

Using convexity, we have

Hx(s)  Hx(0) + sH ′x(0) =
1

x log x
− s

(
1
x
+
log log x
x log x

)
.

Next, for A large enough we deduce that∫ A
X0
Hx(s) dx 

∫ A
X0

1
x log x

dx− s
∫ A
X0

1
x
+
log log x
x log x

dx

= log logA− log logX0 − s(logA− logX0)−
s

2

(
(log logA)2 − (log logX0)2

)
.

In particular, choosing log(A) = 1s (that is A = e
1
s ), we obtain

(3.19)
∫ e 1s
X0

Hx(s)dx  − log(s)− 1−
s

2
log2(s) + C(X0),

where C(X0) is independent on s. Dividing both sides by − log s and passing to the limit with
s→ 0, we finish the proof of Lemma 3.3.
It’s important to note that a direct computation of the integral from the lemma reveals that

the asymptotic behavior of this quantity is − log s as s → 0. However, we opted for a proof
based on the properties of convex functions to highlight the strength and effectiveness of this
technique.
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Remark 3.4. With the help of Lemma 3.3, we can also express the constant c0 in (3.1) in terms
of s0: let s0 be such that

1
| log s0|

(
1 +

s0
2
log2(s0)− C(X0)

)
+

1
| log s0|

K0∥
√
ρ0v0∥22 <

1
2
,

when C(X0) is like in (3.19) (such s0 exists, since lims→0 1
| log s|K0 = 0). Assuming that there

exists a t∗ such that X(t∗) > e
1
s0 , from (3.16) we have∫ e 1s0

X0

dx

(x log x)1+s0
<

∫ X(t∗)
X0

dx

(x log x)1+s0
¬
∫ t∗
0
f(τ)dτ ¬ K0∥

√
ρ0v0∥22.

Using (3.19) and dividing by | log s0|, we get

1− 1
| log s0|

(
1 +

s

2
log2(s0)− C(X0)

)
¬ 1
| log s0|

K0∥
√
ρ0v0∥22

which leads to a contradiction. In conclusion, X(t) ¬ e
1
s0 for all t > 0.

In the absence of vacuum, Proposition 3.1 remains valid, provided that the density also
belongs to the space Y0. More precisely,
Proposition 3.5. Let (ρ, v) be a smooth solution to (INS) on [0, T ] satisfying (2.8). Then the
estimates (3.1) and (3.2) hold true for all t ∈ [0, T ], with c0 depending on initial data.
Proof. The main ingredient of the proof relies on the fact that v ∈ L∞(R+,T2).
In fact, since ρ is far away from vacuum, the identity (1.4) provides

∥v∥2 ¬
1
√
ρ∗
∥√ρv∥2 ¬

1
√
ρ∗
∥√ρ0v0∥2 .(3.20)

Starting from (3.6) and using Hölder inequality, we have∫
T2
ρ|v · ∇v|2 ¬ ∥ρ∥p ∥v∥

2
L2p ∥∇v∥

2

L
2p
p−2

from which and Sobolev inequality we deduce∫
T2
ρ|v · ∇v|2 ¬ ∥ρ∥p ∥v∥

2
p

L2 ∥∇v∥
2(1− 1

p
)

2 ∥∇v∥
2 p−3
p−1
2

∥∥∥∇2v∥∥∥ 4
p−1

Lr
.

Therefore, Young inequality ensures that, for all ε > 0∫
T2
ρ|v · ∇v|2 ¬ ε

∥ρ∥p

∥∥∥∇2v∥∥∥2
Lr
+ ε−

2
p−3 ∥ρ∥

p+1
p−3
p ∥v∥

2 p−1
p(p−3)
L2 ∥∇v∥2(2+εp)2 ,

where εp :=
p+1
p(p−3)

Combining the previous inequality and (3.6), choosing ε small enough and keeping the notation
in the proof of Proposition 3.1 we end up with

d

dt
X(t) ¬ g(t)X1+εp with g(t) := C ∥ρ∥

p+1
p−3
p ∥v∥

2 p−1
p(p−3)
L2 ∥∇v∥22 .

The sufficient condition for getting the existence of X(t) for all t ∈ R+ is to find p such that∫ t
0
g(τ)dτ <

∫ ∞
X0

x−1−εpdx =
1
εp
X
−εp
0 .(3.21)

Since
∫ t
0 ∥∇v∥

2
2 ¬

∥∥√ρ0v0∥∥22, then from (3.20) we have∫ t
0
g(τ)dτ ¬ Cρ

− p−1
p(p−3)
∗ ∥ρ0∥

p+1
p−3
p ∥√ρ0v0∥

2(1+ p−1
p(p−3) )

L2 .

Therefore taking advantage of the fact that ρ ∈ Y0 , there exists p0 such that (3.21) holds. This
completes the proof of the Proposition 3.5.
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4 Weighted estimates

Our goal in this section is to prove that ∇v belongs to L1(0, T ;L∞), in terms of the data and the
time T . To achieve it, let us first prove we have a bound on

√
ρtvt and

√
t∇vt in L∞(0, T ;L2)

and L2(0, T ;L2) respectively.
The below estimation is based on the scheme form [9]. We put here all the details since the

lack of boundedness of the density changes the key estimates in a few important places. We
perform the calculations assuming that ρ0 ∈ Lp(Ω) with p > 3 fixed. In particular, the obtained
estimates will be still valid provided that ρ0 ∈ L (or ρ0 ∈ Y0, in the context of Theorem 2.4).

