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Abstract. To represent finite sets of integers on an interval 0..n, Briggs
and Torczon studied a very simple data structure in 1993, called sparse
sets. With this representation, initialization, membership test, insertion
and deletion of an element are O(1) operations. This data structure is
often used in compilers to allocate registers or to represent the objects
in a video game. A variant of this data structure is also used in finite
domain constraint solvers to represent the domains of integer variables.
This variant makes it a backtrackable data structure. We have formal-
ized and verified the original data structure and its variant in Why3.
Set operations such as intersection and union are formally verified, even
though they are less commonly used with this representation of sets. To
our knowledge this is the first formal verification of the backtrackable
variant of sparse sets used as domains.

1 Introduction

Sets are seldom primitive objects in programming languages or specification for-
malisms. There are such objects in the old programming language Setl [18] or the
logic programming language {log} [8] and also in the formal languages B [1] or
Event-B [2] and TLA+ [12]. More usually, they are available as implementations
in libraries, based on underlying data structures such as sorted lists, red-black
trees, AVL trees, B trees, skiplists, etc. In this paper, we focus on sparse sets,
studied by Briggs and Torczon [4] in 1993, also appearing as an exercise in the
famous book ”The Design and Analysis of Computer Algorithms” written by
Aho and Hopcroft [3]. This data structure dates back to computer folklore, it
is used in different applications like register allocation, video game, constraint
solving. With this mutable representation based on arrays and simple manipu-
lations, initialization, membership test, insertion and deletion of an element are
O(1) operations. Many implementations exist on the web, in several languages,
e.g. Java, C++, C, Rust.

Sparse sets appear as a benchmark (Constant-time sparse array) of VACID-0,
a suite of benchmark verification problems proposed in 2010 [15]. The sparse
sets data structure as described by Briggs and Torczon is a particular case of
the latter in which there is one less indirection. A solution1 where 3 operations

1 available at https://toccata.gitlabpages.inria.fr/toccata/gallery/
vacid_0_sparse_array.en.html
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(membership, add and remove) are implemented, has been given using Why3 by
Filliâtre and Paskevich.

Sparse sets are also used in constraint solvers as an alternative to range
sequences or bit vectors for implementing domains of integer variables [13] which
are nothing else than mathematical finite sets of integers. Sparse sets as domains
are slightly different from sparse sets introduced by Briggs and Torczon making
them very easy to store and restore when backtracking for finding solutions.

Our main contribution is a formally verified implementation of sparse sets
as domains and its various operations, developed with the deductive verifica-
tion tool Why3 [10], extracted in OCaml. In addition to classical set operations
(test membership, remove, etc.), we specify and verify an operation that allows
the user to undo some operations very easily (in one simple assignment). This
contribution brings some more confidence in the data structures used in con-
straint solvers, as it has been done by Ledein and Dubois [14] for the traditional
implementation of domains as range sequences.

In [7], Cristiá and the author have formalized this sparse set as domain
variant and verified three simple operations (remove, bind and membership) in
three formalisms, Why3, EventB and {log}. However they do not address the
verification of the backtrackable dimension and in particular the undo operation.

The article is structured as follows. In Section 2 we give an informal overview
of sparse sets. In Section 3, we briefly introduce Why3 and WhyML. In Sec-
tion 4, we detail our WhyML implementation of sparse sets following Briggs and
Torczon and discuss its deductive verification. In Section 5, we introduce the
modifications to the previous data structure when it is used to represent the
domain of integer variables in constraint solvers. Then, in Section 6, we present
the WhyML formalization of this backtrakable variant by focusing mainly on
the additional artefacts we used to verify the undo operation. Section 7 presents
some experimentations performed on the OCaml code extracted from our mod-
els. Finally we conclude and present some future work.

All the code described in this paper is available on https://gitlab.com/
cdubois/why3_sparsesets.

2 Sparse sets

Sparse sets are used to represent subsets of natural numbers up to N − 1, where
N is any non-zero natural number. The range 0..N − 1 is called the universe of
the sparse set in the following. A sparse set D is represented by two arrays of
length N called Dense and Sparse, and a natural number sizeD2. The current
elements of the finite set are those in Dense[0, sizeD − 1] — let us call this
subarray the effective part —, the rest of the array being garbage. The array
Sparse maps any value v ∈ [0, N − 1] to an index indv in Dense or is not
initialized. Thus, for the current elements v of the set, Sparse[v] has a value i

2 The name of this data structure may be explained by the fact that the Sparse array
may have holes whereas the Dense array is more compact.

https://gitlab.com/cdubois/why3_sparsesets
https://gitlab.com/cdubois/why3_sparsesets


in the range [0, sizeD − 1] and Dense[i] is equal to v. If D is empty (resp. the
full set), sizeD is equal to 0 (resp. N).

