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Abstract: We reformulate the Landau analysis of Feynman integrals with the aim of
advancing the state of the art in modern particle-physics computations. We contribute
new algorithms for computing Landau singularities, using tools from polyhedral geome-
try and symbolic/numerical elimination. Inspired by the work of Gelfand, Kapranov,
and Zelevinsky (GKZ) on generalized Euler integrals, we define the principal Landau
determinant of a Feynman diagram. We illustrate with a number of examples that
this algebraic formalism allows to compute many components of the Landau singu-
lar locus. We adapt the GKZ framework by carefully specializing Euler integrals to
Feynman integrals. For instance, ultraviolet and infrared singularities are detected
as irreducible components of an incidence variety, which project dominantly to the
kinematic space. We compute principal Landau determinants for the infinite families of
one-loop and banana diagrams with different mass configurations, and for a range of
cutting-edge Standard Model processes. Our algorithms build on the Julia package
Landau.jl and are implemented in the new open-source package PLD.jl available at
https://mathrepo.mis.mpg.de/PLD/.
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PROGRAM SUMMARY
Program title: PLD.jl
Developer’s respository link: https://mathrepo.mis.mpg.de/PLD/
Licensing provisions: Creative Commons by 4.0 (CC by 4.0)
Programming language: Julia
Supplementary material: The repository includes the source code with documentation
(PLD code.zip), a jupyter notebook tutorial providing installation and usage instructions
(PLD notebook.zip), a database containing the output of our algorithm on 114 examples
of Feynman integrals (PLD database.zip).
Nature of problem: A fundamental challenge in scattering amplitude is to determine
the values of complexified kinematic invariants for which an amplitude can develop
singularities. Bjorken, Landau, and Nakanishi wrote a system of polynomial constraints,
nowadays known as the Landau equations. This project aims to rigorously revisit the
Landau analysis of the singularity locus of Feynman integrals with a practical view
towards explicit computations.
Solution method: We define the principal Landau determinant (PLD), which is a variety
inspired by the work of Gelfand, Kapranov, and Zelevinsky (GKZ). We conjecture that
it provides a subset of the singularity locus, and we implement effective algorithms to
compute its defining equation explicitly.
References: OSCAR [1], HomotopyContinuation.jl [2], Landau.jl [3]

https://mathrepo.mis.mpg.de/PLD/


Contents

1 Introduction 3

2 Motivation: Singularities and saddle point equations 8
2.1 Principal A-determinants 8
2.2 GKZ systems vs. Feynman integrals 9

3 Landau analysis 14
3.1 Euler discriminants 14
3.2 Definition of the principal Landau determinant 16
3.3 Examples 18
3.4 Different formulations 24
3.5 Beyond the standard classification 27

4 One-loop and banana diagrams 34
4.1 One-loop diagrams 34
4.2 Banana diagrams 44

5 Computing principal Landau determinants 45
5.1 Symbolic elimination 46
5.2 Numerical elimination 49
5.3 Overall algorithm 52
5.4 Standard Model examples 56

6 Conclusion and outlook 59

A Bounding the Landau variety with HyperInt 60

B From loop momentum to Schwinger parameters 62
B.1 Arbitrary powers of ISP’s 63
B.2 Non-positive powers of ISP’s 65

C A toric view on principal Landau determinants 66

References 68

– 2 –



1 Introduction

Our ability to perform high-precision computations of scattering amplitudes in quantum
field theory relies on new insights into their analytic structure. A fundamental challenge
in this field is to determine the values of complexified kinematic invariants for which a
given amplitude can develop singularities. These are poles or branch points, interchange-
ably called anomalous thresholds or Landau singularities. A deeper understanding of
this problem would have an immediate impact on the cutting-edge computations in
the method of differential equations [4], symbol-level constraints on polylogarithmic
Feynman integrals and beyond [5, 6], and the non-perturbative bootstrap [7].

The question itself has a long history and dates back to the work of Bjorken, Landau,
and Nakanishi [8–10]. These authors wrote a system of polynomial constraints, nowadays
known as the Landau equations, for determining the singularities. See [11–13] for
textbook expositions. As is well-known, Landau analysis was never formulated precisely
enough to be applicable to the Standard Model computations of current importance
to collider phenomenology, especially when massless particles are involved, see, e.g.,
[14, Ex. 5.3]. There are also known examples where a naive application of Landau
equations does not detect all singularities of Feynman integrals; instead, a more careful
blow-up analysis is needed [15–17]. The outstanding problems that need to be addressed
before a large-scale application of Landau analysis are (i) practical formulation of
Landau conditions in the presence of massless particles and ultraviolet/infrared (UV/IR)
divergences which make Feynman integrals singular everywhere in the kinematic space;
(ii) systematic classification of the systems of equations that need to be solved to actually
account for all singularities; and (iii) providing practical tools for solving such systems.

In this work, we formalize Landau singularities as the subspace of kinematics on
which the Feynman integrand is “more singular” than generically, thus addressing point
(i). More concretely, we introduce the Euler discriminant variety. Calling the integration
space X, the Euler discriminant variety is the locus of kinematic invariants for which
the signed Euler characteristic |χ(X)| drops compared to its generic value. To perform
explicit computations, we define the principal Landau determinant (PLD), which is an
approach to (ii) that employs polyhedral geometry to scan over different ways Schwinger
parameters can go to zero or infinity. Finally, to address point (iii), we introduce the
package PLD.jl available open-source at

https://mathrepo.mis.mpg.de/PLD/.