Proposition 4.1. (Time derivative estimates). Let (ρ, v) be a smooth enough solution to system
(INS) on [0, T ∗)× T2 satisfying (3.1) and (3.2). Then for all T ∈ [0, T ∗) , it holds

sup
t∈[0,T ]

∥∥∥∥√tρ(t)vt(t)∥∥∥∥2
2
+
∫ T
0

∥∥∥√t∇vt(t)∥∥∥2
2
dt ¬ C0,T ,(4.1)

∥
√
tvt∥L2(0,T ;Lq) ¬ C0,T,q, for all q <∞(4.2)

where C0,T is a constant depending only on T , p and the norms ∥ρ0∥p,
∥∥√ρ0v0∥∥2, ∥∇v0∥2, while

C0,T,q > 0 depends only on T , p, q and the norms ∥ρ0∥p,
∥∥√ρ0v0∥∥2, ∥∇v0∥2.

Proof. At first, differentiating (INS)2, yields

(4.3) ρvtt + ρtvt + ρtv · ∇v + ρvt · ∇v + ρvt · ∇v −∆vt +∇Pt = 0.

Next, taking the scalar product with tvt, we get

(4.4)
1
2
d

dt

∫
T2
ρt|vt|2 +

∫
T2
t|∇vt|2 =

4∑
i=1

Ji

with

J1 =
1
2

∫
T2
ρ|vt|2,(4.5)

J2 = −
∫
T2

(
tρt|vt|2 + (

√
tρv · ∇vt) · (

√
tvt)

)
,(4.6)

J3 = −
∫
T2

(√
tρtv · ∇v

)
·
(√

tvt
)
,(4.7)

J4 = −
∫
T2

(√
tρvt · ∇v

)
·
(√

tvt
)
.(4.8)

Now, we are going to show that for all t ∈ [0, T ] :

(4.9)
4∑
i=1

Ji ¬
1
2

∥∥∥√t∇vt∥∥∥2
2
+ C(1 +

∥∥√tρvt∥∥22)h(t).
for some h ∈ L1(0, T ), the norm of which may depend on T and the initial data.
Indeed, having (4.9) at hand will enable us to get (4.1) by means of Gronwall’s Lemma, since

the first term in the right-hand side of (4.9) may be absorbed by the left-hand of (4.4).
Obviously, according to estimate (3.1) we have J1 ∈ L1(0, T ), and its norm depends only on

the initial data .
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To handle J2, we use the mass equation (INS)1 in the first term, after performing an inte-
gration by parts. One has

J2 = −
∫
T2

(
tρt|vt|2 + (

√
tρv · ∇vt) · (

√
tvt)

)
=
∫
T2

(
tρv∇|vt|2 − (

√
tρv · ∇vt) · (

√
tvt)

)
¬ 3

∫
T2
ρ|v||
√
t∇vt||

√
tvt|.

Using Hölder and interpolation inequalities, we get

J2 ¬ 3
∥∥∥√t∇vt∥∥∥

2

∥∥√tρvt∥∥Lq1 ∥√ρv∥Lq2
¬ 3

∥∥∥√t∇vt∥∥∥
2

∥∥√tρvt∥∥1−θ2 ∥∥√tρvt∥∥θLq ∥√ρv∥Lq2
with

(4.10)
1
2
=
1
q1
+
1
q2
, q2 < 2p, q1 < q < 2p,

1
q1
=
1− θ
2
+
θ

q
, and θ ∈ (0, 1)

For instance we can take q2 = q = 6, θ = 12 .
Using Hölder’s inequality on ∥

√
tρvt∥Lq gives∥∥√tρvt∥∥Lq ¬ ∥√ρ∥L2p ∥∥∥√tvt∥∥∥Lm ,

with 1m :=
1
q −

1
2p . In the end, we arrive at

J2 ¬ 3 ∥ρ∥
θ
2
Lp

∥∥∥√t∇vt∥∥∥
2

∥∥√tρvt∥∥1−θ2 ∥∥∥√tvt∥∥∥θ
Lm
∥√ρv∥Lq2

which becomes, using (A.1) and Young inequality

J2 ¬ C ∥ρ∥
θ
2
Lp

∥∥∥√t∇vt∥∥∥
2

∥∥√tρvt∥∥2 ∥√ρv∥Lq2
+ C ∥ρ∥

θ
2
Lp

∥∥∥√t∇vt∥∥∥1+θ
2

∥∥√tρvt∥∥1−θ2 ∥√ρv∥Lq2
¬ 1
8

∥∥∥√t∇vt∥∥∥2
2
+ C ∥ρ∥θLp

∥∥√tρvt∥∥22 ∥√ρv∥2Lq2
+ C ∥ρ∥

θ
1−θ
Lp

∥∥√tρvt∥∥22 ∥√ρv∥ 21−θLq2 .
Finally, J2 may be bounded as follows

J2 ¬
1
8

∥∥∥√t∇vt∥∥∥2
2
+ h2(t)

∥∥√tρvt∥∥22(4.11)

where

h2 = C
(
∥ρ∥θLp ∥

√
ρv∥2Lq2 + ∥ρ∥

θ
1−θ
Lp ∥
√
ρv∥

2
1−θ
Lq2

)
.

Notice that, since (3.1) and (3.2) are assumed to be satisfied , Remark 3.2 and q2 < 2p ensure
that

∥∥√ρv∥∥
Lq2
∈ L∞(0, T ). Hence h2 ∈ L1(0, T ) and its norm depends on T and the initial data.