The two invariants of the data structure representing the set D are as follows:

D ⊆ 0..N − 1 ∧D = {Dense[i] | 0 ≤ i < sizeD} (P1)
v ∈ D ⇐⇒ 0 ≤ Sparse[v] < sizeD ∧Dense[Sparse[v]] = v (P2)

Fig. 1a illustrates this representation. This state has been reached after in-
serting the elements 3, 6, 4, 7, 5 and 8 in the empty set. The blue arrows em-
phasize the invariant P2.
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Fig. 1: Three States of a Sparse Set

Checking if an element v belongs to the sparse set D simply consists in the
evaluation of the expression 0 ≤ Sparse[v] < sizeD && Dense[Sparse[v]] = v.
Removing an element consists in replacing v in Dense with the last element
e of the Dense effective part (e = Dense[sizeD − 1]), decrementing sizeD
and updating Sparse[e]. This operation is illustrated in Fig. 1b: 4 and 7 are
removed in this order from the sparse set represented in Fig. 1a. We can see
two occurrences of both 8 and 5 but their presence in Dense[sizeD..N ] does not
matter.

Inserting an element v is implemented as follows: put v in Dense at the
position sizeD, update Sparse[v] with sizeD and increment sizeD. In Fig. 1c,
0 has been inserted in the sparse set represented in Fig. 1b.

Clearing the sparse set, that is making it represent the empty set, is very
efficient, just set sizeD to 0. The cardinality of a sparse set is exactly the value



of sizeD. All the previous operations are constant-time. Operations like forall,
exists, union, intersection, equality only require to explore the elements in the
effective part of Dense, and are thus in O(sizeD).

3 Why3 and WhyML

Why3 [10] is a platform for deductive program verification that provides a spec-
ification and programming language called WhyML. It relies on external au-
tomated and interactive theorem provers to discharge automatically generated
verification conditions (VC). The SMT provers Alt-ergo, CVC4 and Z3 are used
here. Transformations, aka tactics, are also provided, making Why3 an interac-
tive proof environment. Why3 supports modular verification and includes some
mechanisms for managing modularity, abstraction and genericity [11].

WhyML allows the user to write functional or imperative programs featur-
ing polymorphism, algebraic data types, pattern-matching, exceptions, mutable
variables, arrays, etc. These programs can be specified by using contracts (pre-
and post- conditions) and assertions (e.g. variants, loop invariants). User-defined
types with invariants can be introduced, invariants are verified at the function
call boundaries. Furthermore to prevent logical inconsistencies, Why3 generates
a verification condition to ensure that such a type is inhabited. To help the ver-
ification, a witness can be explicitly given by the user (by clause in Fig. 3). The
old operator can be used inside post-conditions to refer to the value of a term
at the call program point.

In addition, as with other verification tools, ghost code can be used to anno-
tate the source code in order to to make it easier to verify. Ghost code is regular
WhyML code, except that ghost variables or record fields are introduced using
the keyword ghost.

Correct-by-construction OCaml (and, more recently, C) programs can be
automatically extracted from verified WhyML programs. More detail is provided
throughout the paper as necessary.

4 Formal Verification of Sparse Sets

This section deals with the data structure as it is described in Briggs and Tor-
czon’s paper [4]. We provide a WhyML specification and an implementation of
the data structure and its operations.

4.1 Abstract Specification

We start with a high-level module that contains the abstract specification of
type t and operations on that type, where t is the type of subsets of an interval
of natural numbers (beginning at 0 as in [4]). Fig. 2 contains an excerpt of
that module. The type t here is specified as a record with two fields only used
for specification: the size n of the support universe and setD which has to be



understood as the high-level model of the data structure. The fset logical type
constructor is defined in the module set.FsetInt of the standard library. Set
mathematical symbols that appear in the contracts are used here and in the rest
of the paper to denote the mathematical set operations acting on mathematical
sets also defined in the module set.FsetInt. The == infix operator is the
mathematical set equality. The writes clause in a contract indicates that the
corresponding function updates its argument. The operations are implemented in
the refining module that also provides a full definition for the type. We describe
this refining module in the next subsection.

