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Abstract: The development of positioning systems has been significantly advanced by a combination
of technological innovations, such as improved sensors, signal processing, and computational power,
alongside inspiration drawn from biological mechanisms. Although vision is the main means for
positioning oneself—or elements relative to oneself—in the environment, other sensory mediums pro-
vide additional information, and may even take over when visibility is lacking, such as in the dark or
in troubled waters. In particular, the auditory system in mammals greatly contributes to determining
the location of sound sources, as well as navigating or identifying objects’ texture and shape, when
combined with echolocation behavior. Taking further inspiration from the neuronal processing in the
brain, neuromorphic computing has been studied in the context of sound source localization and
echolocation-based navigation, which aim at better understanding biological processes or reaching
state-of-the-art performances in energy efficiency through the use of spike encoding. This paper sets
out a review of these neuromorphic sound source localization, sonar- and radar-based navigation
systems, from their earliest appearance to the latest published works. Current trends and possible
future directions within this scope are discussed.

Keywords: sound source localization; echolocation; neuromorphic computing; spiking neural
networks; bioinspiration

1. Introduction

From the earliest times, we have always taken inspiration from nature and living
beings. The complexity of biological systems has never ceased to be a source of amazement
and currently drives many research domains thanks to its efficiency in completing tasks in
ideal or challenging conditions.

Bioinspiration can take place at different levels, such as the extraction of data issued
from sensors, data encoding, and data processing, but also in a more general approach, in
relation to behavioral patterns that an individual may express in a group or in interaction
with its environment. Depending on the approach chosen for the creation of a system or
subsystem, the design can be completely biomimetic and even bioplausible—as is mostly
seen with work derived from neuroscience studies and in the context of biological systems
assessments—or, on the contrary, lightly/partially inspired by a biological process or
functional aspect. Although originating from an inspiration from biology, it sometimes
becomes so negligible or diluted that it is no longer mentioned.

One particular branch of bioinspiration is neuromorphic engineering, which is inspired
by the neuronal processing of information in the brain where the computing units of the
devices are artificial neurons, connected by artificial synapses acting as memory units
that weight the impact of a neuron’s output to another neuron, and which use spikes as
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a common encoding of all sensor modalities. All sentient beings share the use of action
potentials, also called spikes, as a key mechanism for encoding and transmitting neuronal
information. The nervous system employs a diverse array of methods to encode and process
information, but spikes are crucial and ubiquitous. They are sparse and asynchronous
events in continuous time, and hold the information temporally and spatially. Several
coding schemes allow the information issued from sensors to be processed by networks of
neurons and interpreted at higher levels of abstraction.

Neuromorphic technologies were initially explored in artificial vision and created
great enthusiasm that spread to other applications. Spike encoding has recently been the
focus of artificial intelligence research for tasks such as image classification [1], speech
recognition [2,3], tactile sensing [4,5], or motor control [6], but also object localization [7]
and autonomous navigation [8]. Vision is the main means for object detection, but also
navigation and mapping, through contour, depth, and motion detection. Several recent
surveys have already been published on neuromorphic systems or technologies in the
context of positioning and navigation for mobile robots [9,10]; vision-based works, in
particular, have been extensively reviewed [11].

Despite being the main contributor, vision is not the only bioinspired means that
makes it possible to understand of an environment and the subjects it includes. Hearing
also provides non-negligeable cues for scene analysis. Noisy subjects are largely present in
the environment, sometimes picking up on events that vision failed to identify. Further-
more, sound sources can be localized with the help of paired sound collectors like ears.
Some animals even use echolocation with the ultrasonic sounds they emit for hunting or
navigating in their environment. This behavior, naturally observed in wildlife, has been
an inspiration for techniques employed by sonars and radars. However, the processing in
modern sonar or radar-based systems differs from the physiological model of echoloca-
tion. It has not been long since neuromorphic technology begun to be used for the signal
processing involved in localization.

Neuromorphic positioning and navigation systems relying on the auditory system
have not yet been detailed in depth, also because the applications and reported perfor-
mances are more limited than vision-based systems. In this context, this survey focuses
on neuromorphic spiking systems for acoustic source localization and echolocation-based
navigation. Its contribution within this scope, which no previous survey has provided,
is threefold:

• It provides an exhaustive review of the literature, starting from the earliest works reported;
• Precision and energy efficiency performances are identified and summarized;
• The latest advances are investigated, and the relevance of bioinspired approaches

are assessed.

The organization of this paper is as follows: firstly, neuromorphic technology and
computing are introduced, focusing especially on the core use of this technology, namely
spiking neural networks (SNNs). The fundamental mechanisms of auditory localiza-
tion are then described, with reference to the mammalian system, and an overview of
the underlying neuronal processing is provided. Moreover, artificial bioinspired and/or
neuromorphic elements used for modeling of the auditory system are introduced. The
neuromorphic sound source localization (SSL) systems are reviewed, categorized by their
focus on interaural time and/or level differences that are key binaural cues for localization.
Then, an explanation of the echolocation principle is provided, followed by a review of
sonar and radar-based neuromorphic navigation systems along with a description of the
standard sound and radio ranging technologies. Finally, the overall bioinspiration level,
methods, and performances of the reviewed papers are discussed in order also to assess
future directions.

2. Neuromorphic Technology

Building on principles of neural information processing, neuromorphic technology
represents a paradigm shift from traditional computing architectures such as von Neumann
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or Harvard [12]. Unlike these conventional systems, which separate memory and process-
ing units and rely on sequential operations, neuromorphic systems integrate memory and
asynchronous processing in a highly parallel, event-driven manner.

Given the growing interest in event-driven computing, large-scale neuromorphic archi-
tectures have been developed for the implementation of SNNs on programmable chips [13].
Commissioned by the Human Brain Project, BrainScaleS [14], and SpiNNaker [15] ac-
celerators were designed for neuroscience simulations. Industries have also developed
neuromorphic digital chips, including TrueNorth by IBM [16] and Loihi by Intel [17], with
the aim of commercializing the technology. Moreover, ongoing research is being conducted
to design analog synaptic and neuron arrays with memristive devices, such as memristor-
or resistive random-access memory (RRAM)-based arrays [18,19]. Novel photonics compo-
nents have opened the path for the creation of neuromorphic photonic accelerators, which
are still in the early stages of development.

Concurrently, software frameworks were developed that enabled the simulation of
complex bioplausible SNNs or completed existing deep learning coding libraries to process
spikes [13]. These tools greatly contributed to the creation of new learning rules or network
architectures that are either inspired by biology or conventional deep learning.

Spiking Neural Networks

SNNs revolve around the use of spikes to encode, process, and decode the information,
initially introduced for the study of neural systems and the underlying learning mechanisms
in the brain. As in biology, populations of neurons are connected by synapses to form neural
networks. Unlike conventional artificial neural networks (ANNs) that only implement the
concept of neuron weighted integration, SNNs fully reproduce the asynchronous event-
based processing of biological neurons, more or less plausible from a biological standpoint
depending on the complexity of the artificial neuron model.

Neurons generate a spike when their membrane voltage reaches a certain threshold
by temporally and spatially integrating input currents. Inputs may be any stimulus, like
the output of a sensor or spikes from other neurons. Figure 1 schematizes the integration of
spike inputs into a neuron. The most common neuron model is the leaky integrate-and-fire
(LIF) model, which implements the key dynamics of biological neurons with a simple
mathematical formalism. Depending on the task and network architectures, different
coding schemes have been studied to create suitable representations of the input data in
spikes, categorized mainly in rate coding, which could be count or population rate coding,
and temporal coding, like time-to-first-spike, burst, or phase coding [20].
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havior, that is, a slow decrease over time of the membrane potential Vpre0, Vpre1, or Vpost, towards 
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Figure 1. Spike generation at a post-synaptic neuron from two pre-synaptic neurons with leaky
behavior, that is, a slow decrease over time of the membrane potential Vpre0, Vpre1, or Vpost, towards
its rest potential Vrest. Upon reaching some threshold potential Vth, the membrane generates a spike
resulting from the continuous spatial and temporal integration of pre-synaptic spikes.

In the context of robotics, mobile devices, or more generally of embedded electronics,
computational load and resources are limited. Although every task has the objective of
reaching the highest accuracies, today the emphasis is on energy efficiency and power
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consumption. Extensive research on SSL and echo-based navigation enhanced by deep
learning has been conducted, but without strong constraints on power consumption.
Conversely, local memory units and the sparsity of event-based processing in spiking
systems allow for great energy efficiency.

SNNs have yet to reach the high accuracies observed with ANNs, but the field is still
growing. Research on learning schemes for the efficient training of SNNs has been con-
ducted, at first using Hebb’s postulate on synaptic plasticity and based on causality of firing
between two neurons, then later by adapting principles used in conventional ANNs [21,22].
The most commonly used schemes are spike timing-dependent plasticity-based learning
schemes, a well-studied Hebbian unsupervised rule [23], and backpropagation of gradients
by approximation of the spikes (undifferentiability of firing) for supervised training [24].