It implements symbolic and numerical elimination algorithms introduced in this paper.
As concrete examples, we will apply it to the Feynman diagrams shown in Fig. 1 and
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[3, Fig. 1]. They are summarized in a database of 114 examples of different graph
topologies and mass assignments accessible through the above link.

Our results were announced in [18] with an emphasis on the physical aspects. The
present paper motivates our definitions and fleshes out the algorithmic details.

Summary of contributions. The mathematical problem at hand is described as
follows. We consider an E-dimensional integral I(z) whose integrand depends on
parameters z. Here E is the number of internal edges in a Feynman diagram, and
z = (z1, . . . , zs) represents all kinematic invariants. This integral is a holomorphic
function of z on a neighborhood of generic complex parameters z∗ ∈ Cs. The Landau
singular locus is an algebraic variety in Cs, at which analytic continuation of I(z) may
fail. This is formalized via differential equations satisfied by our integral, using the
language of D-modules. For a friendly introduction, see [19] and references therein.
The steps are (a) to find a holonomic D-ideal annihilating I(z) and (b) to compute its
singular locus [19, Def. 1.12]. We conjecture that the result is the Euler discriminant.
Unfortunately, while algorithms for step (b) exist, step (a) is usually problematic.

Gelfand, Kapranov, and Zelevinsky (GKZ) consider particular integrals I(z), which
they call generalized Euler integrals, whose holonomic D-ideal can be constructed
purely combinatorially [20]. The result is nowadays referred to as a GKZ system, or
A-hypergeometric system. The singular locus is defined by the principal A-determinant
EA, which is a homogeneous polynomial in the parameters z (Thm. 2.4). At the same
time, the principal A-determinant characterizes when the topology of the integration
space changes: it detects drops in the Euler characteristic (Thm. 2.3). In other words,
EA is a first example of an Euler discriminant. We recall the GKZ framework in Sec. 2.

Feynman integrals can be seen as specializations of GKZ integrals: z is restricted
to lie in the kinematic space, which can be viewed as a linear subspace of the GKZ
parameter space. At the level of the singular locus, this specialization is quite tricky:

One can not just substitute kinematic variables in the principal A-determinant. (*)

We discuss this slogan at length in Sec. 2. Nonetheless, with the necessary care,
the algebraic techniques for computing principal A-determinants can be adapted to
the Feynman setting to compute components of the Landau singular locus. These
components form the principal Landau determinant (PLD). The precise definition is
given in Sec. 3, and we include a comparison with the Euler discriminant. We conjecture
that the variety defined by the PLD is contained in the Euler discriminant variety, and
verify this in all our examples.

Exceptions to the rule (*) are discussed in Sec. 4. We prove that for one-loop
diagrams with several different mass configurations, the Euler discriminant equals the
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intersection of the principal A-determinant with kinematic space. This justifies the
emphasis on one-loop examples in previous approaches [21]. Our proofs use combinatorics
and tools from [22].

Sec. 5 is on how to compute principal Landau determinants. Like in [3], we present
symbolic and symbolic-numerical algorithms, relying on computer algebra and numerical
nonlinear algebra. We explain how to use our open-source software PLD.jl, which finds
components of Landau singular loci that had not been computed before.

Sec. 6 provides an outlook and a list of open questions. This paper also comes with
three appendices. In App. A, we explain how to use the compatibility graph algorithm
implemented in [23] for computing Landau singularities and contrast it with PLD. In
App. B, we review the derivation of the Schwinger parameter formula for Feynman
integrals. Finally, App. C discusses PLD in the language of toric geometry.

Relation to previous work and historical overview. The literature on Landau
singularities is vast and multi-faceted. Here, we outline a few of the most relevant
directions that help to put our work in context. After the original papers [8–10], an
effort to rigorously define Landau singularities was made by Pham and collaborators
in momentum space [24, 25], see [26–28] for reviews. His “Landau variety” is the
projection to the external kinematic space of the critical set of the singularity locus
of propagators. At the time, it was only computable for “generic enough” integrals
such as those associated with one-loop Feynman diagrams with generic masses and
no UV/IR divergences, as more complicated cases require compactifications and/or
homology with local coefficients [26, 27]. Picard–Lefschetz theory was applied to analyze
local behavior of finite Feynman integrals around real singularities in generic-mass
configurations, see, e.g., [17, 29–32]. Independently, Boyling described Landau varieties
and compactifications by iterated blow-ups in Schwinger parameter space [33], though
they were not applied in practical examples at the time. Decades later, equivalent
blow-ups appeared in the motivic approach to Feynman integrals [34]. Brown [35]
and Panzer [23] reconsidered Landau varieties in the context of linear reducibility
and algorithmic evaluation of Feynman integrals in terms of multiple polylogarithms.
More recently, compactifications for individual diagrams were studied in [17] with most
advanced examples being the triangle with massless internal edges and the generic-mass
parachute diagram.