module FiniteNatSet
use int.Int
use set.FsetInt

type t = abstract {n : int ;
mutable setD : fset int ; }

invariant {setD ⊆ (interval 0 n)}

val empty_set (nn : int) : t
requires {0<=nn}
ensures {result.setD = ∅}
ensures {result.n = nn}

val member (v : int) (a : t) : bool
requires {0<=v}
ensures {result = v ∈ a.setD}

val cardinal_sparse (a : t) : int
ensures {result = |a.setD|}

val add (v : int) (a : t) : unit
requires {0<=v<a.n}
ensures {a.setD == (old a.setD) ∪ {v} }
writes {a.setD}

val remove (v : int) (a : t) : unit
requires {0<=v<a.n}
ensures {a.setD == (old a.setD) − {v}}
writes {a.setD}

...

end

Fig. 2: Abstract Specification



4.2 Concrete Implementation

The abstract type t is implemented as the record type tsparse (see Fig.3)
whose fields are the size of the universe n, the two mutable arrays dense and
sparse, the mutable bound sizeD and the ghost mathematical and abstract
model setD. Why3 will generate verification conditions to ensure that the con-
crete implementation respects the abstract specification.

This record type definition is constrained by invariant properties: the length
of both arrays is n which is a positive number, contents are belonging to the
integer range 0..n− 1 (Inv1), sizeD is between 0 and n (Inv2), the two arrays
must be consistent for those elements in the set (Inv3) (P2 in Sect. 2). Fur-
thermore the last property, Inv5, relates the abstract model with the concrete
representation as in the property P1 of Sect. 2.

In [4], Briggs and Torczon emphasize the fact that the two arrays do not
require to be initialized when allocated. In the solution given by Filliâtre and
Paskevich to the formal verification of sparse arrays, the arrays are not initial-
ized too [9]. They specify a non initialized memory with the help of a malloc
function. In our implementation we initialize the arrays dense and sparse
with a negative value (-1) when they are created. We could have reused Filliâtre
and Paskevich’s approach in our formalization, but we did not in order to stay
in line with the variant developed in the next section.

let constant initval : int = -1

predicate dom_ran (a : array int) (n: int) =
0 <= n && a.length = n && forall i. 0<=i<n -> initval<=a[i]< n

type tsparse = { n : int;
mutable dense: array int;
mutable sparse: array int;
mutable sizeD: int;
mutable ghost setD : fset int; }

invariant {
(*Inv1*) dom_ran dense n && dom_ran sparse n &&
(*Inv2*) 0 <= sizeD <= n &&
(*Inv3*) (forall i:int. 0 <= i < sizeD ->

(0 <= dense[i] && sparse[dense[i]] = i)) &&
(*Inv4*) setD ⊆ (interval 0 n) &&.
(*Inv5*) forall x: int. 0<= x < n -> (x ∈ setD <->

(0 <= sparse[x] < sizeD && dense[sparse[x]] = x))
}
by {n = 0; dense = make 0 initval; sparse = make 0 initval;

sizeD = 0; setD = ∅}

Fig. 3: WhyML Type of a Sparse Set



The code of the operations on sparse sets are the straightforward translation
of the algorithms in [4], except for the supplementary ghost code (e.g. the last
statement in remove sparse) which updates the abstract model a.setD. The
deletion operation, named here remove sparse, is shown in Fig. 4.

In addition to the previous constant-time operations, the following functions
have been implemented and verified:

− forall: check if all the elements of the sparse set satisfy a predicate (linear
with respect to the number of elements in a.setD);

− exists: check if one element of the sparse set satisfies a predicate (linear with
respect to the number of elements in a.setD);

− tolist: compute the list of elements (linear with respect to the number of
elements in a.setD);

− filter: remove the elements that do not satisfy a predicate (linear with respect
to the number of elements in a.setD);

− copy: create a copy of a sparse set (linear wrt the number of elements in
a.setD);

− union of 2 sparse sets : create a new sparse set containing the elements of
the 2 arguments (linear wrt the number of elements in each set);

− in place union: update the first argument required to have the largest uni-
verse with the union of the 2 arguments (linear wrt the number of elements
in the second argument);

− intersection of 2 sparse sets: create a new sparse set (linear wrt the number
of the smallest set).