Spiking network architectures also evolved by taking direct inspiration from neurolog-
ical observations, including several common deep learning topologies such as recurrent and
convolutional networks that were initially bioinspired. Stronger plausibility is naturally
observed in SNNs that use the asynchronous processing and temporality of spikes. Liquid-
state machines (LSM) [25] or winner-take-all (WTA) layers [26] found in the literature,
for example, were first studied from a biological perspective and then used in artificial
intelligence. LSM, a method of reservoir computing shown in Figure 2, takes advantage of
the excitation and inhibition dynamics of synapses by creating random connections in a
population of neurons to produce complex spiking patterns, which can be further enhanced
by adding delay-lines or connecting populations with different dynamics. Relying on
lateral inhibition, WTA is also vastly used to limit spiking activity or for decision making by
creating single neuron activations. Two possible architectures are depicted in Figure 3a,b,
where inhibition is performed by one global neuron or with the same number of neurons
as the layer receiving inhibition.
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Figure 2. Architecture of LSM reservoir networks, with input and output layers of 3 and 4 neurons,
respectively. Neurons chosen as inhibitory are shown as black disks. Excitatory and inhibitory
connections are schematized as triangular and white-filled dot arrows, respectively.
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3. Biological Auditory System

The perception of sounds begins with the intricate working of the ear. In the mam-
malian auditory system [27,28], the ear is divided into the outer ear (or pinna), the middle
ear, and the inner ear. The pinnae and ear canal transform and direct the sound to the
eardrum, which translates sound wave pressure into vibrations, while the middle and inner
ear provide the necessary processing to send various types of information to the brain.

3.1. Binaural and Monaural Cues

The bilateral arrangement of sound collectors is a common trait of vertebrates, with
some variations involving the use of other vibration sensors in insects, arachnids, or marine
animals. The use of paired sound collectors is essential for sound localization and general
perception of a soundscape [29]. The difference in waveforms received at the two collectors
of a binaural pair results in major interaural cues [30]. Among them, the most used are
described below.

Interaural Time Difference (ITD). Having a binaural pair of sound collectors induces
a difference in time of arrival when a sound is perceived, and greatly contributes to the
localization of its source. It is maximal when the source is located at either side of the bin-
aural pair, on the interaural axis (frontal plane), and null perpendicular to this axis (sagittal
plane), so in front or back equidistant to the two collectors. The ITD perceived differs
depending on the interaural distance, or baseline (distance between two sound collectors),
which creates a maximum ITD. The smaller the baseline, the higher the frequency at which
the ITD is non-ambiguous. In fact, when locating a source from a continuous sound, the
ITD is determined by the interaural phase difference thanks to the phase-locked response
of the auditory nerve fibers. The ITD can be identified at the onset of sounds knowing
the first wavefront, but lateralization becomes ambiguous in continuous sounds when the
period of the acoustic waves is smaller than the maximum ITD. In humans, this maximum
is around 700 µs, leading to a limitation of the frequency at which the ITD is resolved at
1.5 kHz to 1.6 kHz.

Interaural Level Difference (ILD). Jointly, the difference in sound magnitudes reli-
ably informs on the sound source location above 3 kHz. At lower frequencies, ILDs are
less impacted by head interferences or attenuation from propagation, and become barely
noticeable. Magnitude differences can be expressed as a difference in decibel levels (that is,
ILD), or directly as a difference in intensity, referred to as interaural intensity difference
(IID), which are equivalent to a ratio and a subtraction of sound amplitudes, respectively.
ILDs, or IIDs, are particularly reinforced by the pinnae’s complex shape and the frequency
segmentation by the cochlea, creating monaural spectral cues that play a key role in locating
sounds in 3-dimensions. ITD and ILD cues are illustrated in Figure 4a.
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Spectral notches. The asymmetric shape of the pinna, relative to all anatomical
axis, creates multiple reflections of the direct sound. They interfere constructively or
destructively in the ear canal at specific frequencies, resulting in spectral signatures that are
location-dependent, as shown in Figure 4b. Spectral notches are sharp drops in spectral gain
due to destructive interferences. In particular, when observing the Head-Related Transfer
Function (HRTF) of a human subject, a monotonical variation of the spectral content and
notches between approximately 5 kHz and 9 kHz allows for the discrimination of sound
elevation [31]. Spectral cues created by the pinnae have been artificially reproduced since
they greatly contribute to estimating 3-dimensions positions. In applications for robots, it
is not unusual to mount microphones in artificial human heads or with artificial pinnae.
Not only the pinnae, but also the shape of the head and the torso, contribute to altering the
sounds in a location-dependent manner.

3.2. Cochlea

Spectral notches can be exploited thanks to the cochlea, an organ part of the inner
ear that plays a crucial role in enabling our ability to localize and interpret sounds in our
environment by converting sound waves into nerve signals [28].

Composed of a canal in which pressure waves travel, it operates like a cascading filter
bank with a band-pass response due to its spiral shape. The varying width and stiffness
of the membrane within the canal causes its different regions to resonate at different
frequencies, with a spatial arrangement following a tonotopic and logarithmic organization.
Hair cells along the membrane move in synchrony with the traveling waves, creating a
mechanoelectrical transduction from movement to spikes by opening/closing ionic gates.
In other words, the cochlea performs a high-resolution frequency segmentation where each
spectral component is encoded into spikes for further processing by the brain.

Several cochlea models were described with mathematical formalism, such as Lyon’s
model [32] or Zilany’s model [33], and neuromorphic artificial cochleae were introduced,
such as AEREAR(2) [34,35] and NAS [36,37]. A reproduction of the processing in the
cochlea is commonly performed following Lyon’s model, which can be simplified as a bank
of cascading band-pass filters (or parallel like in [38]), half-wave rectification, and suited
spike encoding, as schematized in Figure 5.
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Figure 5. Simplified processing performed by artificial cochleae. Input sounds are amplified to a
suitable amplitude, filtered, and half-wave rectified to be encoded by neurons into spikes.

3.3. Neuronal Processing

While the cochlea provides the encoding into spikes of the sounds, several neuron
populations are responsible for the extraction and integration of the interaural cues for
final assessment of the source’s position. Although still under investigation, a detailed
organization of these populations in the mammalian auditory system has been refined over
the years and many bioinspired works are based on this.

The main contributors for the extraction of sound localization cues are located in the
superior olivary complex neuron population. It can be decomposed into the medial superior
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olive (MSO) and the lateral superior olive (LSO), which both contribute to identifying the
direction of arrival of sound sources at different frequency ranges [28].

The MSO extracts ITDs by means of delay-lines and coincidence detections. A simpli-
fied model of the MSO was introduced by Jeffress [39], which is represented in Figure 6.
Delay-lines propagating spikes issued from the two ears are connected to a population
of neurons, such that only one neuron activates for a given ITD. They are considered
coincidence detectors because a spike is generated only when they receive simultaneous
excitation from both ears. Each coincidence detection neuron is tuned for a specific ITD.
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The LSO provides a spiking rate reflecting the IID or ILD by balancing excitation and
inhibition between the two ears.

Finally, outputs from the superior olivary complex are integrated into a neuron popu-
lation called inferior colliculus (IC) for sound localization with other neuronal information,
like the response of neurons particularly sensitive to spectral notches or feedback from the
auditory cortex.

4. Neuromorphic Sound Source Localization

The localization of objects using the acoustic signals they emit is more commonly
referred to as sound source localization. This task of pinpointing the origin of a sound
within an environment plays a major role in positioning and navigation systems. Whether
for autonomous robots, drones, or assistive technologies, the ability to accurately determine
the location of a sound source can significantly enhance situational awareness and decision-
making capabilities. Traditional methods for SSL often involve complex signal-processing
techniques and extensive computational resources, which can pose challenges in real-
time applications and dynamic settings. Neuromorphic computing, inspired by the brain’s
highly efficient and parallel processing abilities, presents a rather novel approach to address
these challenges.

In this section, we review SSL neuromorphic spiking or pulsed systems from their ear-
liest apparitions, in 1989, to the last published works, categorized by the main binaural cues
used for the position or sound’s direction of arrival estimation, namely ITD and/or ILD.

4.1. ITD Only

Being a prominent cue in binaural hearing, ITD provides precise localization cue in the
horizontal plane with low-frequency sounds, making it robust in various listening environments.