Next, from the mass equation, we get

J3 = −
∫
T2

(√
tρtv · ∇v

)
·
(√

tvt
)
= −

∫
T2
tρv · ∇ ((v · ∇v) · vt) ,

15



where we have performed an integration by parts in the second equality.
Hence,

J3 ¬
∫
T2
tρ|v||vt||∇v|2︸ ︷︷ ︸
J31

+
∫
T2
tρ|v|2|vt||∇2v|︸ ︷︷ ︸

J32

+
∫
T2
tρ|v|2|∇vt||∇v|︸ ︷︷ ︸

J33

.

To handle J31, we use Hölder inequality and (3.7). One has

J31 =
∫
T2
tρ|v||vt||∇v|2

¬
∥∥√tρvt∥∥2 ∥∇v∥2L2p ∥∥√tρv∥∥Lq
¬ C(1 +

∥∥√tρvt∥∥22) ∥∥∥∇2v∥∥∥2Lr ∥∥√tρv∥∥Lq
with 1q :=

1
2 −

1
p >

1
2p . Then, Remark 3.2 ensures that ∥

√
tρv∥Lq ∈ L∞(0, T ) and thus, we get

J31 ¬ h31(t)(1 +
∥∥√tρvt∥∥22)(4.12)

with
h31 =

∥∥∥∇2v∥∥∥2
Lr

∥∥√tρv∥∥Lp̄ ∈ L1(0, T ),
and a norm depending on T and initial data.
To bound J32, we take advantage on Hölder inequality to get

J32 =
∫
T2
tρ|v|2|vt||∇2v|

¬ ∥√ρ∥L2p
∥∥∥∇2v∥∥∥

Lr

∥∥∥√tvt∥∥∥
Lr1

∥∥∥√tρ|v|2∥∥∥
Lr2

,

where r has been defined in (3.5) and

1
2p
+
1
r
+
1
r1
+
1
r2
= 1.

Note that for p > 3, if r1 is sufficiently large we can pick r2 < 2p. Applying (A.1) to
∥∥∥√tvt∥∥∥

Lr1
,

we find constant C > 0 depending on the data and p such that

J32 ¬C ∥ρ∥
1
2
Lp

∥∥∥∇2v∥∥∥
Lr

(∥∥√tρvt∥∥L2 + ∥∥∥√t∇vt∥∥∥2) ∥∥∥√tρ|v|2∥∥∥Lr2
¬ 1
16

∥∥∥√t∇vt∥∥∥2
2
+ C ∥ρ∥Lp

∥∥∥∇2v∥∥∥2
Lr

∥∥∥√tρ|v|2∥∥∥2
Lr2

+ C ∥ρ∥
1
2
Lp

∥∥∥∇2v∥∥∥
Lr

∥∥√tρvt∥∥2 ∥∥∥√tρ|v|2∥∥∥Lr2 .
Using the inequality ∥

√
tρvt∥2 ¬ C(1 + ∥

√
tρvt∥22), we deduce that

(4.13) J32 ¬
1
16

∥∥∥√t∇vt∥∥∥2
2
+ (1 +

∥∥√tρvt∥∥22)h32,
where

(4.14) h32 = C ∥ρ∥Lp
∥∥∥∇2v∥∥∥2

Lr

∥∥∥√tρ|v|2∥∥∥2
Lr2
+ C ∥ρ∥

1
2
Lp

∥∥∥∇2v∥∥∥
Lr

∥∥∥√tρ|v|2∥∥∥
Lr2

.

From (3.2), we have
∥∥∇2v∥∥2Lr ∈ L1(0, T ) and from Remark 3.2, we know that ∥∥√tρ|v|2∥∥Lr2 ∈

L∞(0, T ). In consequence, h32 ∈ L1(0, T ) and its norm depends on T and initial data.
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For J33, we have

J33 =
∫
T2
tρ|v|2|∇vt||∇v|

¬
√
T
∥∥∥√t∇vt∥∥∥

2
∥√ρ∥L2p ∥∇v∥L2p

∥∥∥√ρ|v|2∥∥∥
Lp∗

¬ 1
16

∥∥∥√t∇vt∥∥∥2
2
+ CT ∥ρ∥Lp

∥∥∥∇2v∥∥∥2
Lr

∥∥∥√ρ|v|2∥∥∥2
Lp∗

.

with (since p > 3)

1
p∗
:=
1
2
− 1
p
>
1
2p
.(4.15)

Notice that ∥ρ∥Lp ∈ L1(0, T ) and according to (3.2),
∥∥∇2v∥∥2Lr belongs to L1(0, T ) as well.

Moreover, as p∗ < 2p, it follows from Remark 3.2 that
∥∥√ρ|v|2∥∥2

Lp∗
∈ L∞(0, T ). In consequence,

we have

(4.16) J33 ¬
1
16

∥∥∥√t∇vt∥∥∥2
2
+ (1 +

∥∥√tρvt∥∥22)h33
and h33 := CT ∥ρ∥Lp

∥∥∇2v∥∥2Lr ∥∥√ρ|v|2∥∥2Lp∗ ∈ L1(0, T ) and its norm depends on T and initial
data.
To bound J4, we may write

J4 =−
∫
T2

(√
tρvt · ∇v

)
·
√
tvt

¬
∥∥√tρvt∥∥2 ∥√ρ∥L2p ∥∥∥√tvt∥∥∥Lp∗ ∥∇v∥L2p

with 1p∗ =
1
2 −

1
p .