− in place intersection: update the first argument required to have the smallest
universe with the intersection of the 2 arguments (linear wrt the number of
elements in the first argument);

Let us notice that for the filter and in place intersection operations, iteration
and removal are performed at the same time.

The deductive verification of all these operations required to invent and add
some formal annotations such as loop invariants, ghost code and lemma func-
tions. A typical example is the implementation of cardinal sparse shown in
Fig. 4. Its code is very simple since the number of elements in the sparse set a
is exactly a.sizeD but a lemma-function, cardinal sizeD, is used to prove
the function’s contract as a lemma that will be provided to the provers. The
latter states that |a.setD| = a.sizeD by going through the dense array
up to sizeD, collecting and counting its elements. In all the operations or logi-
cal functions that require an iteration on the effective part of the Dense array,
a ghost variable collects the visited elements (and also the elements removed,
e.g. in the in place intersection operation) and allows the computation to be
observed. This makes the WhyML code very verbose3 but it is the prize to pay
to have automatic proofs.

VCs for the functions concern the conformance of the code to the post-
condition and also to the invariant attached to the tsparse type.

3 18 lines of logical code are added to the 8 lines of computational code in the in-place
intersection operation.



let remove_sparse (v : int) (a : tsparse)
requires {0<=v<a.n}
ensures {a.setD == (old a.setD) − {v}}
=
let i = a.sparse[v] in
if 0 <= i < a.sizeD && a.dense[i]=v then
let e = a.dense[a.sizeD - 1] in
a.dense[i] <- e ; a.sparse[e] <- i ;
a.sizeD <- a.sizeD - 1;
a.setD <- a.setD − {v}

(* a lemma function to help the verification *)
let lemma cardinal_sizeD (a : tsparse)
ensures {|a.setD| = a.sizeD}
=
let ghost ref s = FsetInt.empty in
let ghost ref nb = 0 in
for i = 0 to a.sizeD - 1 do
invariant {forall x:int. (exists j. 0<=j<i && x = a.dense[j]) <-> x ∈ s}
invariant {nb = |s| && nb = i}
s <- s ∪ {a.dense[i]};
nb <- nb + 1

done ;
assert {a.setD == s && nb = a.sizeD }

let cardinal_sparse (a : tsparse) : int
ensures {result = |a.setD|}
=
return a.sizeD

Fig. 4: Implementation of Some Sparse Set Operations in WhyML



4.3 Proofs

The proof of all the VCs are done automatically using three automatic provers,
CVC4, Alt-Ergo and Z3, using the strategy Auto Level 24. Statistics per prover,
number of proofs, time (minimum/maximum/average) in seconds, are recorded
in Fig. 5.

Prover nb.proofs min.time(s) max.time(s) av.time(s)

Z3 4.8.9 1 0.06 0.06 0.06
Alt-Ergo 2.5.1 29 0.03 2.12 0.55

CVC4 1.6 276 0.03 1.80 0.15

Fig. 5: Sparse sets - Statistics per Prover: Number of Proofs, Time (minimum/-
maximum/average) in Seconds

4.4 Extraction of OCaml Executable Code

To extract OCaml executable code from this development, we modified the pre-
vious WhyML code to use machine integers instead of mathematical integers.
However mathematical integers are still manipulated in most logical assertions
or ghost code. In our case it requires only syntactical modifications regarding
the type of integer variables and arrays and some insertions of coercions between
machine integers and mathematical integers in the logical assertions. The proofs
remain all automatic.

This data structure is also often proposed as a bounded data structure, in
which the set is constrained to have at most a given cardinality m. We can find
several implementations of this variant on the Web. In that case the length of
the dense array is m. The abstract type t and the concrete type tsparse
are modified to take into account this maximal capacity. Some functions (e.g.
add and union) are also concerned with this limit. This new requirement does
not bring any difficulty for the verification. We have implemented this variant in
WhyML and verified it with Why3. When machine integers are used, the union
function requires an additional pre-condition for not going to an overflow.