With a biomimetic approach, Lazzaro and Mead [40] were the first to build a neuro-
morphic pulse network in the context of SSL in 1989, although no correspondence between
output ITDs and position was studied. The authors built a silicon model of the time-coding
pathway of the owl based on observations in [41], which reproduce the Jeffress model.
Cochleae of 62 channels implemented on integrated circuits were used [42], and channels
were each linked to 170 coincidence detection neurons to constitute an auditory vector of
ITDs with direct correspondence to an azimuthal angle. The ITD was then selected by an
IC-inspired layer using inhibition and in a WTA fashion.
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Then, Horiuchi [43] explored the use of the Jeffress model in a very-large-scale integra-
tion (VLSI) circuit in [40] with 15 coincidence neurons per channel and a cochlea processing
based on threshold zero-crossing. The output pulses of the ITD vector extractor were com-
bined with eye position units to create a retinotopic auditory output vector. The system was
tested with finger snapping sounds at three different angles to show the linear relationship
between the output and both azimuth and eye position. The motivation expressed was
more about the application of neuromorphic technologies to robotics than the explanation
of a biological process.

In 2000, Schauer et al. [38] then further studied the ITD extractor in [40], with slight
modifications and added visual support in order to assess its practical application in
robotics with speech processing. The model was simulated while considering the constraint
of a VLSI design, and tested indoor with speech, pink noise, and moving sound sources.
Unlike Lazzaro and Mead [40], who combined the IC layer and WTA inhibition, here a
separation in different layers resulted in stronger WTA selection.

Following the description made in [44] of nuclei in the auditory system of rabbits,
Voutsas and Adamy [45] designed a neuromorphic SSL system using ITDs. Inspired by
the asymmetrical contributions of ipsilateral and contralateral sides, which are excitatory
and inhibitory, to the MSO from the cochlea outputs, the authors designed a single delay
line coincidence detection model called BiSoLaNN. This model was contrasted with the
Jeffress model that uses two delay-lines to extract ITDs. The resulting neural network was
tuned with an evolutionary algorithm, and tested with a Darmstadt dummy head in an
anechoic chamber. Using frequencies below 1.24 kHz of speech, pure tones, and amplitude
modulated sines, an accuracy of 59% (±30◦) was obtained on the ±105◦ studied angular
range. When reduced to the angular range ±45◦, the accuracy increased to 72.5% (±15◦).

Kugler et al. [46] completed the field-programmable gate array (FPGA) implementa-
tion introduced in [47], which performed simultaneous binaural SSL and classification of
six sound sources with SNNs. A filter bank of band-pass filters was used for frequency
segmentation, and a piecewise linear approximation implemented the hair cells processing
and spike generation. The SSL module extracted the ITD according to the Jeffress model,
where artificial neurons are integrate-and-fire (IF) neurons. The final direction of arrival
was estimated by the average firing rate of output neurons. On ±90◦ of angular range
in a semi-anechoic chamber, average accuracies of 98.4% (±30◦) and 61.4% (±30◦) in az-
imuth were obtained for frequency-modulated noise and an alarm bell sound, respectively,
recorded with a dummy head.

In 2010, Glackin et al. [48] presented an SNN of the MSO from observations in the
cat auditory cortex, and studied it using ear canal recordings of a cat [49]. The bioplau-
sible sound locator was proposed as a neuroscience study with supervised spike timing-
dependent plasticity learning. This study followed Zilany’s cochlea and Jeffress models for
ITD extraction with IF neurons. In between is the particular use of a bushy cell neuron layer,
which converted the phase-locked burst coding in output of the cochlea to single spikes
with LIF neurons and refractory periods. The supervision was performed by excitation
of the correct output neuron when the corresponding input was shown. The output layer
is in fact the coincidence detector IF neurons for which the delayed excitations from the
bushy cells are weighted with the bioinspired learning rule. Finally, the SNN was trained
and evaluated with pure tones experimentally measured in a cat, where 91.82% (±10◦) and
78.64 (±5◦) azimuth estimation accuracies were obtained.

The same year, Chan et al. [50] also reported a neuromorphic ITD-based binaural
SSL system for azimuth estimation mounted on a wheeled robot. The AEREAR cochlea
processed incoming sounds recorded by microphones embedded in a spherical head. A
WTA SNN using the Jeffress model was enhanced with an additional soft-WTA layer,
weakening inhibition to obtain more than one winner, and was evaluated in simulation
with an algorithm implementation. By supervising with a gradient descent weight update,
root mean square errors of 6.05◦ and 4.1◦ for pure tones and noise, respectively, were
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reached on the angular range of 0◦ to 90◦ and considering a theorical angular resolution of
3◦ of the system.

Unlike previous work that used a Jeffress model, Finger and Liu [51] proposed a
spike-based algorithm that computed a running histogram of weighted ITDs in output of
the AEREAR2 cochlea. The weights corresponded to the interspike interval preceding two
paired spikes in order to highlight onsets in continuous localization.

A modified version of the biomimetic SNN incorporating bushy cells in [48] was
evaluated by Wall et al. [52] for application to mobile robotics. It was separated into two
symmetric SNNs to process the two lateral spaces of a ±60◦ angular range, trained with
supervised spike timing-dependent plasticity. No cochlea was used; instead, sounds were
encoded into spike using the Ben’s spiker algorithm from dummy head recordings. The
system with an angular resolution of 20◦ resulted in a 3.8◦ mean absolute error (MAE) for
signals with frequencies around 400 Hz.

In 2012, Chan et al. [53] also further studied their SSL system [50] in a reverberant
environment and with visual feedback from a transient vision sensor for supervised online
learning. After playing pink noise, an azimuth estimation was made, to which the robot
turned. Then, flashing light emitting diodes at the sound source gave the true position, and
the computed localization error was used to update the WTA network’s synaptic weights
through gradient descent. The authors reported 5◦ for pink noise and 4.4◦ for white noise
of root mean square error.

Focusing on hardware implementation, Park et al. [54] developed an ITD extractor
in a VLSI system using AEREAR cochleae for spike encoding. Like most works, it used a
Jeffress model of coincidence detection and delay-lines connected to a multiplexing neuron
layer, and an IC layer. No SSL task was performed although the extractor was introduced
in the context of low power-consuming hearing aids.

Until now, neuromorphic SSL systems were designed for binaural hearing and mostly
using a biomimetic approach. Working on the assumption that with more sensors better
accuracy can be reached, Faraji et al. [55] evaluated with 2 to 8 microphones a WTA
network implemented on FPGA. Acoustic signals were encoded into spikes using a voltage
comparator with adaptive threshold commanded by the spike count, as a way to limit the
spiking activity. It uses the ITD of incoming sounds to estimate the azimuth of its source,
positioned 5 m away on the range of ±90◦, at different signal-to-noise ratios (SNRs). For
an SNR of 10 dB, the localization error went from 3.49◦ MAE to 0.99◦ MAE when using 2
and 4 microphones (1 and 6 ITDs). At 0.5 dB SNR, these values dropped to 5.57◦ MAE and
1.18◦ MAE.

Among neuromorphic SSL systems, Beck et al. [56] proposed an 8-microphone azimuth
estimator taking interesting inspiration from sand scorpions’ processing of vibrations. In
this work, the biological neuronal processing was extended to acoustic signals. In the end, it
still relies, like most works, on time difference but takes advantage of the numerous sensors
mounted in a circular array. The system was tested with a continuous 1 kHz sine wave,
which resulted in a 4.05◦ MAE with 3.01◦ of standard deviation with optimized parameters.

In 2018, Encke and Hemmert [57] reproduced in simulation the auditory system of
gerbils for a detailed study of the influences of neuron populations and ITD sensitivity
to just noticeable differences in timing across the spectrum (below 1 kHz). The SNN was
able to extract small ITDs from speech by linear decoding from firing rates. A comparison
of neuron populations’ firing rate, called opponent-coding mechanism, was investigated
using also an ANN that predicted the ITD.

Without using delay-lines, Luke and McAlpine [58] performed a lateralization task in
noisy conditions by directly feeding cochleae outputs from a binaural pair of microphones
to an SNN. The network was trained with supervision on frequency-modulated band-pass
noise. When tested with added white noise, the lateralization accuracy dropped from 100%
to around 87% at 0 dB SNR. Modifying the frequency of the modulated noise in input
resulted in accuracy of over 95% at a high SNR but dropped below 60% in high noise at
0 dB SNR.
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Schoepe et al. [59] proposed a sound tracking system able to avoid obstacles thanks
to visual feedback. The NAS cochlea and AER DVS128 retina chip were used for spike
encoding and SpiNNaker for neuromorphic processing. In the overall SNN, a Jeffress-like
coincidence detection layer was connected to a WTA subnetwork for ITD-based azimuth
estimation. An integration subnetwork then combined auditory inputs with optical in-
formation. Spike events from the optical flow provided information about close range
obstacles, whereas the SSL subnetwork led the robot to the sound source. The path was
then chosen through concurrent excitation and inhibition in a WTA fashion, meaning only
one direction could be considered. A simulated 500 Hz sound was swept on the ±90◦

angular range 2 m away. Performances were reported as a correlation of 89% between the
resulting head direction and truth source position.