Parallel work by multiple authors explored the space-time interpretation of Landau
singularities and their connection to causality and locality non-perturbatively, where
α-positive singularities (those with all Schwinger parameters positive or zero) become
important, see [36, 37] for reviews. Coleman and Norton showed that such singularities
can be mapped to classical scattering processes [38]. Bros, Epstein, and Glaser proved
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Figure 1. Catalogue of two-loop examples relevant to Standard Model computations. Wavy
and curly lines represent massless particles, while solid and dashed ones are massive. Propaga-
tors with the same color have the same mass.

that they cannot appear in certain regions of the kinematic space connecting kinematic
channels and establishing crossing symmetry [39, 40], see also [41, 42]. Chandler and
Stapp formulated Landau singularities in terms of macrocausality [43, 44], where the
notion of essential support of correlation functions [45] plays a central role. Caron-Huot,
Giroux, Hannesdottir, and one of the authors extended the Coleman–Norton interpreta-
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tion to non-α-positive singularities for asymptotic observables [42]. Multiple practical
ways of calculating α-positive singularities are known [11]; they can be computed numer-
ically at high loop orders using semi-definite programming techniques [46]. By contrast
with the above approaches, our work considers complex Landau singularities without
the positivity condition and is applicable to dimensional regularization.

Landau singularities were studied from the perspective of microlocal analysis and
holonomic systems. Sato conjectured that all scattering amplitudes are holonomic [47],
which would imply that around any Landau singularity ∆ = 0, they can locally behave
only as ∼ ∆a logb ∆ for a ∈ C and b ∈ Z≥0 (in the modern language, ∆ are the zeros and
singularities of the “symbol letters” for polylogarithmic integrals [48]). This conjecture
was disproved for scattering amplitudes [49, 50], but it might still hold for individual
Feynman integrals, see, e.g., [51]. It is also known that scattering amplitudes can have
accumulations of singularities [46, 52], though it was argued that this cannot happen in
physical kinematics [53]; see also [54] for a discussion in string theory. It has been long
known that Feynman integrals can be treated as sufficiently-generalized hypergeometric
functions. In particular, techniques from Gelfand–Kapranov–Zelevinsky systems [22]
were previously applied to Feynman integrals, see [55] for a recent review. Two of the
present authors generalized A-discriminants to Landau discriminants [3]. They did not
apply to diagrams with UV/IR divergences (dominant components) and the present
work provides an extension to those cases. Principal A-determinants were previously
applied to Landau analysis in [21, 56]. Our work explains why Feynman integrals are
not sufficiently generic for such GKZ results to apply directly, which motivates the
introduction of principal Landau determinants.

In massless theories, Landau singularities can be studied in momentum twistor
space [57, 58]. Prlina et al. sketched a proof of a conjecture that in the planar limit,
for any diagram with a fixed number of external legs n, all of its first-type Landau
singularities are contained in the singular locus of a single “ziggurat” diagram [59]. The
latter has been determined for n ≤ 7 on certain subspaces of the kinematic space [60].
That work does not take into account different scalings of loop momenta and Schwinger
parameters considered here.

Following Libby and Sterman [61], Landau equations were also used to determine
necessary conditions for IR singularities of off-shell Green’s functions (with external
masses Mi ̸= 0) in QCD in momentum space [14]; sufficiency was studied in [62]. Its
modern incarnation is the method of regions [63, 64] which studies different soft/collinear
kinematic regions and uses Newton polytopes to classify rates at which Schwinger
parameters contract/expand [65–68]. This approach is conceptually closest to ours,
though it concerns only α-positive solutions, while we treat all complex singularities.
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2 Motivation: Singularities and saddle point equations

2.1 Principal A-determinants

Let A = [m1 · · · ms] ∈ Zn×s be an integer matrix with no repeated columns, of rank n.
The columns mi ∈ Zn are the exponent vectors appearing in a Laurent polynomial

fA(α; z) = z1 αm1 + z2 αm2 + · · · + zs αms ,

where α = (α1, . . . , αn) and αmi is short for the monomial αm1i
1 · · · αmni

n . The coefficients
zi are indeterminates which take complex values. Once coefficients z ∈ Cs are fixed, the
Laurent polynomial f(α; z) defines a hypersurface in the algebraic torus (C∗)n:

VA,z = V(C∗)n(fA(α; z)) = {α ∈ (C∗)n : fA(α; z) = 0}. (2.1)

Here C∗ = C \ {0}. The coordinate hyperplanes {αi = 0} are excluded since some
entries of A may be negative. The A-discriminant ∆A records values of z for which
VA,z is a singular hypersurface. More precisely, consider the set

∇◦A =
{
z ∈ Cs : ∃α ∈ (C∗)n s.t. fA(α; z) = ∂αfA(α; z) = 0

}
,

where we use the notation ∂α = (∂α1 , . . . , ∂αn) with partial derivatives ∂αi
= ∂

∂αi
for

brevity. This is in general not a closed subvariety of Cs. The A-discriminant variety
∇A is obtained by taking the Zariski closure of ∇◦A, which is by definition the smallest
algebraic variety containing it. This agrees with the closure in the usual topology.
Under mild hypotheses on A, the A-discriminant variety is a hypersurface (i.e., it has
codimension 1 in Cs), and its defining polynomial ∆A is the A-discriminant polynomial,
or simply the A-discriminant. This polynomial is defined up to a nonzero scalar multiple,
and it can always be taken to have integer coefficients. If codim∇A > 1, we set ∆A = 1.