5 Backtrackable Sparse Sets as Domains

In this section we focus on a variant of sparse sets used in some constraint solvers
(e.g. MiniCP [16], OsCaR [17]) to represent the domain of an integer variable,
i.e. the finite set of possible values for that variable [13]. In such a context,
to find a solution to a collection of constraints on some variables, or to show
that the problem is unsatisfiable, the use case is as follows: for a variable X,

4 and only one assertion in the lemma function about the cardinality.



initialize Domain(X) = 0..N − 1, for some N , then propagate constraints to
prune Domain(X), then set Domain(X) to a singleton containing a value of
the pruned domain, propagate again, etc., backtrack if necessary. Thus, once
the domain is initialized, there is no need to add any value, only deletions are
performed. The advantage of sparse sets, as we have seen, is that membership
and deletion operations can be performed in constant time. Furthermore, with
a simple variation, these data structures are easy to restore when exploring
solutions in an imperative setting, making backtracking cheap. Even if they are
not used in constraint solving, we keep in our verified implementation the add
and union operations but we will have to take care of the fact that they break
reversibility. In the rest of the paper, to refer to this variant, we sometimes use
the expression sparse sets as domains or shortly domains.

In this variant, the property P2 is enforced for every value in Dense (not only
in Dense[0..sizeD − 1]): Sparse[Dense[i]] = i for all i ∈ 0..N − 1, called now
P ′2. Checking the membership of value v becomes trivial: just check Sparse[v] <
sizeD. Removing an element v now consists of swapping v with the last element
in Dense, decrementing sizeD and also updating Sparse. An example is shown
in Fig. 6. As pointed out in [13], the values in dense[sizeD..N − 1] are not
changed by any operation, in particular by a deletion. Let us call this property
P3. This property can easily be added as an additional post-condition of the
remove operation. The other operations remain the same (even if add and union
are not used in constraint solving). We introduce a new function bind, which
takes an argument v and reduces the set to the singleton {v}. It is useful in
the context of constraint solving, to bind the value of a variable when exploring
the search space. Its behaviour is very similar to remove: v is swapped with
the last element in sparse, dense is updated accordingly, and sizeD is set to 1.
Illustrations are given in Fig. 6.

3 6 5 2 1 7 0 4 8

0 1 2 3 4 5 6 7 8
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N = 9

D
sizeD = 6

6 4 3 0 7 2 1 5 8Sparse
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3 6 5 2 7 1 0 4 8

0 1 2 3 4 5 6 7 8
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D
sizeD = 5
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0 1 2 3 4 5 6 7 8

(b) remove 1

Fig. 6: A sparse set as Domain and a Deletion

Sparse sets in this variant are now easily backtrackable (or reversible), the
only element to be stored and restored being the value of sizeD. Fig. 7 illustrates
this with a simple example. Let a be the sparse set in Fig. 7a denoting the set
D0. We store the current value of sizeD, which is 6. Then we remove 1, 6 and
3 from a, whose resulting value is described on Fig. 7b. To restore the initial



situation, it is sufficient to set sizeD to the value previously stored, i.e. 6, see
Fig.7c. We recover exactly the same mathematical set of elements, even if the
values of the two arrays are different from the value in Fig. 7a. The behaviour
is the same when backtracking after a bind operation, a clear operation or
a destructive intersection operation, or a combination of all of these. However
insertion and destructive union operations break this possibility, we keep them
in our formalization but after their use, all checkpoint information is lost. We
introduce the operation undo to come back to a previously reached situation,
characterized by the value p of sizeD. Its algorithmic content is very simple, i.e.
set sizeD to p but its specification requires more work and it will affect all the
operations since new invariants will be needed. The main idea is to keep, for a
domain, the collection of all previous states to which we can go back.

3 6 5 2 1 7 0 4 8
Dense

D0

sizeD = 6

6 4 3 0 7 2 1 5 8
Sparse

(a) Save

2 7 5 3 6 1 0 4 8
Dense

D1

sizeD = 3

6 5 0 3 7 2 4 1 8
Sparse

(b) After removing 1, 6 et 3

2 7 5 3 6 1 0 4 8
Dense

D2

sizeD = 6

6 5 0 3 7 2 4 1 8
Sparse

(c) Restore (D2 = D0)

Fig. 7: Backtracking on a Sparse Set as Domain

6 Formal Verification of Sparse Sets as Domains

We follow the same approach with an abstract specification and a concrete im-
plementation. To take into account P ′2, we have to change the type invariant
of the tsparse type. To specify undo, the modification is deeper and impacts
both the abstract type t and the concrete type tsparse.

6.1 Abstract Specification

The type definition of the abstract type t is shown on Fig. 8. We introduce
an additional abstract variable, states, of type fmap (fset int), which



stores the different successive states of the set, i.e. the successive mathematical
models. It is defined as a partial function mapping cardinalities of setD to their
corresponding model. For example, if n is 5, starting with the full set, removing
0 and then binding to the singleton containing 2, would result in the partial
function states which maps 5 to the set {0, 1, 2, 3, 4}, 4 to {1, 2, 3, 4} and 1 to
{2} and which is defined nowhere else.