In 2020, a photonic SNN for azimuth detection was implemented by Pan et al. [60] for
the first time, demonstrating feasibility. It consisted of photonic neurons based on excitable
vertical-cavity surface-emitting lasers with embedded saturable absorbers that showed
similar dynamics to LIF neurons. Using 4 neurons and by analyzing the 2-D map of spiking
responses in output, the side from which sounds originated could be identified.

Excellent localization accuracies were reported in Pan et al. [61], who introduced the
multi-tone phase coding encoder, inspired by the Jeffress model of coincidence detection
for ITD extraction. Two SNNs which were not biomimetic and closer to conventional deep
learning architectures, a recurrent SNN, and a convolutional SNN were investigated for
processing the temporal cues. The encoder reported better absolute ITD estimation error
than naive phase coding methods. An array of 4 microphones allowed both the convolution
and the recurrent SNNs to estimate the azimuth of sound sources 1.5 m away with an MAE
below 2◦ on the whole 360◦ range. Training was supervised with continuous surrogate
gradients and backpropagation-through-time for the convolutional and recurrent SNNs,
respectively. The recurrent network performed best in all scenarios and in challenging
conditions (real-world data). The best MAE reported was 1.02◦, which lowered to 1.76◦

MAE at 15 dB SNR and 10.75◦ MAE at 0 dB SNR.
In the context of bioplausible SSL systems, Zhong et al. [62] focused on the devel-

opment of memristor-based oscillation neurons whose spiking activity depended on the
ITD of input sounds. A simulated SNN processed the rate-based output of the oscillation
neurons for azimuth estimation, and was trained with supervision and backpropagation-
through-time. The system obtained 96% (±10◦) accuracy using generated pulse cycles.

In 2023, Chen et al. [63] demonstrated the advantages of hybrid coding schemes
throughout the layers of SNNs for improvements in accuracy. Different combinations of
direct, rate, phase, burst, and time-to-first-spike coding were studied in convolutional SNNs
for pattern recognition and SSL, on which we will focus. By combining the encoder in [61]
at the input layer, burst coding in the hidden layer after ITD extraction, and time-to-first-
spike coding in the output layer for efficient decision making, this study reported greater
accuracies than [61], which introduced the encoder, and which previously held state-of-the-
art SSL precision. The authors reproduced the recurrent SNN from [61], and obtained a
1.48◦ MAE or 94.3% (±5◦), tested on the SLoClas dataset. The convolutional SNN with
hybrid coding, on the other hand, resulted in a 0.60◦ MAE or 95.61% (±5◦) accuracy.

In 2024, Schoepe et al. [37] presented a full hardware SSL neuromorphic system on
FPGA, relying on a robotic head-tilting movement for sound source tracking. This study
used their previous adaptation of time delay extraction units introduced in [64], inspired
by the motion detection in vision, to SSL [65]. Artificial pinnae and NAS cochleae were
mounted on a pan-tilt unit, and ITDs were extracted by time delay extraction units. No
SNN processed the ITDs; instead, a motor was directly controlled by the extractor spike
train outputs to orientate the robotic head toward the source. When evaluating the azimuth
estimation after several seconds, MAEs of 1.92◦ and 5.5◦ with pure tones and speech
were obtained.

Most recently, Dalmas et al. [66] also took inspiration from the time extraction per-
formed in vision, but unlike in [37] they modified the model to give a linear output. From
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short impulsive natural sounds filtered only to remove low ambient noise, the authors
investigated the potential of their ITD extractor using 3 microphones. Numerical time
differences were deduced from the spiking output to estimate spatial coordinates using
hyperbolic equations simplified by the microphone array’s configuration. The precision
in azimuth reported was 71.3% and 82.8% accuracy on average with a tolerance of 1◦ and
5◦, respectively, for a source at distances between 1 m and 3 m. The proposed system was
also studied with sources at a distance of 10 m and in noisy conditions, which resulted in
reduced performances.

Table 1 resumes the reviewed works with ITD-only-based SSL neuromorphic systems.
The numbers of neurons reported in this table—and the following Tables 2 and 3—are
retrieved from the literature or computed from SNN dimensions. Multi-source scenarios
are mentioned in several studies, for two and three simultaneous sources. The reported
performances in these tables do not take into account these situations. Unless specified, the
reported average performance corresponds to the angle precision.

Around 2015, the focus of the research shifted from being centered around biomimetic
systems, that would bear resemblance to the first work in this field [40], to investigating
lighter bioinspiration with the aim of improving localization accuracy. More than two
microphones [55,56,61,63,66] were used, architectures closer to ANN were studied [61,63],
and inspiration for the extraction of time differences was taken from vision [37,66]. Satisfy-
ing results can be observed, especially in [63], which suggests that adapting the encoding
for spike generation enhances the processing and brings out better performances. No
attempt was made to estimate the distance of the sound source; however, the latest re-
viewed work [66] demonstrated the poor estimation precision in distance of an ITD-only
SSL system, attributed to the geometric dilution of hyperbolas.

Table 1. ITD-only neuromorphic SSL systems.

Reference Year # Mics # Neurons Learning SNN
Implementation

Angular
Resolution

Test
Environment Sound Source Average

Performances

[40] 1989 2 10,540 - VLSI - - - -

[42] 1 1994 2 - - VLSI - Quiet Broadband
sounds -

[39] 1 2000 2 2308 - Simulation ~2.8◦ Quiet
Reverberant

Speech, Pink
noise -

[45] 2007 2 25,856 Algorithm Simulation 30◦ Quiet Pure tones 59% ACC

90◦ SAM signals 90% ACC

[46] 2008 2 210 - FPGA 30◦ Quiet FM noise 98.5% ACC

Alarm bell 61.4% ACC

[48] 2010 2 1029 STDP (S) FPGA 10◦ Quiet Pure tones 91.82% ACC

5◦ 78.64% ACC

[50] 2010 2 - Gradient
descent (S)

Simulation 3◦ Quiet Pure tones 6.05◦ RMSE

Noise 4.1◦ RMSE

[51] 2011 2 1024 - Simulation ~2.6◦ Noisy
Reverberant Speech 0.17◦ MAE

[52] 2011 2 10 STDP (S) Simulation 20◦ Quiet Pure tones 3.4◦ MAE

[53] 1 2012 2 ~3000 Gradient
descent (S)

Simulation 3◦ Reverberant Pink noise 5◦ RMSE

White noise 4.4◦ RMSE

[54] 2013 2 51,752 - VLSI 0.9◦ Quiet Narrow band
sound pulses -

[55] 2015 2 >890 State machine FPGA 0.32◦ Quiet Speech 3.49◦ MAE

Noisy 5.57◦ MAE

4 Quiet 0.99◦ MAE

Noisy 1.18◦ MAE
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Table 1. Cont.

Reference Year # Mics # Neurons Learning SNN
Implementation

Angular
Resolution

Test
Environment Sound Source Average

Performances

[56] 2 2016 8 >10 - Simulation - Quiet Pure tones 4.05◦ MAE
±3.01◦ SD

[57] 2018 2 - - Simulation - - Speech -

[58] 2019 2 855 Surrogate
gradients (S) Simulation 90◦ Noisy FM noise 87% ACC

[59] 1,2 2019 2 1122 - FPGA - Quiet FM sound 89% correlation

[60] 2020 2 4 - Photonic - Quiet Pulses -

[61] 2021 4 1981 Surrogate
gradients (S) Simulation 1◦ Quiet Speech,

Noise 1.02◦ MAE

Low noise 1.07◦ MAE

High noise 10.75◦ MAE

[62] 2022 2 >36 Backpropagation
(S) Simulation 15◦ Quiet Pulses 96% ACC

[63] 2023 4 4261 Backpropagation
(S) Simulation 2.5◦ Noisy

Speech,
Broadband,

sounds

0.6◦ MAE
95.61% ACC

[37] 1,2 2023 2 326 - FPGA 5◦ Quiet Pure tones, 1.92◦ MAE

Speech 5.5◦ MAE

[66] 2024 3 6 - Simulation 1◦ Quiet Natural sounds 71.3% ACC

5◦ 82.8% ACC

1 Use vision. 2 Use body movement. ACC—Accuracy; MAE—Mean Absolute Error; RMSE—Root Mean Square Error;
SD—Standard Deviation; S—Supervised; FM—Frequency Modulated; STDP—Spike Timing-Dependent Plasticity.

4.2. ILD Only

Similarly to studies conducted on ITD alone, ILD or IID have been the focus of several
works, complementing ITD for comprehensive localization across the frequency spectrum.

A bioplausible SNN emulation of the LSO for IID-only sound source localization was
studied by Wall et al. [67]. The SNN is composed of an inhibitory neuron population node,
an LSO layer, and a receptive field layer fully connected with the output neurons. In the
same manner as the previous work [52], two symmetric SNNs individually process the two
hemispheres of the range of ±60◦ with 10◦ angular resolution. The network is trained with
supervised learning ReSuMe (Remote Supervised Method) and tested on HRTF data. An
average accuracy of 91.39% (±10◦), or 62.62% generalized accuracy, is reported on sounds
with distinct frequencies between 4.8 kHz and 25.2 kHz.