Example 2.1. When s = 1, the Laurent polynomial fA = z αm only has one term. We
have ∆A = z in this case. When s = 2, one checks that ∆A = 1. ⋄

The principal A-determinant EA is a different polynomial in the coefficients zi,
defined via A-resultants [22, Chpt. 10, Sec. 1]. We are mostly interested in the hy-
persurface defined by this polynomial. With this in mind, it is more convenient to
recall the description of EA as the product of several discriminants, one of which is ∆A.
Let Conv(A) ⊂ Rn be the convex lattice polytope obtained as the convex hull of the
columns mi of A, and let F (A) be the set of all its faces. Here Conv(A) is viewed as a
face of itself, i.e. Conv(A) ∈ F (A). For a face Q ∈ F (A), we let A ∩ Q be the submatrix
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of A consisting of all columns mi ∈ Q. The (A ∩ Q)-discriminant ∆A∩Q is a polynomial
in the variables zi, with mi ∈ Q. Note that ∆A = ∆A∩Q when Q = Conv(A). We have

EA =
∏

Q∈F (A)
∆eQ

A∩Q, (2.2)

for some positive integer exponents eQ > 0. A precise formula for these exponents and
a statement for the equivalence between the A-resultant definition and (2.2) are found
in [22, Chpt. 10]. Here is an easy example.

Example 2.2 (n = 2, s = 4). We consider the lattice points of the unit square

A =
(

0 1 0 1
0 0 1 1

)
, which gives fA(α, z) = z1 + z2 α1 + z3 α2 + z4 α1α2.

The curve VA,z is singular when it is the union of a horizontal and a vertical line, this
happens when ∆A = z1z4 − z2z3 = 0. The polygon Conv(A) is [0, 1]2, and F (A) consists
of one 2-dimensional face, four 1-dimensional faces and 4 vertices. For each of the
one-dimensional faces Q, by Ex. 2.1 we have ∆A∩Q = 1. The same example says that for
the vertex mi ∈ A we have ∆mi

= zi. By the second part of [22, Chpt. 10, Thm. 1.2],
in this example, all exponents eQ are equal to 1. Hence, Eq. 2.2 gives

EA = z1 · z2 · z3 · z4 · (z1z4 − z2z3). ⋄

An important topological invariant of the variety VA,z is its Euler characteristic
χ(VA,z). The principal A-determinant shows up when studying how this number depends
on z. Let Aff(A) ⊂ Rn be the smallest affine subspace containing the points m1, . . . , ms,
i.e., the columns of A. We write Λ = Aff(A) ∩ Zn for the corresponding affine lattice.
Let vol(A) be the normalized volume of the lattice polytope Conv(A) in the lattice Λ.
If Conv(A) has dimension n, then vol(A) is the standard Euclidean volume multiplied
with a factor n!. The proof of the following result can be found in [69, Thm. 13].

Theorem 2.3. The signed Euler characteristic |χ(VA,z)| equals vol(A) if and only if
z ∈ Cs \ {EA = 0}. Moreover, when EA(z) = 0, we have |χ(VA,z)|< vol(A).

The Euler characteristic is relevant to us because it counts the number of linearly
independent A-hypergeometric functions. These are given by integrals which are similar
to Feynman integrals, as we will see in the next section.

2.2 GKZ systems vs. Feynman integrals

For i = 1, . . . , ℓ, let Ai = [mi,1 · · · mi,si
] ∈ Zn×si be an integer matrix as in the previous

section. The Laurent polynomials fAi
(α; z) = zi1α

mi,1 + · · · + zisi
αmi,si define an integral

IΓ(z) =
∫

Γ
fµαν dα

α
(2.3)
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=
∫

Γ
fA1(α; z)µ1 · · · fAℓ

(α; z)µℓ αν1
1 · · · ανℓ

ℓ

dα1

α1
∧ · · · ∧ dαn

αn

.

The exponents µ ∈ Cℓ and ν ∈ Cn are complex numbers, so that the integrand is
multi-valued. Let VAi,z ⊂ (C∗)n be as in (2.1). The twisted n-cycle Γ is an n-chain on

Xz = (C∗)n \ (VA1,z ∪ · · · ∪ VAℓ,z), (2.4)

with zero twisted boundary. Here twisted means essentially that Γ also records the choice
of which branch of fµαν to integrate. The integral (2.3) was called a generalized Euler
integral by Gelfand, Kapranov and Zelevinsky (GKZ) [20]. See [70, Chpt. 2] for more
details, and [71, 72] for recent overviews.

As a function of the coefficients zij, the integral IΓ(z) satisfies a system of linear
PDE called GKZ system [71, Sec. 4]. This system of diffential equations is encoded by
a D-module denoted HA(κ). The parameters are κ = (−ν, µ), and

A =



A1 A2 · · · Aℓ

1 · · · 1 0 · · · 0 0 · · · 0
0 · · · 0 1 · · · 1 0 · · · 0
0 · · · 0 0 · · · 0 · · · 0 · · · 0
0 · · · 0 0 · · · 0 1 · · · 1

 ∈ Z(n+ℓ)×(s1+···+sℓ). (2.5)

Below, we will write s = s1 + · · ·+sℓ and z = (z1, . . . , zs) ∈ Cs for brevity. The following
remarkable result from [20, Thms. 1.4 and 2.10] demonstrates how the principal A-
determinant EA from (2.2) governs the analytic properties of the function IΓ(z).