A theory of partial functions is available in the Why3 standard library. It
specifies a partial function as a WhyML total function and a mathematical set
corresponding to its definition domain. Several logical functions and predicates
are provided. For example, the formula mapsto i s f expresses that i is in
the definition domain of the partial function f and relates i with its image s.

Each time an operation that modifies the sparse set, is performed, its current
mathematical model is stored in states: states (|setD|) is then defined
and equal to setD. This is part of the invariant that needs to be preserved. As
said before, backtracking is only possible if elements are only removed from the
sparse set, this implies that states is defined from the maximum cardinality,
i.e. n, to the current cardinality, and that the corresponding images are subsets
of each other. Furthermore, because of the bind operation, we may step from a
cardinality i to 1, which means that the domain of states may not be an inter-
val. The predicate valid states specifies the invariant properties expected of
states. So the abstract type t is modified to take account of this additional
invariant (in Fig. 8, modifications are marked with 2 stars).

Fig. 8 also contains the abstract specification of the undo operation. It takes
an argument that is the cardinality of the set to which to come back. This one
must be greater than the cardinality of the current set and the corresponding
state must have been encountered in the past, so its mathematical model must
have been registered in states. The post-condition specifies that after calling
the operation the current model is the one stored in states(p), and the pre-
vious states have not changed for cardinalities greater than p. The new value of
states has to comply with the valid states invariant property, so states
is not defined anymore for cardinalities smaller than p after the undo operation.
The abstract specification of other operations has to be adapted consequently
(see undo and add in Fig. 8). The additional post-condition of add enforces
that backtracking is no longer possible by restricting the definition domain of
states to the singleton {|a.setD|}.

6.2 Concrete Implementation

The tsparse type is adapted in the same way as the abstract type t (see
Fig. 9). An additional ghost variable states is introduced and constrained
according to the valid states property. Furthermore a new property, Inv7,
makes the connection between states and sparse: if s is the mathematical
set registered in states for i, then its elements are exactly those that are in
dense[0..i]. Again as a property in the type invariant, it must be preserved by
any operation modifying an argument of type tsparse. Furthermore Inv3 is



predicate valid_states (states : fmap int (fset int) (setD : fset int) (n : int) =
-- domain of states is included in 0..n

(dom states) ⊆ (interval |setD| (n+1)) &&
-- current state is registered

mapsto |setD| setD states &&
-- each registered state contains the current one

forall i:int, s : fset int. mapsto i s states ->
s ⊆ (interval 0 n) && |setD| = i && setD ⊆ s

type t = abstract {n : int ; mutable setD : fset int ;
mutable states: fmap int (fset int); (* *)

}
invariant {setD ⊆ (interval 0 n) &&

valid_states states setD n} (* *))

val remove (v : int) (a : t) : unit
requires {0<=v<a.n && v ∈ a.setD}
ensures {a.setD == remove v (old a.setD)}
ensures {forall i. 0 <= i <= a.n -> i 6= |a.setD| ->

(mapsto i x a.states <-> mapsto i x (old a).states)} (* *)

val add (v : int) (a : t) : unit
requires {0<=v<a.n && v /∈ a.setD}
ensures {a.setD == add v (old a.setD)}
ensures {dom a.states = {|a.setD|}} (* *))

val undo (a : t) (p : int) : unit
requires {|a.setD| < p <= a.n}
requires {p ∈ (dom states)}
writes {a.setD, a.states}
ensures {exists s. mapsto p s (old a).states && a.setD == s}
ensures {forall i. p < i <= a.n ->

(mapsto i v a.states <-> mapsto i v (old a).states)}

Fig. 8: Abstract Type t and undo Abstract Specification



modified to take into account that dense and sparse are now inverse and Inv5
is simplified.

The code of the undo operation is shown in Fig. 9. Its contract is similar to
that of the abstract specification. Its computational part is only the last state-
ment, the rest is some ghost code to update the model (a.setD and a.states).
In particular, to maintain the invariant, all states between a.sizeD and p
are deleted in a.states, thanks to the remove set from domain operation
which removes from the definition domain of a partial function all the elements
of its first argument. The operations for removing and inserting an element are
also illustrated in that figure. The computational part is composed of the two
first statements. Besides the modification of the a.setD ghost model, the ghost
code updates the a.states partial function: the former operation just stores
the current state while the latter also erases all the previous stored models.