A software implementation of the mammalian auditory pathways was presented by
Feng and Dou [68] using only IF neurons for processing ILD cues. Here, a one-shot learning
algorithm set the synaptic weights, and the output neurons in the IC layer with the highest
spike rate correspond to the estimated azimuth with 10◦ angular resolution. An accuracy of
90.56% (±10◦), or 74.56% generalized, was obtained for white noise inputs with frequencies
between 1.22 kHz and 20 kHz. This work was completed to process both ILD and ITD
in [69], with the claim that this was more faithful to the physiology organization than
previous works.

Escudero et al. [70] implemented on FPGA a rate model of the LSO for IID-based SSL
with the NAS cochlea. The azimuth was estimated as a direct correspondence to the output
spiking rate, and with good robustness to noise. A “spike hold and fire” block is specifically
designed here to reproduce the extraction of the IID in the LSO with spike rates. Evaluated
with three pure tones between 1 kHz and 5 kHz, the MAE obtained was 3.41◦ at 28 dB SNR
and 5.63◦ at −5 dB SNR. A motor was controlled by the output firing rates to perform a
tracking of sound sources with head rotation.

A neuromorphic implementation of the LSO on TrueNorth was reported by Oess et al. [71].
Binaural inputs, recorded with a dummy head and pinnae in a sound-attenuated room,
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were converted to spectrograms (algorithm) to encode temporal and spectral intensities
into spike trains. The resulting spike rates were normalized and processed by an SNN.
An additional 19 readout neurons, external to the FPGA implementation, were tuned to
a certain ILD value by receiving a weighted sum of the SNN’s last layer, and thus led
to a resolution of 10◦ on the ±90◦ angular range. A mean accuracy of 62.5% (±10◦) was
reported for synthesized and natural sounds among which noisy recordings were present.

With the increase in digital neuromorphic accelerators, Schmid et al. [72] conducted
investigations on a generic procedure to map a rate-based SNN to different neuromorphic
FPGA hardware. A binaural SSL model inspired by the LSO was taken as a reference,
using only ILDs for 2-D localization, and originating from [71]. A three-step mapping
was proposed, focusing first on translating connections and neurons with regards to a
generic neuron model, then mapping them onto the hardware-specific simplified connection
patterns and spike-based neurons, to finally implement the SNN using the hardware
platform’s framework, and fine-tuning parameters. While the TrueNorth implementation
was thoroughly tuned for performance, involving additional pre- and post-processing
steps, on the SpiNNaker only the LSO mechanism was studied for evaluation of the
generic procedure. In the end, a similar qualitative behavior in both implementations was
observed, with reports of 18◦ and 29◦ MAE for TrueNorth and SpiNNaker, respectively, in
real-world data.

Table 2. ILD-only neuromorphic SSL systems.

Reference Year # Mics #
Neurons Learning SNN

Implementation
Angular

Resolution
Test

Environment
Sound

Sources
Average

Performances

[67] 2012 2 - ReSuMe (S) Simulation 10◦ Quiet Pure tones 91.39% ACC

[68] 2016 2 12,500 One-shot
(S) Simulation 10◦ Quiet

Pure tones,
White
noise

90.56% ACC

[70] 2018 2 >128 - FPGA 15◦ Quiet Pure tones 3.41◦ MAE
Noisy 5.63◦ MAE

[71] 2020 2 1043 - FPGA 10◦ Noisy Natural
sounds 62.5% ACC

[72] 2023 2 1024 - FPGA
(TrueNorth) 10◦ Quiet Natural

sounds 18◦ MAE

FPGA
(SpiNNaker) 29◦ MAE

ACC—Accuracy; MAE—Mean Absolute Error; S—Supervised.

Table 2 resumes the reviewed works with ILD-only-based SSL neuromorphic systems.
Relying only on ILD (or IID) does not lead to results as encouraging as systems using ITD.
The method for extracting intensity or level differences was biomimetic in all the works,
based on the LSO. Some variations in the tuning, implementation, or test sounds resulted
in different performances that in fact lead to the conclusion that the ILD cue is not sufficient
to estimate the azimuth of a sound source.

4.3. ITD and ILD

Finally, both ITD and ILD were used to fully take advantage of the localization
information carried in incoming sound waves.

Unlike previously mentioned works, Liu et al. [35] used both ITD and ILD to estimate
the azimuth of white noise and speech in a biomimetic approach. The MSO and LSO
were modeled in layers with different delayed connections to the outputs of a gammatone
filter bank, and both finally integrated into an IC output layer, as shown in Figure 7. All
the layers were matrices encoding in all frequency channels the ITD, ILD, and azimuth
estimation, using corresponding neurons. No competition was added to the SNN, such
that the authors also tested the SSL system with two simultaneous speakers. The frequency
segmentation allowed the discrimination of multiple sources that did not share the same
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spectrum. In the end, the SSL system resulted in accuracies of 80% (±30◦) and 90% (±10◦)
on the angular ranges ±90◦ and ±45◦, respectively, with the use of an artificial head.
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Figure 7. Diagram of the mammalian auditory pathway with ITD- and ILD-specific pathways high-
lighted in blue and green, respectively. Populations of neurons are represented by circles or rounded-
edge rectangles. AN—auditory nerve; AVCN—anteroventral cochlear nucleus; MNTB—medial
nucleus of the trapezoid body.

The binaural spiking SSL system presented by Goodman and Brette [73] also used
ITD and ILD cues with HRTF data and cochlea filtering. The authors of this work used the
synchrony patterns induced by location-dependent filtering for angle estimation. They also
introduced a filtering of cochlea spikes by successive feed-forward neuron layers, before
identifying the azimuth and elevation from overlapping neuron assemblies of coincidence
detection. An MAE of 2◦ to 7◦ in azimuth and of 7◦ to 20◦ in elevation were reported for
broadband white noise, speech, and musical instrument sounds.

Dávila-Chacón et al. [74] further studied the biomimetic SNN from [35] with a Nao
robot. Test sounds were decomposed in 16 frequency channels by a Patterson–Holdsworth
filter bank between 200 Hz and 4 kHz. Performances resulted in 2.5◦ MAE and 27◦ MAE for
white noise and speech, respectively, on the whole angular range of ±90◦, but the average
errors dropped to 0◦ for a ±30◦ angular range.

Gao et al. [75] implemented in a memristor array an analog SNN for binaural SSL
processing both ITD and ILD, and supporting in-situ training. Pulses were sent in the
memristor array to modify the weights according to a multi-threshold update scheme
where the number of applied pulses depends on several threshold values on the weight
change. Each neuron output corresponded to a vector, such that the final angle estimated
was the combination of all, as depicted in Figure 8. The authors reported a root mean
square error of 5.7◦ for a two-layer memristor SNN in simulation, and 12.5◦ experimentally
with a single layer.
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Focused on neuromorphic computation, Xu et al. [76] studied their patterning pro-
cess for organic electrochemical synaptic transistor array fabrication with an SSL function
simulated in a cross-grid array. Synaptic transistors of these arrays show long-term mem-
ory effects thanks to conductance modulation when suppression or excitation pulses are
applied. The array is trained with supervision in a backpropagation manner using a
correction voltage determined by an algorithm. Binaural signals from HRTF recordings
were preprocessed by Fourier transform to generate 60 characteristic values, then fed to
the feed-forward fully connected neural network. The output layer corresponded to the
±120◦ angular range with steps of 40◦ where the final azimuth estimation was a weighted
combination of all vectors, similarly to [75]. By the 100th epoch, the mean square error was
lower than 0.11 normalized.

In 2023, Li et al. [77] encoded binaural sounds into spikes with a Zilany model cochlea,
then processed by a LSM of 800 LIF neurons. The readout layer was connected to an
ANN classifier for azimuth estimation. The overall network relied on both ITD and ILD
by directly providing the filtered sound to the LSM, and hyperparameters were chosen
through Bayesian optimization. Moreover, the authors used soft labeling in the training of
the classifier to reach accuracy of 94.29% (±15◦) and 86.33% (±10◦) with HRTF recordings.

Another study that used LSM was presented by Roozbehi et al. [78], who introduced
a dynamic rescaling of the reservoir’s size. Based on the small-world connection technique,
the generation of new neurons allows the network to increase its computation capacity.
Neurons of the LSM had spatial coordinates that represented the real space in which a
sound is recorded. The location of the source was estimated by the coordinates of the
neuron with the highest membrane potential. The network then grew depending on the
localization error to give a more precise estimation. In the test scenario, two microphones
were placed so the clapping or speech sound source moved at a distance lower than the
baseline. The system achieved 69.8% accuracy in locating the source or 3.4◦ MAE in azimuth
and 0.38 m MAE in distance.