Theorem 2.4. For generic κ = (−ν, µ) and for z∗ ∈ Cs \ {EA = 0}, the vector space
of local solutions to the GKZ system HA(κ) at z = z∗ has dimension (−1)n · χ(Xz∗) =
(−1)n+ℓ−1 · χ(VA,z∗) = vol(A). All solutions are obtained by varying the twisted cycle Γ
in IΓ(z) from (2.3). The singular locus of the D-module HA(κ) is the variety {EA = 0}.

For the meaning of vol(A) in this statement, see the discussion preceding Thm. 2.3.
The Euler integrals (2.3) appear in particle physics as Feynman integrals [72]. In that
case, ℓ = 1 or ℓ = 2, and the coefficients of fA1 , fA2 are linear functions of the kinematic
parameters. We will discuss the general construction below. See [73, 74] for recent
literature on the GKZ approach to Feynman integrals.

Example 2.5. We work out an illustrative example, corresponding to the banana
diagram with three internal edges, Fig. 2 (left). The integral is

I =
∫

Γ
[(1 −∑3

i=1miαi)(α1α2 + α1α3 + α2α3) + sα1α2α3]µαν1
1 αν2

2 αν3
3

dα1

α1
∧ dα2

α2
∧ dα3

α3
.

(2.6)
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Figure 2. Left: Banana diagram B3. Right: The polytope Conv(A) for the banana diagram
with three edges, B3. Its f -vector is (9, 15, 8).

This is a function of s, m1, m2, m3. In the above setup, the corresponding matrix is

A =


1 1 0 2 2 0 1 1 0 1
1 0 1 1 0 2 2 0 1 1
0 1 1 0 1 1 0 2 2 1
1 1 1 1 1 1 1 1 1 1

 .

The ten coefficients are either constant, or linear functions of s, mi:

(z1, . . . , z10) = (1, 1, 1, −m1, −m1, −m2, −m2, −m3, −m3, s − m1 − m2 − m3). (2.7)

This parameterizes a four-dimensional affine subspace K ⊂ C10, which in physics is
called the kinematic space. Motivated by Thm. 2.4, a first approximation for the singular
locus of our integral I(s, m1, m2, m3) is K ∩ {EA = 0}. We chose this example because
it nicely illustrates that this is not the right approach.

The polytope Conv(A) ⊂ R3 has dimension three: it is contained in the 3-
dimensional hyperplane in R4 where the last coordinate is 1. The Schlegel diagram
with respect to the hexagonal facet 458967 of this polytope is shown in Fig. 2 (right).
Here the vertices are labeled consistently with the columns of A. The lattice point
in the tenth column is an interior point of that facet. Let Q = 2389 ∈ F (A) be the
quadrilateral marked in red. By the formula (2.2), ∆A∩Q is a factor of the principal
A-determinant EA. One easily checks that the submatrix A ∩ Q is obtained from the
matrix A from Ex. 2.2 by applying the following injective affine integer transformation:

x⊤ 7 −→ x⊤
(

−1 1 0 0
0 0 1 0

)
+
(
1 0 1 1

)
.

By [22, Prop. 1.4], their discriminants are identical: ∆A∩Q = z2z9−z3z8. When plugging
in (2.7), we see that ∆A∩Q(K) = 0, and hence EA(K) = 0. Hence, the containment of
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the singular locus of I(s, m1, m2, m3) in K ∩ {EA = 0} is trivial. In fact, this happens
for most Feynman diagrams, see Tab. 1. To remedy this, a more specialized notion of
discriminants and principal determinants is needed. The first steps along these lines for
Feynman integrals were taken in the seminal papers [8–10]. In [3], two of the authors
formalized the notion of Landau discriminants, to account for leading singularities of
Feynman integrals. This paper introduces principal Landau determinants, see Sec. 3.
To some extent, these are to Landau discriminants what principal A-determinants are
to A-discriminants. ⋄

Remark 2.6. By Thm. 2.3, the inclusion K ⊂ {EA = 0} holds if and only if for a
generic point z∗ ∈ K, we have |χ(VA,z∗)|< vol(A). This gives a practical way to test this
inclusion. The Euler characteristic χ(VA,z∗) can be computed reliably using numerical
homotopy methods implemented in the Julia package HomotopyContinuation.jl [2],
see [3, Sec. 5] or [71, Sec. 6]. The volume vol(A) can be computed, for instance, using
the software package Oscar.jl [1]. In our example above, the inequality is

χ(VA,z∗) = 7 < 10 = vol(A) .

Here, vol(A) = 10 is the volume of Conv(A) in the three-dimensional affine space
containing it, scaled so that a standard simplex has volume 1.

We conclude the section by justifying the above claim that what happens in Ex. 2.5
happens for most Feynman diagrams. Let G be a Feynman diagram with E internal edges,
n external legs, and graph polynomial GG = UG + FG. Recall that the coefficients of the
graph polynomial are either constant, or linear functions of the kinematic parameters
sij, me, Mi. Here we use the notation from [3, Sec. 2]: sij are Mandelstam invariants,
me = m2

e is the squared mass of the e-th internal propagator, and Mi = M2
i is the

squared mass of the i-th external leg. Beyond restricting from generic coefficients in
Cs to generic kinematics in K, we will allow to put certain internal/external masses to
zero. More precisely, we focus on the following meaningful subspaces of parameters:

• E (Mi,0) = K ∩ {me = 0, e = 1, . . . , E},

• E (0,me) = K ∩ {Mi = 0, i = 1, . . . , n}, and

• E (0,0) = K ∩ {me = Mi = 0, e = 1, . . . , E, i = 1, . . . , n}.