6.3 Proofs

The proof of all the VCs are done automatically using three automatic provers,
CVC4 and Alt-Ergo using the strategy Auto Level 2. Statistics per prover, num-
ber of proofs, time (minimum/maximum/average) in seconds, are recorded in
Fig. 10.

6.4 Extraction of OCaml Executable Code

OCaml executable code has been extracted. Again the previous implementation
of sparse sets as domains has been modified to deal with machine integers without
any difficulty. Proofs are still automatic.

6.5 A Formally Verified Defensive Implementation of Sparse Sets
as Domains

Let us look at the test function written in WhyML in Fig. 11. The last statement
is incorrect since we want to go back to a non-existing previous state. In Why3,
when a call to a function is performed, we have to prove that each pre-condition
is satisfied. So we need to prove that 2 is in the domain of states, which is not
the case here. However, when using the extracted code on the same program,
the invariant is broken. A solution to this problem consists in making the undo
operation more defensive by testing if its argument refers to a correct state. It
implies to keep track of the domain of states in the executable code. For this
purpose, we propose to implement the bound sizeD by a reversible integer, i.e.
a structure containing the current value of the bound and a list of its previous
values. This proposition is inspired by the Java implementation of reversible
integers in MiniCP[16].

The rint type of reversible integers is defined in Fig. 12. The list of previous
values, back, is sorted in increasing order and has no duplicates. So each time an
element is removed from the sparse set as domain, the current value in sizeD is



type tsparse = { n : int;
mutable dense: array int;
mutable sparse: array int;
mutable sizeD: int;
mutable ghost setD: fset int;
mutable ghost states: fmap (fset int); (* *)
}

invariant {
(*Inv1 *) dom_ran dense n && dom_ran sparse n &&
(*Inv2 *) 0 <= sizeD <= n &&
(*Inv3’ *) (forall i:int. 0 <= i < sizeD && 0<=v<n->

(dense[i]=v <-> sparse[v]=i))
(*Inv4 *) setD ⊆ (interval 0 n) &&.
(*Inv5’ *) (forall x: int. 0<= x < n ->

(x ∈ setD <-> sparse[x] < sizeD)) &&
(*Inv6 *) valid_states states setD n &&. (* *)
(*Inv7 *) (forall i, s. 0<=i<=n -> states i = s ->

(forall x. 0<=x<n -> (sparse[x]<i <-> mem x s))) (* *)
}
by ...

let undo_sparse (a : tsparse) (p : int) : unit
...
=
let ghost v = fmap_apply a.states p in
a.setD <- v ;
a.states <- remove_set_from_domain (interval 0 p) a.states;
a.sizeD <- p

let remove_sparse (v : int) (a : tsparse)
...
=
swap_two_arrays a.dense a.sparse a.n a.sparse[v] (a.sizeD - 1);
a.sizeD <- a.sizeD - 1;
a.setD <- remove v a.setD;
a.states <- fmap_add a.sizeD a.setD a.states (* *)

let add_sparse (v : int) (a : tsparse)
...
=
swap_two_arrays a.dense a.sparse a.n a.sparse[v] a.sizeD;
a.sizeD <- a.sizeD + 1;
a.setD <- add v a.setD;
a.states <- fmap_add a.sizeD a.setD fmap_empty (* *)

Fig. 9: Concrete Implementation of Domains



Prover nb.proofs min.time(s) max.time(s) av.time(s)

Z3 4.8.9 39 0.02 0.96 0.08
Alt-Ergo 2.5.1 115 0.01 3.74 0.22

CVC4 1.6 216 0.04 1.07 0.15

Fig. 10: Statistics per prover: number of proofs, time (minimum/maximum/av-
erage) in seconds

let test () : unit =
let a = full_sparse(8) in
remove_sparse 0 a; remove_sparse 6 a;
remove_sparse 1 a; remove_sparse 4 a;
remove_sparse 2 a;
bind_sparse a 5;
assert {2 /∈ (dom states)}; assertion: proved
undo_sparse a 2 pre-condition: proof failed

Fig. 11: An Incorrect Program in WhyML

pushed in the back list and value is decreased. Each time an element is added,
back becomes empty and the value is increased. When undo p is performed,
the operation first searches p in back and removes all the values until p in this
list before assigning p as the new value of sizeD. In fact the two first actions
are done simultaneously, raising an exception if p is not a correct argument.