Table 3 resumes the reviewed works with ITD/ILD-based SSL neuromorphic sys-
tems. Little research was performed using both ITD and ILD cues. Starting with similar
biomimetic systems around 2010, new approaches were then explored from 2022 onwards
in order to successfully integrate both cues. Emerging technologies are also being investi-
gated [75,76], more in phase with the context of low-power consumption.

We have yet to see a full neuromorphic system using both cues with localization
performances surpassing the best precision obtained with ITD only [63]. With added
information, the task should be easier, unlike what is now observed. Localizing with both
cues would likely benefit from propositions of novel ILD extractors or enhanced processing
of the standard LSO’s output.

The question of distance estimation is not studied in any works (including the previous
Section 4.2), apart from [66] (reviewed in Section 4.1), which reported incorrect distances
from ITD only, and the study by Roozbehi et al. [78], which gave spatial coordinates but
constrained to within the baseline of the microphone array. Apart from [78], sound sources
are always placed at a fixed distance, although IIDs vary with the distance to the microphones,
which casts doubts on the interpretation of results of the commonly used LSO.

Table 3. ITD/ILD neuromorphic SSL systems.

Reference Year # Mics # Neurons Learning SNN
Implementation

Angular
Resolution

Test
Environment Sound Sources Average

Performances

[35] 2010 2 - - Simulation 10◦ Low noise White noise,
Speech 80% ACC

[73] 2010 2 106 - Simulation 15◦ Quiet
White noise,

Speech,
Instruments

2◦–7◦ MAE
(azimuth)

7◦–20◦ MAE
(elevation)

[74] 2012 2 - - Simulation 15◦ Quiet White noise 2.5◦ MAE
Speech 27◦ MAE
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Table 3. Cont.

Reference Year # Mics # Neurons Learning SNN
Implementation

Angular
Resolution

Test
Environment Sound Sources Average

Performances

[75] 2022 2 67 Backpropagation
(S) Memristor array 40◦ Quiet - 12.5◦ RMSE

261 Simulation 5.7◦

[76] 2023 2 - Backpropagation
(S) OESTs array 40◦ Quiet -

0.11
normalized

MAE

[77] 2024 2 1516 Bayesian
optimization Simulation 10◦ Quiet Speech 86.33% ACC

[78] 2024 2 100 Modified STDP
(S) Simulation - Noisy Natural sounds

69.8% ACC
3.4◦ MAE

0.38 m MAE 1

ACC—Accuracy; MAE—Mean Absolute Error; S—Supervised; OESTs—Organic Electrochemical Synaptic Transis-
tors; RMSE—Root Mean Square Error. 1 Distance estimation average performance.

5. Echolocation for Navigation and Ranging

Identifying objects in space using the acoustic sound they produce works well with
noisy sources but is not possible with quiet and motionless subjects. While sound source lo-
calization can be described as a passive process that analyzes ambient sounds, echolocation
involves the active emission of sound by the organism or system.

Extending these principles to technological applications, sonar (sound navigation
and ranging) and radar (radio detection and ranging) are systems designed to perform
echolocation-like tasks. Sonar uses ultrasound waves on land or underwater to detect
objects and map the surroundings, functioning similarly to how bats or dolphins navigate
and hunt. Radar, on the other hand, employs radio waves to detect the range, speed, and
other characteristics of objects in the air or on the ground, akin to echolocation but utilizing
electromagnetic waves instead of sound. Both sonar and radar exemplify how human
technology can mimic natural echolocation to achieve tasks in various environments.

5.1. Echolocation Principle

Some animals use echolocation to hunt and navigate in their environment over a few
meters to a few kilometers as a better means for object detection and environment mapping
than vision under low visibility conditions. Among the animals that use echolocation, bats
and cetaceans are the most commonly studied echolocating mammals, but studies have
found evidence of this behavioral use in birds [79] and tree mice [80], although it is less
sophisticated. Humans with complete or partial blindness have also developed the ability
to differentiate objects’ location, material, or shape by using acoustic echolocation [81].

Clicks or chirps, which are broadband sounds or frequency-modulated ultrasonic
vocalizations, are produced by the individual and broadcast in any non-obstructed direction.
The waves propagate in the surrounding space and are reflected as echoes upon reaching
an obstacle. Depending on the material, the texture, and the location of the object, the
frequency composition of the echoes changes due to wave absorption or dispersion, and
the time difference perceived between an echo and the emitted echolocating sound varies
with the distance. Figure 9a illustrates the biological echolocation behavior for navigation
and hunting, adapted to modern navigation systems in Figure 9b, which typically are
sonar- or radar-based. Jointly with continuous echolocation and the memorization of the
perceived environment, the mapping of the surroundings increases in spatial accuracy with
an increasing call rate, comparable to the framing rate of a video.

Echolocation and sound localization rely on shared auditory pathways to process
different types of sound information, but there are also specialized adaptations for each
function. Echolocators use IID and monaural spectral cues like frequency shifts of the
perceived echoes to infer the azimuth of the detected object, and for bats in particular,
spectral notches created by their pinnae help with decoding the elevation. Several models
have been proposed to describe the neuronal processing which enables the individual to
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understand the delays between calls and echoes [82]. In bats echolocating with frequency-
modulated biosonar signals for example, specific detection neurons tuned for particular
delays spike when inhibitory rebounds from the call and its echo coincide.
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locating prey. (b) Application of sonar or radar to drones for navigation in environments where vision
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5.2. Sonar

Sonar is a technology fundamentally rooted in the principles of echolocation. Inspired
by this natural behavior, sonar systems were developed to perform similar tasks, partic-
ularly underwater, where visibility is limited. These systems have evolved from simple
echo-based distance measurements to complex signal-processing techniques. There are two
main types of sonar: active and passive. Active sonar involves sending out sound waves
and listening for their return, while passive sonar listens for sounds emitted by objects
themselves. In this section, only active sonars that use neuromorphic processing in pulsed
or spiking systems will be reviewed.

The majority of the reviewed works on neuromorphic echolocation with spiking sys-
tems were conducted by or with the same author, Horiuchi [83–88], whose team proposed
several models of the bat midbrain while focusing on ITD, ILD processing, and mapping
memory essentially through a bioplausible approach.

Cheely and Horiuchi [83] presented a neuromorphic VSLI implementation mimicking
the neuronal processing in the bat for the temporal analysis of echoes using post-inhibitory
rebounds. Here, 13 neurons with tuned delay-lines were used to detect echo-pulse delays
ranging from 1 to 30 ms with a theorical average power consumption of 550 µW.

Shi and Horiuchi [84] studied the processing of ILD for azimuthal echolocation with a
neuromorphic VSLI that implements the LSO, dorsal nucleus of the lateral lemniscus, and
IC neuron populations of the bat. The emitted 40 kHz ultrasonic signals were encoded into
spike trains by logarithmic envelope extraction of echo-pulses and sent to an LSO layer
where the first spike latency of the input was used to encode the ILD. Single spikes were
thus provided to the dorsal nucleus and IC layers for azimuth estimation, where spike
responses were observed for a target placed 90 cm away and moved on a ±70◦ range with
5◦ steps.

Circuits in [83,84] were further studied in [85], which focused on enhancing the system
with regards to data representation, parameters, and hardware optimization.

Horiuchi [86] presented a spiking implementation of an algorithm for obstacle avoid-
ance in navigation connected to the binaural sonar head introduced in [84] and to a WTA
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network for steering selection in output. Winning directions were selected by calculating
the echo direction based on ILD and generating direction-specific inhibition with the sonar
head, resulting in delayed spikes in those directions.

Following previous works on LSO neuromorphic implementations for echolocation,
Wen and Horiuchi [87] described the development of square- and cube-root compression
of echo envelopes for direction of arrival detection in VLSI hardware, and focused on
single neuron LSO. A circuit performing amplification, compression, and filtering led to
neuron responses sensitive to amplitude ratios. This work observed the output activity
for different distances demonstrating the independence of the amplitude scaling with a
resulting working range of 0.9 m to 2.1 m, enabled by the proposed power-law compression.
As a result, average errors evaluated on an angular range of ±30◦ were below 4.2◦ but still
increased with the distance.

Isbell and Horiuchi [88] constructed echo view cells, inspired by place cells relying on
odometry and sensory signals, which enabled the recognition of previously memorized
echo patterns for efficient navigation and mapping. Sonar echoes were recorded between
±5◦ in 1◦ steps at different positions in a room, and were processed by a multi-layer SNN
with delay-lines, a variant of reservoir computing. Trained with supervised randomized
learning, it obtained 93.5% accuracy in predicting from which known locations a sonar
pattern originated.

Beside the echolocation systems mentioned above, other researchers have investigated
spike encoding and neuromorphic implementations in sonar-based navigation.

The biological processing of echoes in the bat was also taken as inspiration by Kuc [89]
to process more efficiently reverberation artifacts from conventional sonar in a pulse
system. Further studied in [90], the system was used for estimation with a moving sonar of
passing range for navigation. The author employed delays and multiresolution coincidence
detection for the object localization and classification of surface roughness from strong
echo artifacts.