Thanks to (A.1), we are able to write

J4 ¬ C
∥∥√tρvt∥∥2 ∥√ρ∥L2p (∥∥√tρvt∥∥2 + ∥∥∥√t∇vt∥∥∥2) ∥∇v∥L2p

¬ C ∥√ρ∥L2p
∥∥√tρvt∥∥22 ∥∇v∥L2p + C ∥√ρ∥L2p ∥∥√tρvt∥∥2 ∥∥∥√t∇vt∥∥∥2 ∥∇v∥L2p

¬ 1
8

∥∥∥√t∇vt∥∥∥2
2
+ C

(
∥√ρ∥L2p ∥∇v∥L2p + ∥

√
ρ∥L2p ∥∇v∥

2
L2p

) ∥∥√tρvt∥∥22 .
Using again that ∇2v ∈ L2(0, T ;Lr) and (3.7), we obtain

(4.17) J4 ¬
1
8

∥∥∥√t∇vt∥∥∥2
2
+ h4

∥∥√tρvt∥∥22 ,
where

h4 := C
(
∥√ρ∥L2p ∥∇v∥L2p + ∥

√
ρ∥L2p ∥∇v∥

2
L2p

)
∈ L1(0, T )

and its norm depends on T and initial data. This completes the proof of inequality (4.9).
Substituting inequality (4.9) into identity (4.4) and taking advantage on Gronwall’s Lemma
ensures inequality (4.1).
To prove (4.2), we combine the inequality (4.1) and the Poincaré inequality (A.1). This

finishes the proof of Proposition 4.1.

As a consequence we have the following results, the proof of which can be found in [8][Lemma
3.4]. Since the proof does not depend on the L∞ bound on the density, it can be repeated directly
as in [8], hence we skip it.

Lemma 4.2. Let q ∈ [1,∞) and α ∈ (0, 1/2). Then v ∈ H
1
2−α(0, T ;Lq) and the following

estimate holds:

∥v∥2
H
1
2−α(0,T :Lq)

¬ ∥v∥2L2(0,T :Lq) + Cα,T ∥
√
tvt∥2L2(0,T :Lq),

where Cα,T depending only on α and on T .
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4.1 Shift of Integrability

In the present section, our goal is to exploit the regularity of ∇2v and ∇P that we have proved
so far, in order to bound ∇v in L1(0, T ;L∞).

Lemma 4.3. Let (ρ, v) be a smooth enough solution to system (INS) on [0, T ∗)× T2 verifying
estimates (3.1) and (3.2) with initial conditions (ρ0, v0) satisfying

ρ0 ∈
⋂
1¬p

Lp(Ω), v0 ∈ H10 (Ω), div v0 = 0.

For all T ∈ [0, T ∗), η ∈ [2,∞] and ε ∈ (0, 1] , we have

(4.18) ∥∇2
√
tv∥Lη(0,T ;Lλ−ε) + ∥∇

√
tP∥Lη(0,T ;Lλ−ε) ¬ C0,T,ε with λ =

2η
η − 2

,

where C0,T is a positive constant depending only on
∥∥√ρ0v0∥∥2, ∥∇v0∥2 and ∥ρ0∥p for some p

depending on ε.
As a direct consequence, for all 1 ¬ s < 2 it holds(∫ T

0
∥∇v(t)∥sL∞ dt

) 1
s

¬ C0,T .(4.19)

Remark 4.4. For ρ0 ∈
⋂
1¬p<∞ L

p(Ω), we obtain the same regularity as in [9, Lemma 3.4]
for ρ0 ∈ L∞(Ω). Assuming instead that ρ0 ∈ Lp(Ω) for some p > 3 fixed, we have a different
constraint, depending on p:

∥∇2
√
tv∥Lη(0,T ;Lλ−ε) + ∥∇

√
tP∥Lη(0,T ;Lλ−ε) ¬ C0,T with λ =

2ηp
2 + ηp− 2p+ η

,(4.20)

and respectively (∫ T
0
∥∇v(t)∥sL∞ dt

) 1
s

¬ C0,T for all 1 ¬ s < 2(p− 1)2

(p− 1)2 + p
.(4.21)

Proof of Lemma 4.3. The proof will based on the Proposition 4.1 and the following Stokes sys-
tem: {

−∆
√
tv +∇

√
tP = −ρ

√
tvt −

√
tρv · ∇v in (0, T )× T2,

div
√
tv = 0 in (0, T )× T2.

(4.22)

From Proposition 4.1, we know that
√
tρvt ∈ L∞(0, T ;L2). Since ρ ∈ L∞(0, T ;Lp) for any

p < ∞, we deduce that ρ
√
tvt ∈ L∞(0, T ;Lr) for all r < 2. On the other hand, from the

estimate on ∇
√
tvt it follows that

√
tvt is bounded in L2(0, T ;Lq) for any q < ∞ and thus

ρ
√
tvt ∈ L2(0, T ;Lq) as well. In conclusion, by interpolation we get

(4.23) ∥ρ
√
tvt∥Lη(0,T ;Lλ−ε) ¬ C0,T,ε for any η  2 and arbitrarily small ε > 0,

where λ is as in (4.18) and C0,T,ε depends on ∥
√
ρ0v0∥2, ∥∇v0∥2 and the norm of ρ0 in suitable

Lebesgue space, depending on ε.
For the term

√
tρv ·∇v we proceed similarly. By Remark 3.2,

√
tρv is bounded in L∞(0, T ;Lq)

for any q < ∞. Moreover, by the estimates on ∇v and ∇2v from estimates (3.1) and (3.2), we
get that ∇v is bounded in L∞(0, T ;L2) and L2(0, T ;Lq) for any q <∞. In conclusion,

√
tρv ·∇v

is bounded in L∞(0, T ;Lr) and L∞(0, T ;Lq) for any r < 2 and q < ∞. By interpolation, we
have again

∥
√
tρv · ∇v∥Lη(0,T ;Lλ−ε) ¬ C0,T,ε.
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Since we have shown that the right hand side of (4.22) belongs to Lη(0, T ;Lλ−ε), we obtain the
desired regularity for ∆

√
tv and ∇

√
tP , which ends the first part of the Lemma.