type rint = { mutable value : int;
mutable back : list int;

}
invariant { sorted back && distinct back &&

forall n. mem n back -> value < n }

Fig. 12: WhyML Implementation of Reversible Integers

The WhyML code of the abstract and concrete modules for sparse sets as
domains are modified to use reversible integers. To ensure consistency between
sizeD and states, we add the following property in the invariant of the types
t and tsparse :

forall x. (x = sizeD.value || mem x sizeD.back) <-> x ∈ dom states

Proofs of VCs remain automatic.



7 Some Experimentations

OCaml code was extracted from the WhyML models (using machine integers)
of all the variants we have developed. We implemented a naive implementation
of the Erathosthenes Sieve algorithm following a Web article5 presenting sparse
set implementations in C++, using the OCaml extracted code of four variants
of sparse sets: sparse sets à la Briggs and Torczon with and without limited
capacity, sparse sets as domains with bounds implemented as simple integer
numbers and sparse sets as domains with bounds implemented as reversible
integers. We also implemented this algorithm using the OCaml standard library
module Set and an implementation of sets as hash tables6.

This algorithm performs many insertions, deletions, membership tests and a
final call to the operation that computes the cardinality of the sparse set that,
at the end, contains the prime numbers up to P , the parameter of the algorithm.
In our experimentation whose results are shown on Fig. 13, P varies from one
hundred to one million. On the x-axis are the execution times in seconds and on
the y-axis the values of P .

On this example sparse sets in their four versions outperform the two set
other representations but it is a bit unfair since we are comparing a mutable
representation with functional ones. Regarding the four variants, they are equiv-
alent. Maintaining the links for removed elements do not impact significantly
the execution time, the same remark applies for using reversible integers.

Our extracted code of sparse sets as domains (with bounds implemented as
simple integer numbers and with bounds implemented as reversible integers) has
been used with a simple sudoku solver originally written in OCaml by Filliâtre7.
That example intensively uses backtracking and thus the undo operation. It has
been evaluated on a large number of sudoku puzzles.

8 Conclusion

In this paper we presented the formal Why3 development for sparse sets and
for sparse sets as domains used in constraint solvers. The former refines and
extends a partial solution for a more general data structure, sparse arrays, done
by Filliâtre and Paskevich some years ago. The latter is a variant of the former,
but as far as we know it is the first formalization of this backtrackable data
structure that allows the representation of domains of integer variables. We have
extracted efficient OCaml code from these formally verified models, which we
have experimented on simple test cases, the Erathosthenes Sieve algorithm and
a naive sudoku solver. One perspective of this work is the extraction of C code.

5 https://www.codeproject.com/Articles/859324/
Fast-Implementations-of-Sparse-Sets-in-Cplusplus

6 https://github.com/backtracking/hashset
7 https://github.com/backtracking/ocaml-bazaar/blob/main/sudoku.
ml

https://www.codeproject.com/Articles/859324/Fast-Implementations-of-Sparse-Sets-in-Cplusplus
https://www.codeproject.com/Articles/859324/Fast-Implementations-of-Sparse-Sets-in-Cplusplus
https://github.com/backtracking/hashset
https://github.com/backtracking/ocaml-bazaar/blob/main/sudoku.ml
https://github.com/backtracking/ocaml-bazaar/blob/main/sudoku.ml


Fig. 13: Comparison of Execution Times on a Naive Implementation of Erathos-
thenes Sieve Algorithm

The technique used to be able to specify and prove the undo operation has
implications for the whole formal development. It allows the use of WhyML and
the deductive verification engine of Why3 to prove a property that involves more
than a pre- and a post- state, and is close to a dynamic or temporal property.

In the case of very sparse sets or domains, using an array to implement the
sparse structure is not optimal in terms of memory space. The data structure
could be made more interesting by using another fast access structure, e.g. a
hashmap (idea also suggested in [13]). So we could also suggest extending our
current work to use such an alternative. It would be more interesting to make this
sparse structure a generic parameter of the formalization in order to choose
the right implementation à la carte.

As future work, we would also like to integrate sparse sets as domains in a
finite domain constraint solver, e.g. in CoqBinFD, a formally verified constraint
solver formally verified in Coq [6] or in FaCile, an OCaml constraint library [5].
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