Fontaine and Peremans [91] argued for the plausibility of known neural architectures
of the frequency-modulating bats’ midbrain and investigated a first spike latency coding
for HRTF binaural and monaural cues extraction in comparison with spike rate coding.
As was revealed in [84], ILD impacts the latency of generated spikes in the LSO, which
thus also encodes the spectral peak and notches. In this study, a detailed simulation
of the biological system was performed, and a machine learning regression algorithm
was used for extracting azimuth and elevation from IC spiking patterns, such that in
azimuth/elevation, an MAE of 8.9◦/6.5◦ and 4.05◦/6.5◦ was observed from monaural and
binaural experiments.

Tandon et al. [92] reproduced the system in [84] based on echo intensity for simultane-
ous obstacle avoidance and source tracking similar to an SSL task with a spike rate encoding
of the azimuth to control an artificial head. The authors reported 68% of successful sources
reaching accuracy and poor collision avoidance under noisy conditions with the highest
operation frequency. Without noise, the best root mean square error was approximately
10% in head aim for target tracking in azimuth.

Reinforcement learning was investigated by Amaravati et al. [93] using a biomimetic
approach in a digital accelerator. Ultrasonic echoes were converted to pulses and then
processed digitally in a fully connected network with a WTA output layer. The network
was trained by online learning using backpropagation while the system was mounted on a
moving robot for obstacle avoidance. This study focused on optimizing energy efficiency,
which was measured at an average of 1.25 pJ/multiply-accumulate (MAC) operation by
the chip alone, or 1.5 nJ and 670 pJ energy consumption at training and inference, for a
supply voltage of 0.8 V.

An artificial head was designed by Khyam et al. [94] with mobile ears and nose
inspired by the Horseshoe bat, relying on combined constant frequency and frequency
modulation biosonar signals, and was used to record numerous echoes in environments
with various foliage types. Recordings were then filtered and encoded into spikes from
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envelopes, modeling the auditory system of the bat. The sonar was then used in [95] in the
input of a convolutional ANN for passageway detection in foliage.

At the limit between a sonar mapping and the SSL systems described in Section 4,
Moro et al. [96] performed object detection with an ultrasonic emitter. Two receivers made
it possible to work with an ITD that depended on the azimuth of the object detected.
The ITD extractor was biomimetic, reproducing the Jeffress model, and the focus of the
paper was its implementation in a RRAM-based neuromorphic circuital platform using
parallel one-resistor-one-transistor structures for which one cell is represented in Figure 10.
Characterization of the system led to a theorical angular resolution of 4◦ and 10◦ precision
for objects located 50 cm away from the receivers, when considered for preprocessing in an
SSL task, for a total power consumption of 81.6 nW by the system.
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The works described in this section take strong inspiration from biology, essentially
from bats which live in environments with which we are familiar, such as forests or cities,
and to which drones can be compared. Research in neuromorphic sonar echolocation is
similar to SSL previously reviewed in their approach and trend. Echolocation also shares
the use of the auditory system in the domain of ultrasounds, so naturally ITD, with the
Jeffress model in [96], and ILD, with the LSO in [84,87,92], are cues used for the processing
of echoes. More specific pathways such as inhibitory rebound in [83] can be found but are
far from representing the majority.

5.3. Radar

Radar relies on the emission of electromagnetic waves in short pulses or with frequency-
modulated continuous waves (FMCW) in the radio frequency domain; these are also used
by animal species and called clicks and chirps, respectively. The analysis of echoes enables
the localization and tracking of objects, but also makes it possible to determine their ve-
locity from frequency shifts induced by the Doppler effect, or identify objects and map
environments by radar imaging. Radars exist in largely varying sizes and energy efficiency
depending on the application, ranging from a few milliwatts, like in gesture recognition
and short-range sensing, to a few gigawatts, for example in air traffic or astronomical body
observation systems.

Although radar-based neuromorphic systems are less explored, recent studies have
shown the potential of spiking systems for extracting or processing radar waveforms and
images. Of the few works reported in the literature, most engaged in a recognition process
of objects or movements with SNNs [97,98], which is loosely related to positioning and
navigation. Nevertheless, some studies undertook a localization or mapping task with
radar data.

Vogginger et al. [99] proposed theorical SNN alternatives to radar processing steps for
object detection and tracking from range-Doppler and range-angle maps in the output of
FMCW radars. Because of the continuous emission and small phase shifts in FMCW signals,
relying on binaural cues would be scarcely possible, so the spiking Fourier transform was
suggested as the only viable solution so far. The authors proposed two SNNs, one for the
identification of object reflections from noise based on constant false alarm rate algorithms,
and another for object classification. Conjectures regarding possible adaptations of known
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path integration techniques with SNN for simultaneous localization and mapping were
discussed but not investigated.

A collision avoidance method was introduced by Van Damme et al. [100] that pro-
cessed FMCW radar images for robot navigation. Radar images were translated to a range
azimuth matrix with conventional object detection algorithms and encoded into spike
trains with rate coding for direction choice by a SNN trained with spike timing-dependent
plasticity and reinforcement learning. Knowing a target location, the SNN was tested in-
doors with a mobile robot and six obstacle scenarios, which resulted in an average collision
rate of 0.027 for an average success rate of 0.54 of target locations reached (weighted by the
traveled path length).

Recently, Safa et al. [101] performed simultaneous localization and mapping using
an event-based camera and a FMCW radar, where sensor images were encoded into
spike images and processed by an SNN with online continual unsupervised spike timing-
dependent plasticity. While a drone explored a storage room, the SNN mapped and
learned the environment. The SNN output was then processed by the RatSLAM algorithm,
which also relies on odometry data for mapping correction and loop closure detection.
Localization and mapping MAE averaged to 0.66 m and 0.31 m, respectively, on all flight
sequences, or 0.83 m and 0.46 m, respectively, without camera images.

Jointly with the implementation of the first complete neuromorphic radar hardware
architecture NeuroRadar, Zheng et al. [102] evaluated the radar’s performances in an
indoor tracking case study with a convolutional SNN in simulation. The radar sensor used
multiple self-injection locking modules to capture amplitudes and phases of reflections.
The received frequency shifts were demodulated for the generation of a baseband carrying
the motion information then encoded into spikes by LIF neurons. Backpropagation and
ANN-SNN conversion were used for training the convolutional SNN that processed the
generated spikes, and a mean square localization error of 1 m was reported for a power
consumption of 2.03 mW considering the front-end and signal processing.

To summarize, Table 4 provides key information on the reviewed sonar and radar-
based echolocation systems for navigation. Neuromorphic computing only started being
associated with radar systems recently in the midst of the growing interest in the technology.
Neuromorphic radar-based systems do not rely on bioinspiration; instead, the research
conducted explores the potential of this paradigm with radar, whose applications in em-
bedded systems are not few. SNNs are tested here in the context of object detection and
mapping, with architectures in feed-forward layers or convolutional to process 2-D data.

Table 4. Neuromorphic sonar and radar-based echolocation systems for navigation.

Reference Year Inputs Emission Learning SNN
Implementation Task

Experimental
Precision

Performances

[83] 2003 Sonar P - VLSI Neurological study -

[84] 2007 Sonar P - VLSI Neurological study -

[90] 2007 Sonar P - Simulation Mapping -

[85] 2007 Sonar P - VLSI Mapping -

[86] 2009 Sonar P - VLSI Collision
avoidance -

[91] 2009 Sonar FMCW SVM regression
(S) Simulation Neurological study

4.05◦ MAE
azimuth 1

6.5◦ MAE
elevation 1
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Table 4. Cont.

Reference Year Inputs Emission Learning SNN
Implementation Task

Experimental
Precision

Performances

[92] 2016 Sonar,
Sound P Backpropagation

(S) Simulation Collision
avoidance 36.6% ACC

Navigation 68% ACC
Tracking 10% RMSE

[87] 2018 Sonar P - VLSI Object localization <4.2◦ mean error

[93] 2019 Sonar P Backpropagation
(RL) VLSI Obstacle

avoidance -

[94] 2019 Sonar CF-FM - - Spike encoding
Dataset creation -

[88] 2020 Sonar,
Odometry P Randomized

learning (S) Simulation Mapping
Navigation 93.5% ACC

[96] 2022 Sonar P - RRAM array Object localization -

[99] 2022 Radar FMCW - Simulation Object detection
Tracking -

[100] 2023 Radar FMCW STDP (RL) Simulation Collision
avoidance 2.7% ACC

Navigation 54% ACC

[101] 2023 Radar,
Video FMCW STDP (US) Simulation Navigation 0.66 m MAE

Mapping 0.31 m MAE

[102] 2024 Radar FMCW

Backpropagation
(S)

ANN-SNN
conversion

VLSI and
Simulation Object localization 1 m MSE

P—Pulses; FMCW—Frequency-Modulated Continuous waves; S—Supervised; RL—Reinforcement learning;
CF-FM—Constant Frequency and Frequency Modulation; US—Unsupervised; MAE—Mean Absolute Error;
ACC—Accuracy; MSE—Mean Square Error; RMSE—Root MSE. 1 Results for binaural inputs.