For the second part of the Lemma, we proceed the same way as in [9]. Fix any 1 ¬ s < 2
and let η be such that sη < 2(η − s). Since λ > 2 for any η  2, from the Sobolev embedding
and Poincaré inequality we get

∥∇
√
tv(t, ·)∥L∞ ¬ C∥∇

√
tv(t, ·)∥W 1,λ ¬ C∥∇2

√
tv(t, ·)∥Lλ .

Therefore ∫ T
0
∥∇v∥sL∞ dt =

∫ T
0
t−
s
2 ∥∇
√
tv∥sL∞ dt ¬ C

∫ T
0
t−
s
2 ∥∇2
√
tv∥sLλ−ε dt

¬C
(∫ T
0
t
− ηs
2(η−s) dt

)1− s
η
(∫ T
0
∥∇2
√
tv∥η
Lλ−ε

) s
η

.

Since ηs
2(η−s) < 1, the right hand side is integrable and we get the bound for ∥∇v∥Ls(0,T ;L∞).

In the case for fixed p, we proceed analogously. First, note that we have λ > 2 whenever
η < 2(p − 1). Choosing 1 ¬ s < 2(p−1)

p , let us pick
2s
2−s < η < 2(p − 1). Then again ηs

2(η−s) < 1
and we can repeat the reasoning from the previous case.

5 Existence and uniqueness of solutions

This part is dedicated to the mathematical justification of our analysis. The existence and the
issue of uniqueness is clarified here. From the result [9] in Theorem 2.1, we know that for ρ0 ∈ L∞
and v0 ∈ H1, global-in-time solutions exist. This is our basic tool to construct the approximative
sequence. We fix an arbitrary time T > 0 in order to control the compactness of the sets under
consideration.
Given k ∈ N we define

(5.1) ρk0 = min{ρ0, k}, vk0 = v0.

Applying Theorem 2.1 from [9], we obtain the global-in-time solutions (ρk, vk) initiated by
(ρk0, v

k
0 ). The densities are globally bounded by k, and the velocity satisfies all the bounds from

Theorem 2.1, thanks to the obvious fact that

(5.2) ∥ρk0∥p ¬ ∥ρ0∥p for all p ¬ ∞, ∥
√
ρk0v0∥2 ¬ ∥

√
ρ0v0∥2.

What is left, is to justify the passage to the limit as k → ∞. Since all the nonlinear terms
in the equations contain the density multiplied by a function of velocity, strong convergence is
required only for the latter. However, from Lemma 4.2 and the estimates from Theorem 2.1, we
obtain in particular that

(5.3) ∥vk∥Hα(0,T ;L2) + ∥vk∥L2(0,T ;H1) ¬ C(initial data)

for any α < 1/2, with the right-hand side independent of k. Choosing suitable α, this leads to
the convergence

(5.4) vk → v strongly in L3(0, T ;L3)

Thus, having at hand

(5.5) ∥ρk∥L∞(0,T ;Lp) ¬ ∥ρ0∥p,
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up to a subsequnece we have

(5.6) ρk ⇀ ρ weakly- ∗ in L∞(0, T ;Lp).

Taking p > 3, we conclude that

(5.7) div(ρkvk ⊗ vk)⇀ div(ρv ⊗ v) in D′(T2 × [0, T )).

Analogously, ρkvk ⇀ ρv. Consequently, the limit (ρ, v) is the weak solution to the system (INS)

(5.8)

∫ T
0

∫
T2
(ρψt + ρu · ∇ψ)dxdt =

∫
T2
ρ0(x)ψ(0, x)dx,∫ T

0

∫
T2
(ρuφt + ρu⊗ u : ∇φ− µ∇u∇φ)dxdt =

∫
T2
ρ0(x)u0(x)φ(0, x)dx

for all ψ ∈ D(T2 × [0, T )) and all φ ∈ D(T2 × [0, T );R2) such that div φ = 0.
We maintain the regularity of ∇2u through weak convergence and the estimates from The-

orem 2.1. Thus, we obtain the solution as defined by Theorem 2.1.
The final question is uniqueness. However, all the necessary elements to transform the system

into Lagrangian coordinates are present. In particular, ∇v ∈ L1(0, T ;L∞). Therefore, we can
apply directly Theorem 2.1 from [9]. The entirety of Section 4 applies to our case. With this,
our Theorem 2.1 is complete.
Similar arguments lead to the proof of existence and uniqueness of solutions in the context

of Theorem 2.4.
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A Appendix A

For the reader’s convenience, we recall here a few results that are used repeatedly in the paper.
The first one is the following weighted Poincaré inequality

Lemma A.1. Let ρ : T2 → R be a nonnegative and nonzero measurable function. Then we have
for all b ∈ H1(T2) and 1 ¬ m <∞, there exists a constant Cm > 0 such that

∥b∥Lm ¬
1
M

∣∣∣∣∫
T2
ρb

∣∣∣∣+ Cm log 12 (e+ ∥ρ∥2M

)
∥∇b∥2 .(A.1)

with M the average of ρ:

M :=
∫
T2
ρ.