Let E ⊆ K be any of these spaces. The matrix A(E) has n = E rows, and its columns are
all exponents occurring in GG for generic choices of kinematics in E ⊂ K. The number of
columns may depend on E . In line with Rmk. 2.6, we tested the inclusion E ⊂ {EA = 0}
for all the graphs from [3, Fig. 1] and Fig. 1 by comparing the values of the signed Euler
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G K E(Mi,0) E(0,me) E(0,0)

A4 (15, 15) (11, 11) (11, 15) (3, 3)
B4 (15, 35) (1,1) (15,35) (1,1)

par (19, 35) (4, 8) (13, 35) (1, 3)
acn (55, 136) (20, 54) (36, 136) (3, 9)
env (273, 1496) (56, 262) (181, 1496) (10, 80)

npltrb (116, 512) (28, 252) (77, 512) (5, 61)
tdetri (51, 201) (4, 18) (33, 201) (1, 5)
debox (43, 96) (11, 33) (31, 96) (3, 10)
tdebox (123, 705) (11, 113) (87, 705) (3, 41)
pltrb (81, 417) (16, 201) (61, 417) (4, 80)
dbox (227, 1422) (75, 903) (159, 1422) (12, 238)
pentb (543, 4279) (228, 3148) (430, 4279) (62, 1186)

G E
inner-dbox (43, 834)
outer-dbox (64, 1302)
Hj-npl-dbox (99, 1016)
Bhabha-dbox (64, 774)
Bhabha2-dbox (79, 910)

Bhabha-npl-dbox (111, 936)
kite (30, 136)
par (19, 35)

Hj-npl-pentb (330, 3144)
dpent (281, 5511)

npl-dpent (631, 5784)
npl-dpent2 (458, 5467)

Table 1. Comparing the signed Euler characteristic and volume ((−1)E−1·χ(VA(E)), vol(A(E)))
for the Feynman diagrams in [3, Fig. 1] and Fig. 1. The kinematic subspace E in the left table is
the full kinematic space K or one of its linear subspaces obtained from setting internal/external
masses to zero. In the table on the righthand side, it denotes the custom choices of kinematics
fixed in Fig. 1. The blue values indicate the cases where volume and Euler characteristic
coincide. Notice that, for each diagram, vol(A(K)) = vol(A(E(0,me))), since the vanishing of
external masses does not change the monomial support of the graph polynomial.

characteristic and the volume vol(A(E)). Here the Euler characteristic we compute is
(−1)E−1 · χ(VA(E)), where VA(E) is the zero locus of GG in (C∗)E, for generic kinematics
in E ⊂ K. In most cases, we indeed have (−1)E−1 · χ(VA(E)) < vol(A(E)). This means
that E is contained in the principal A-determinant variety. The only exceptions arise
for one-loop and banana diagrams. These cases will be studied in detail in Sec. 4.

The numbers in Tab. 1 were computed using Julia. In particular, the following
code lines illustrate how to compute the volume for the graph G = par:

using PLD 1

using Oscar 2

3

edges = [[3,1],[1,2],[2,3],[2,3]]; 4

nodes = [1,1,2,3]; 5

E = length(edges); 6

U, F, α, p = getUF(edges, nodes, internal_masses = :generic, 7

external_masses = :generic); 8

9

ConvA = newton_polytope(U+F) 10

factorial(E)*volume(ConvA) 11
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We relied on our Julia package PLD.jl to generate the Symanzik polynomials of
each graph G with E edges. The volume function is instead a feature of the computer
algebra system Oscar [1] available as a Julia package. A snippet for computing the
Euler characteristic will be displayed in Sec. 3.

3 Landau analysis

By Thm. 2.3, the principal A-determinant characterizes when the signed Euler charac-
teristic of Xz drops below the generic value. Moreover, by Thm. 2.4, it coincides with
the singular locus of the solutions to a GKZ system. Such solutions are the integrals
(2.3), where Γ ranges over the twisted homology of Xz. The roles of EA in Thms. 2.3
and 2.4 are strongly related to each other. When the Euler characteristic drops, there
are fewer independent twisted n-cycles, which means fewer independent integrals of the
form (2.3). Different local solutions to the GKZ system may collide or diverge near
{EA = 0}, and this causes singularities. An example is found on page 1 of [75].

Feynman integrals are of the form (2.3), where ℓ = 1 or ℓ = 2 and the coefficients
z are specialized to the kinematic space K ⊂ Cs. As we illustrated in Sec. 2.2, it may
well be that the principal A-determinant vanishes identically on K. Then the signed
Euler characteristic for generic z ∈ K is χ∗ < vol(A). To capture the singular locus of
Feynman integrals, we need to detect values z ∈ K for which (−1)n · χ(Xz) < χ∗, or,
values z ∈ K for which the hypersurface {α : U(α) + F(α; z) = 0} is more singular
than usual. Here U and F are Symanzik polynomials, whose definition is recalled in
[3, Sec. 2.2]. The sum of these two polynomials is called the graph polynomial or
Lee-Pomeransky polynomial. It is denoted by G = U + F . This section describes how
we propose to detect such “extra singular” z-values geometrically.