6. Discussion
6.1. Methods and Precision Performances

Neuromorphic systems with spike representation in SSL and echolocation are mostly
driven by research on the biological neuronal pathways in auditory systems. Most works
have reproduced the mammalian binaural auditory system. The creation of bioplausible
models of SSL or echolocation is usually not with the aim of enhancing performances but
rather of introducing new possibilities for spike processing. Beyond the commonly repro-
duced MSO, LSO, and IC, other minor neuron populations have been simulated to refine
the understanding of binaural cues and subtle differences related to HRTF data [57,88].

However, being biomimetic often does not benefit localization precision, as was
demonstrated in [61,63]. More extensive work has been carried out on SSL tasks compared
to sonar and radar-based echolocation systems, which revealed the advantages of exploring
bioinspiration with conventional processing or architectures used in ANNs. Reproducing
the brain structure and neuronal pathways will not enable the outstanding performances
seen in mammals without providing an equivalent computational capability. The number
of neurons and synapses is difficult to replicate, and simply playing with this parameter is
bound to have its limitations. Goodman and Brette [73] used 106 neurons for a minimum
of 2◦ MAE in azimuth, whereas Pan et al. [61] obtained ~1◦ MAE with ~2 k neurons, and
Chen et al. [63] reported less than 1◦ MAE with ~5 k neurons. In fact, the use of network
architectures and supervised learning methods from conventional deep learning adapted to
spike encoding allows systems to reach higher levels of precision [63]. Reinforcement and
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unsupervised learning have been used in echolocating systems which are more bioinspired,
but supervision represents the majority of the trainings.

As neuromorphic technology and its capabilities are being studied, different architec-
tures and processing techniques naturally appear, changing the focus of research in this
field. Over the years, test conditions and system topologies have become more complex
and sometimes greatly differed. The reviewed neuromorphic navigation systems used
different test scenarios and evaluation metrics. In SSL systems, some focused on pure tones
and/or common noise distributions, while others used speech and/or natural sounds for
performance evaluation. An increase in precision and angular resolution of the proposed
SSL solutions is observed, although mainly in ITD-only systems. The angular resolution
of works using ILD remained at 10◦ and with precisions not yet competing with ITD-only
systems. Additionally, SSL [35,67,68,70–78] and sonar-based [84–88,91,92] systems that
relied on IID or ILD mostly did not evaluate the evolution of the precision with the distance.
Models inspired by or mimicking the LSO for the extraction of intensity-related cues are
typically used, and only a few studies [78,87,88,92] have considered varying distances,
mostly sonar-based systems as part of a navigation task.

Similar to how mammals process their environment, localization or navigation can be
assisted by or combined with multimodal information such as video [37,42,43,53,59,101] or
odometry [88]. Furthermore, mobile mount can enhance the systems’ perception by incor-
porating movements, like in [37,56,59] for SSL or with the reviewed echolocators. Using
data from several sensors of different modalities would certainly lead to more efficient
systems, with increased robustness in real-world applications by having supplementary
information like vision and hearing provide. The radar echolocator in [101] reported path
integration performances with vision-only, radar-only, and both sensors, where the latter
performed better thanks to data fusion. Moreover, bioinspiration can also be transmodal,
that is, the adaptation of the biological process to data issued from other sensors, like visual
motion [37,59] or sand scorpion vibration detection [56].

Few studies have been conducted to create sonar spiking object localization and/or
navigation systems, and even fewer for radar-based systems. The recent first investiga-
tions and the development of a neuromorphic radar [102] described previously will likely
encourage further research in the context of autonomous vehicles and mobile robots. Con-
centrated in the past two years, these works already provide great insights into the possible
implementation of neuromorphic computing in radar systems.

6.2. Hardware and Energy Efficiency

Enabled by the surge of neuromorphic processors, FPGA implementations of SNNs
are growing in all fields, and this can be seen in SSL as well. The majority of hardware
implementations were made with VLSI circuits in the early studies of neuromorphic
SSL, which then shifted to FPGA and, more specifically, with TrueNorth and SpiNNaker
accelerators. Moreover, memristive arrays have recently been developed and tested with
sonar echolocation [96] and SSL tasks [75,76]. These technologies will certainly continue to
be investigated as extensive research is ongoing to create extreme energy-efficient memory
units for synaptic weight retention.

Neuromorphic solutions aim to improve the energy efficiency of localization and navi-
gation tasks, especially among deep learning methods, by emulating the neural mechanisms
of biological auditory systems while having sufficient precision to be used in real-world
applications, for which progress in real-world experiments remains to be achieved.

The asynchronous event processing and sparsity of spike encoding allow for a re-
duction in the power consumption, which could lead to implementations being more
energy-efficient than conventional methods. Table 5 reports the power consumption and
energy efficiency of the reviewed hardware implementations. Amaravati et al. [93] reported
a power consumption at least two orders of magnitude lower than other sonars with ANNs.
In the study by Zheng et al. [102], the power consumption of the NeuroRadar was also 97%
lower compared to a standard radar tracking system.
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Table 5. Power consumption and energy efficiency of neuromorphic SSL and echolocation systems.

Reference Year Total Power Consumption Energy Efficiency

[83] 2003 550 µW 1 -
[70] 2018 58 mW -

[93] 2019 690 µW 1.25 pJ/MAC
operation

[75] 2022 0.306 µJ -
[62] 2022 - 0.9 nJ/spike
[76] 2023 - 2.03 fJ/synaptic event
[37] 2023 972 mW -

[102] 2024 2.03 mW -
1 Theorical value.

In fact, little information is available on the energy efficiency of most reviewed pa-
pers unless the hardware is the focus of the work. Especially for SNNs, which claim to
offer higher energy efficiency, it would be relevant to look at the precision performances
against the power consumption or computational cost for a more accurate comparison of
the different approaches. The combination of these metrics is an indicator of the system’s
complexity, as balancing high performance and low-power consumption remains a chal-
lenge. Here, some low and ultra-low power consumptions are reported, but superiority
in power consumption is not always showcased in SNNs: unless workloads, processing,
and learning methods adapted to the temporality of spikes and aligned with neuromor-
phic architectures are used, overall performances fall behind those of ANNs according to
recent studies [103,104]. Digital processing has the advantage of being easier to implement,
but lacks compatibility with spike representation, leading to additional computational
resources being spent to emulate SNNs. Therefore, unless a power consumption is given,
interpretation of the results may be uncertain and unsatisfying. In the future, efforts should
be made to evaluate the energy efficiency of neuromorphic implementations as this is the
main motivation that drives neuromorphic technology.

Systems using emerging materials and technologies [62,75,76] reported energy-related
performances but appeared to provide more of a proof of concept than a possible device
implementation, with extensive characterization of the novel components. Further matu-
ration would be required, also regarding variability, stability, and scalability, to consider
these technologies for positioning in real-world conditions. They are tested in the context
of sound localization and echolocation within laboratories, and cannot insure the same
functioning outside laboratory conditions or over multiple instances of the same device
yet, unlike FPGA boards, which are more flexible and stable. However, emerging technolo-
gies hold the key to ultra-low power consumption, which digital hardware has difficulty
reaching, by providing greater compatibility with spike computing with asynchronous and
analog processing, among other characteristics.

7. Conclusions

Ultimately, then, bioinspiration holds the promise of low power consumption systems
with sufficient precision for most applications. The underlying motivation is the reproduc-
tion of mechanisms observed in the living in order to replicate their performances in terms
of precision, but also the reduction of energy costs, as can be seen in the most recent reviewed
works, which reveal this trend. Nevertheless, the evaluation of energy efficiency is yet to be
sufficiently assessed considering its relative significance to neuromorphic computing.

Research in neuromorphic SSL and sonar-based navigation was driven, first and
foremost, by the motivation to validate in simulation neurological processes; then, as the
spike toolbox expanded and new computational capability was unlocked, better results
were obtained. Methods found in the literature are centered around the main binaural
cues, ITD and ILD, typically extracted after spectral segmentation; further research is
required for the successful integration of both cues to compete with current solutions in
ITD-only systems.
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Radar-based navigation has just started to implement neuromorphic computing in its
processing, but it has already proven its great potential for embedded applications with
improved adaptability to the environment and a frugal power consumption.

The increasing diversity of models and approaches seems to have grown in partic-
ular in the past few years. The limit of this growth has yet to be reached, and constant
progress can be observed in the design of efficient neuromorphic hardware, SNN architec-
tures, and learning methods, which should bring SNNs closer to achieving overall higher
performances in embedded applications.
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