Furthermore, for any 1 ¬ p ¬ ∞, 0 ¬ α < p, 1 ¬ q < p
α and β 

1
q −

α
p , there exists an absolute

constant Cβ,p,q so that

∥∥∥ρα|b|β∥∥∥
Lq
¬ Cβ,p,q ∥ρ∥αLp

1
Mβ

∣∣∣∣∫
T2
ρb

∣∣∣∣β + Cβ,p,q ∥ρ∥αLp log β2 (e+ ∥ρ∥2M

)
∥∇b∥β2 .(A.2)
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Proof. Before going into the details of the proof, let us notice that inequality (A.1) has been used
in the work [9] on the two-dimensional incompressible Navier-Stokes equations with vacuum and
with bounded density. For the reader convenience, we provide its proof here.
We decompose b as follows:

b = b+ bn + b̃n,

where b is the average of b and for any integer n and x ∈ T2,

bn(x) :=
∑

k∈Z2\{(0,0)}
1¬|k|¬n

b̂ke
2iπk·x and b̃n(x) :=

∑
k∈Z2\{(0,0)}
|k|>n

b̂ke
2iπk·x.

The proof of (A.1) relies on the following inequalities: for all 2 ¬ q <∞,

∥bn∥L∞ ¬ C
√
log n ∥∇b∥2 and ∥ṽn∥Lq ¬

1

n
2
q

∥∇b∥2 .(A.3)

Indeed, by Cauchy-Schwarz inequality and Parseval’s identity, it is easy to prove that

∥bn∥L∞ ¬
∑

k∈Z2\{(0,0)}
1¬|k|¬n

1
|k|
|k||b̂k|

¬

 ∑
k∈Z2\{(0,0)}
1¬|k|¬n

1
|k|2


1
2
 ∑
k∈Z2\{(0,0)}
1¬|k|¬n

|k|2|b̂k|2


1
2

¬ C
√
log n ∥∇b∥2 .

On the other hand, for 2 ¬ q <∞, since Ḣ1−
2
q ↪→ Lq(T2), we have∥∥∥b̃n∥∥∥

Lq
¬ C∥b̃n∥

Ḣ
1− 2q
¬ C 1

n
2
q

∥∇b∥2 .

This complete the proof of (A.3).
Now, from Poincaré inequality, we have the obvious inequality: for all 1 ¬ m <∞

∥b∥Lm ¬ |b|+ Cm ∥∇b∥2 .(A.4)

Because average of both bn and b̃n is 0, one may write that,

Mb =
∫
T2
ρb+

∫
T2
(M − ρ)(b− b)dx

=
∫
T2
ρb−

∫
T2
ρbn −

∫
T2
ρb̃ndx.

Therefore, using Hölder and Poincaré inequality, and also (A.3),

M |b| ¬
∣∣∣∣∫

T2
ρb

∣∣∣∣+M ∥bn∥L∞ + ∥ρ∥2 ∥∥∥b̃n∥∥∥2
¬
∣∣∣∣∫

T2
ρb

∣∣∣∣+ CM (√
log n+

1
n

∥ρ∥2
M

)
∥∇b∥2 .

Then, taking n ≈ ∥ρ∥2M , we have

|b| ¬ 1
M

∣∣∣∣∫
T2
ρb

∣∣∣∣+ C log 12 (e+ ∥ρ∥2M

)
∥∇b∥2(A.5)
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and putting (A.5) together with (A.4) gives (A.1).
Finally, to prove (A.2) we take advantage on Hölder’s inequality. Let 1 ¬ p ¬ ∞, 0 < α < p,

1 ¬ q < p
α and β 

1
q −

α
p . There holds

∥∥∥ρα|b|β∥∥∥
Lq
¬ ∥ρα∥

L
p
α

∥∥∥|b|β∥∥∥
Lp∗
¬ ∥ρ∥αLp ∥b∥

β
Lβp∗

with 1p∗ :=
1
q −

α
p so that from the definition of β, we have βp

∗  1. Combining this inequality
and (A.1) gives (A.2).

We also used the following version of Desjardins’ estimate in order to propagate the L2 norm
of ∇v. (see also [9, Lemma 2])

Lemma A.2. Let p > 1. There exists a constant C so that for all b ∈ H1(T2) and function
ρ  0 satisfying ρ ∈ Lp(T2), we have(∫

T2
ρb4
) 1
2
¬ 2 ∥√ρb∥2

∣∣∣∣∫
T2
ρb

∣∣∣∣
+

p

p− 1
C ∥√ρb∥2 ∥∇b∥2 log

1
2

(
e+
∥ρ∥22
M2
+ ∥ρ∥p

∥∇b∥22∥∥√ρb∥∥22
)(A.6)

with M :=
∫
T2
ρ.

Proof. Fix some n ∈ N. Then, keeping the same notation as in the above Lemma and using
Hölder inequality, one has(∫

T2
ρb4dx

) 1
2
=
∥∥∥√ρ(b+ bn + b̃n)b∥∥∥

2

¬
(
|b|+ ∥bn∥L∞

)
∥√ρb∥2 + ∥ρ∥

1
4
p

∥∥∥b̃n∥∥∥
Lq4

∥∥∥ρ 14 b∥∥∥
L4
,

where 1q4 :=
1
4 −

1
4p .