3.1 Euler discriminants

We start with our general set-up from Sec. 2.2. We investigate the Euler characteristic
of the very affine variety Xz in (2.4) as a function of z ∈ Cs. Recall that

Xz = {α ∈ (C∗)n : fi(α, z) ̸= 0, i = 1, . . . , ℓ}.

Importantly, we do not consider the full parameter space Cs, but we work on a subspace
denoted by E . In Landau analysis, E = K is kinematic space, or a linear subspace.

Theorem 3.1. For any irreducible subvariety E ⊂ Cs and any integer k, define

Zk(E) = {z ∈ E : |χ(Xz)| ≤ k}, Vk(E) = {z ∈ E : |χ(Xz)| = k}.

For each k, Zk(E) = ⋃k
j=0 Vj(E) is Zariski closed in E. In particular, for the maximal

value χ∗ = maxz′∈E |χ(Xz′)|, we have Zχ∗(E) = E and Vχ∗(E) is open and dense in E.
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We will prove Thm. 3.1 in this section. It justifies the following definition of the
Euler discriminant, which is a polynomial in the coordinate ring C[E ] of E , vanishing at
z ∈ E if and only if |χ(Xz)| is smaller than usual.

Definition 3.2 (Euler discriminant). With the notation of Thm. 3.1, the Euler dis-
criminant variety of the family Xz of very affine varieties over E is the closed subvariety
∇χ(E) = Zχ∗−1(E) = E \ Vχ∗(E) ⊂ Cs. If ∇χ(E) is defined by a single equation
∆χ(E) ∈ C[E ] (unique up to scaling), then we call ∆χ(E) the Euler discriminant.

Remark 3.3. The terminology Euler discriminant was used by Esterov in [76, Definition
3.1] in a more general context. More precisely, in that paper, the Euler discriminant is
a Weil divisor in E whose support equals the codimension-1 part of ∇χ(E).

Example 3.4. By Thm. 2.3, when E = Cs, χ∗ = vol(A) and the Euler discriminant is
the principal A-determinant: ∆χ(E) = EA. ⋄

An important challenge in Landau analysis is to compute the Euler discriminant
for the family of very affine varieties defined by the graph polynomial GG = UG + FG on
a specific parameter subspace E . This computation is out of reach for large diagrams.
The principal Landau determinant, as defined in Sec. 3.2, provides a state-of-the-art
approach to computing many irreducible components of these Euler discriminants from
physics.

Proof of Thm. 3.1. The signed Euler characteristic of Xz is the number of solutions
α ∈ Xz to the critical point equations for log(f(α; z)µαν):

ℓ∑
i=1

µi
∂fi(α;z)

∂αj

fi

+ νj

αj

= 0, j = 1, . . . , n, (3.1)

for generic values of the parameters µ, ν [77, Thm. 1]. Moreover, for such generic
parameters, all |χ(Xz)| solutions are regular. This means that the n×n Jacobian matrix
of (3.1) evaluated at each of the solutions has rank n.

In order to apply a powerful theorem from algebraic geometry, called the generalized
parameter continuation theorem in [78, Thm. 7.1.4], we reformulate (3.1) as a system
of equations on a product of projective spaces. We do this by clearing denominators.
We also add the new equation α1 · · · αnf1 · · · fℓαn+1 − 1 = 0, with new variable αn+1, so
as to impose that α1 · · · αnf1 · · · fℓ ̸= 0. The result is

αj

ℓ∑
i=1

µi
∂fi(α; z)

∂αj

∏
q ̸=i

fq + νj

ℓ∏
i=1

fi = 0, j = 1, . . . , n,
n+1∏
j=1

αj

ℓ∏
i=1

fi − 1 = 0. (3.2)
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Finally, we homogenize with respect to the α- and z-variables. We obtain n + 1
equations on Pn+1 (α-coordinates) with parameters in Pn+ℓ−1 × Ps ((µ, ν)-coordinates
and z-coordinates respectively). We now apply [78, Thm. 7.1.4]. This theorem requires
quite some notation. For transparency, we list its key players here in the notation of
[78], highlighted in blue, together with their values in our context:

• X = Pn+1 (α-space) and Y = Pn+ℓ−1 × Ps ((µ, ν, z)-space),

• U ⊂ X is Cn+1 ⊂ Pn+1 with coordinates α1, . . . , αn+1,

• Q ⊂ Y is Pn+ℓ−1 × E , where E is the closure of E ⊂ Cs in Ps,

• F consists of the n + 1 equations in (3.2).

By [78, Thm. 7.1.4], the maximal number of nonsingular solutions α in Cn+1 is attained
for generic parameters (µ, ν, z) ∈ Pn+ℓ−1 × E . Hence, it is the same as the maximal
number of nonsingular solutions for z-parameters in the dense open subset E ⊂ E .
By [77, Thm. 1], the maximal number of nonsingular solutions with parameters in
Pn+ℓ−1 × {z′} is |χ(Xz′)| (here we use Q = Pn+ℓ−1 × {z′} in the parameter continuation
theorem). Letting z′ run over E , we see that for almost all parameters (µ, ν, z), there
are χ∗ = maxz′∈E |χ(Xz′)| nonsingular solutions. Let Ũ ⊂ Pn+ℓ−1 × E be a nonempty
Zariski open subset on which this number is attained. There is a Zariski open set U ⊂ E
such that Ũ ∩ (Pn+ℓ−1 × {z}) is nonempty, and thus dense in Pn+ℓ−1 × {z}, for all z ∈ U .
Therefore, χ∗ is the generic value of |χ(Xz)| on E , and this value can only drop on E \ U .
The same statement is true on the dense open subset E ⊂ E .