We thus have, using Young inequality,(∫
T2
ρb4dx

) 1
2
¬ 2

(
|b|+ ∥bn∥L∞

)
∥√ρb∥2 + ∥ρ∥

1
2
p

∥∥∥b̃n∥∥∥2
Lq4

.

Hence, taking advantage of estimates (A.3), we get(∫
T2
ρb4dx

) 1
2
¬ 2|b| ∥√ρb∥2 + C ∥

√
ρb∥2

(√
log n+ n−

4
q4 ∥ρ∥

1
2
p

∥∇b∥2∥∥√ρb∥∥2
)
∥∇b∥2 .

Taking for n the closest positive integer to(
∥ρ∥

1
2
p

∥∇b∥2∥∥√ρb∥∥2
) q4
4

,

we end up with

(∫
T2
ρb4dx

) 1
2
¬ 2|b| ∥√ρb∥2 + C

q4
4
∥√ρb∥2 log

1
2

(
e+ ∥ρ∥p

∥∇b∥22∥∥√ρb∥∥22
)
∥∇b∥2 .(A.7)

Then, taking advantage on the control (A.5) of |b| and the definition of q4 leads to (A.6).
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B Properties of the space L and Y0.
Let us now discuss the classes L and Y0. In particular we are going to prove the embedding
(2.7). Let us first recall the definition of the space Lexp(Ω):

Lexp(Ω) =
{
f : Ω→ R : ∃β>0 such that

∫
Ω
e
|f(x)|
β − 1 dx <∞

}
·

Obviously we have L∞(Ω) ⊂ L ⊂ Y0. On the other hand, using the properties of the exponential
function, we will show that Y0 ⊂ Lexp(Ω).
Fix any β > 0. We have∫

Ω
e
|f(x)|
β − 1 dx =

∫
Ω

∞∑
k=1

1
k!
|f(x)|k

βk
dx =

∞∑
k=1

1
k!
1
βk
∥f∥kk

¬
∞∑
k=1

1
k!

(
k

β

∥f∥k
k

)k
.

From Stirling’s formula, for large k we have

1
k!

≲
1√
2πk

(
e

k

)k
.

Therefore
1
k!

(
k

β

∥f∥k
k

)k
≲
(
e

β

∥f∥k
k

)k
.

Since limk→∞
∥f∥k
k = 0, for sufficiently large k it holds

e
β
∥f∥k
k < 12 . Therefore the series

∞∑
k=1

1
k!
1
βk
∥f∥kk

is convergent.
Now, let us show that the inclusions L∞ ⊂ L ⊂ Y0 are sharp. The examples below consider

the situation where Ω is a d-dimensional ball, but they can be adjusted to any bounded domain
(or the torus) by a suitable rescaling and extending the function by zero.
Below, we will use mulitple times the Stirling’s formula for the Gamma function:

(B.1) Γ(p+ 1) =
√
2πp

(
p

e

)p (
1 +O

(
1
p

))
Example B.1. The function − log |x| for |x| ¬ 1 belongs to Lexp but not to Y0.

Proof. The first statement is straightforward and comes from the fact that for any β > 1
d we

have ∫
B(0,1)

e
− log |x|
β dx =

∫
B(0,1)

|x|
−1
β dx = cd

∫ 1
0
r
d−1− 1

β dr <∞.

On the other hand, by the explicit calculations

∥ log |x|1B(0,1)∥pp =
∫
B(0,1)

(− log |x|)p dx = cd
∫ 1
0
rd−1(− log r)p dr = cd

∫ ∞
0

e−dssp ds

=
cd
dp+1

∫ ∞
0

e−zzp dz =
cd
dp+1
Γ(p+ 1).

Using (B.1), we know that

(B.2) ∥ log |x|1B(0,1)∥pp ∼
√
p

(
p

de

)p
and thus ∥ log |x|∥p ∼ p. Therefore log |x| /∈ Y0.
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Example B.2. The unbounded function log log | log |x|| for |x| < e−e belongs to L.

Proof. Step 1. First, we will show that

∥ log | log |x||1B(0,e−e)∥pp ≲
(
log p
e

)p
p ·
(
f(p)
de

)f(p)
.

Note that for any a > 0,

ap ¬
∫ ∞
a

spea−s ds ¬ eaΓ(p+ 1).

Therefore, for f(p) = p
log p , we have∫

B(0,e−e)
(log | log |x||)p dx =

(
1

f(p)

)p ∫
B(0,e−e)

[
f(p) log | log |x||)

]p dx
=
(
1

f(p)

)p ∫
B(0,e−e)

[
log

(
| log |x||f(p)

)]p
dx

¬
(
1

f(p)

)p
Γ(p+ 1)

∫
B(0,e−e)

| log |x||f(p) dx.

Using the formula (B.2), if follows that∫
B(0,e−e)

(log | log |x||)p dx ≲
(
1

f(p)

)p
Γ(p+ 1)

√
f(p)

(
f(p)
de

)f(p)
.

Using again the Stirling’s formula (B.1) and the definition of f (in particular f(p) < p), we get∥∥∥∥log | log |x||1B(0,e−e)∥∥∥∥p
p

≲
(
log p
e

)p
p ·
(
f(p)
de

)f(p)
.

Step 2. Now, we use the above information to estimate the Lp norm of log log | log |x||. Let
g(p) = p

(log p)1/2−ε
for some 0 < ε < 1/2. Similarly as before, we have∫

B(0,e−e)
(log log | log |x||)p dx =

(
1
g(p)

)p ∫
B(0,e−e)

[
log

(
(log | log |x||)g(p)

)]p
dx

¬
(
1
g(p)

)p
Γ(p+ 1)

∫
B(0,e−e)

(log | log |x||)g(p) dx.

From Step 1, we know that∫
B(0,e−e)

(log | log |x||)g(p) dx ≲
(
log g(p)

e

)g(p)
g(p) ·

(
f(g(p))
de

)f(g(p))
.

Therefore, using again (B.1) and the fact that g(p) < p, we get

∥ log | log | log |x||∥p ≲
p

g(p)

(
log p
e

) g(p)
p

(p
√
p)1/p ·

(
f(p)
de

) f(p)
p

.

In conclusion, since p
g(p) = (log p)

1/2−ε and

lim
p→∞

( log p
e

) g(p)
p

(p
√
p)1/p

 = 0, lim
p→∞

(
f(p)
de

) f(p)
p

= e,

we get
1√
log p
∥ log | log | log |x||∥p log1/2(e+ ∥ log | log | log |x||∥p)→ 0

as p→∞. This proves that log | log | log p|| ∈ L.

24



References

[1] F. Ammar Khodja and M. M. Santos. 2D density-dependent Leray problem with a discon-
tinuous density. Methods and Applications of Analysis, 13(4), 2006.

[2] A. J. Archer. Dynamical density functional theory for molecular and colloidal fluids: A
microscopic approach to fluid mechanics. The Journal of chemical physics, 130(1), 2009.

[3] H. Bahouri, J.-Y. Chemin, and R. Danchin. Fourier Analysis and Nonlinear Partial Dif-
ferential Equations, volume 343. Springer, 2011.

[4] D. Chen, Z. Zhang, and W. Zhao. Fujita-Kato theorem for the 3-D inhomogeneous Navier-
Stokes equations. J. Differential Equations, 261(1):738–761, 2016.

[5] G. Crippa and G. Stefani. An elementary proof of existence and uniqueness for the Euler
flow in localized yudovich spaces. Calculus of Variations and Partial Differential Equations,
63(7):168, 2024.

[6] R. Danchin. Poches de tourbillon visqueuses. C. R. Acad. Sci. Paris Sér. I Math.,
323(2):147–150, 1996.

[7] R. Danchin. Global well-posedness for 2D inhomogeneous viscous flows with rough data
via dynamic interpolation. arXiv preprint arXiv:2404.02541, 2024.

[8] R. Danchin and P. B. Mucha. Incompressible flows with piecewise constant density. Arch.
Ration. Mech. Anal., 207(3):991–1023, 2013.

[9] R. Danchin and P. B. Mucha. The incompressible Navier-Stokes equations in vacuum.
Comm. Pure Appl. Math, 72(7):1351–1385, 2019.

[10] R. Danchin and P. B. Mucha. Compressible Navier-Stokes equations with ripped density.
Communications on Pure and Applied Mathematics, 76(11):3437–3492, 2023.

[11] R. Danchin and S. Wang. Global unique solutions for the inhomogeneous Navier-Stokes
equations with only bounded density, in critical regularity spaces. Communications in
Mathematical Physics, 399(3):1647–1688, 2023.

[12] L. De Rosa, M. Inversi, and G. Stefani. Weak-strong uniqueness and vanishing viscosity for
incompressible Euler equations in exponential spaces. J. Differential Equations, 366:833–
861, 2023.

[13] B. Desjardins. Global existence results for the incompressible density-dependent Navier-
Stokes equations in the whole space. Differential and Integral Equations, 10(3):587 – 598,
1997.

[14] B. Desjardins. Regularity of weak solutions of the compressible isentropic Navier-Stokes
equations. Comm. Partial Differential Equations, 22(5-6):977–1008, 1997.

[15] L. Fusi, A. Farina, and G. Saccomandi. Linear stability analysis of the Poiseuille flow of
a stratified non-Newtonian suspension: Application to microcirculation. Journal of Non-
Newtonian Fluid Mechanics, 287:104464, 2021.

[16] D. Hoff. Uniqueness of weak solutions of the Navier–Stokes equations of multidimensional,
compressible flow. SIAM journal on mathematical analysis, 37(6):1742–1760, 2006.

[17] A. V. Kazhikhov. Solvability of the initial and boundary-value problem for the equations
of motions of an inhomogeneous viscous incompressible fluid. In Doklady Akademii Nauk,
volume 216, pages 1008–1010. Russian Academy of Sciences, 1974.

25



[18] H. Kozono and Y. Taniuchi. Limiting case of the Sobolev inequality in BMO, with appli-
cation to the Euler equations. Comm. Math. Phys., 214(1):191–200, 2000.

[19] O. A. Ladyzhenskaya. Solution “in the large” of the nonstationary boundary value problem
for the Navier-Stokes system with two space variables. Comm. Pure Appl. Math., 12:427—
-433, 1959.

[20] O. A. Ladyzhenskaya and V. A. Solonnikov. Unique solvability of an initial-and boundary-
value problem for viscous incompressible nonhomogeneous fluids. Journal of Soviet Math-
ematics, 9:697–749, 1978.

[21] J. Leray. Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta mathematica,
63:193–248, 1934.
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