By definition, Zk(E) = ⋃k
q=0 Vq(E). This easily implies Zk(E) ⊆ ⋃k

q=0 Vq(E), where
Vq(E) is the closure in Cs. To prove the theorem, it suffices to show that this inclusion
is in fact an equality. To show the reverse inclusion, let Vq(E) = W q

1 ∪ · · · ∪ W q
t be an

irreducible decomposition. We repeat the reasoning above, replacing E with the closure
W q

i in Ps. We find that on each of the irreducible varieties W q
i , the generic signed Euler

characteristic is q, and this is the maximal value attained on W q
i . This shows W q

i ⊂ Zk,
for all i and q ≤ k, and the theorem is proved.

3.2 Definition of the principal Landau determinant

As announced above, the principal Landau determinant is meant to be a more-tractable-
to-compute replacement of the Euler discriminant, tailored to the case where Xz

comes from a Feynman integral. For instance, in Lee-Pomeransky representation, the
parameters could be n = E, ℓ = 1, and f1 = GG is the graph polynomial as defined
above. A priori, the parameter space E ⊂ Cs is the kinematic space K, but it often
makes sense to restrict our analysis to smaller subregions, as we did in Sec. 2.2. For
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instance, we might want to implement the preknowledge of some masses being zero,
or equal to each other. For this reason, we will work with a subspace E ⊂ K. For
simplicity, we will take it to be a linear subspace. For instance, in (2.7) we may choose
E defined by the conditions m1 = m2 = m3. The principal Landau determinant will
be defined as a nonzero element of the ring C[E ] of polynomial functions on E . In
the case of (2.7), this is C[E ] = C[m1, m2, m3, s] when E = K, or C[E ] = C[m, s] when
E = K ∩ {m1 = m2 = m3 = m}.

Let G be a Feynman diagram with graph polynomial GG = UG + FG. The matrix A

has n = E rows, where E equals the number of internal edges of G. Its columns are all
exponents occurring in GG for generic choices of kinematics in E . Clearly, this depends
on E . For each face Q of Conv(A), we let GG,Q be the polynomial obtained by summing
only the terms of GG whose exponents lie in Q.

For each face Q of Conv(A), we consider the incidence variety

YG,Q(E) =
{
(α, z) ∈ (C∗)E × E : GG,Q(α; z) = ∂α GG,Q(α; z) = 0

}
. (3.3)

For later convenience, we break this variety up into its irreducible components:

YG,Q(E) =
⋃

i∈I(G,Q)
Y

(i)
G,Q(E). (3.4)

Here I(G, Q) is some finite indexing set, and Y
(i)

G,Q(E) are distinct, irreducible varieties.
Each of these has a natural projection

∇(i),◦
G,Q(E) = πE(Y (i)

G,Q(E)) ⊂ E ,

obtained by dropping the α-coordinates. This is reminiscent of the open A-discriminants
∇◦A we saw in Sec. 2.1. The Zariski closure of ∇(i),◦

G,Q(E) in E is ∇(i)
G,Q(E).

To each i ∈ I(G, Q), we associate the codimension of this projection:

codim(i) = dim(E) − dim(∇(i)
G,Q(E)).

We set I(G, Q)1 = {i ∈ I(G, Q) : codim(i) = 1}. All varieties ∇(i)
G,Q(E) with i ∈ I(G, Q)1

are defined by a single equation:

∇(i)
G,Q(E) = {∆(i)

G,Q(E) = 0}, with ∆(i)
G,Q(E) ∈ C[E ] \ {0}.

Definition 3.5 (Principal Landau determinant). The principal Landau determinant
(PLD) associated with the Feynman diagram G and the parameter space E is the unique
(up to scale) square-free polynomial EG(E) ∈ C[E ] defining the PLD variety

PLDG(E) = {EG(E) = 0} =
 ∏

Q∈F (A)

∏
i∈I(G,Q)1

∆(i)
G,Q(E) = 0

 .
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Notice that, since we are primarily interested in the vanishing locus {EG(E) = 0}
of the principal Landau determinant, our definition takes out the factors ∆(i)

G,Q(E) that
appear more than once.

We end the section with a comment and conjecture on the relation between PLDG(E)
and the Euler discriminant variety ∇χ(E). First, in light of Ex. 3.4, notice that when
E = Cs is the entire GKZ parameter space, PLDG(E) = ∇χ(E) is the variety of the
principal A-determinant. The proof of [69, Thm. 13] shows that solutions to the face
equations GG,Q = ∂αGG,Q = 0 correspond to critical points of (3.1) that lie on the
boundary of a toric compactification of Xz for generic parameters µ, ν. Our definition of
PLDG(E) aims to detect when there are more such critical points on the boundary then
usual, which by [77, Thm. 1] means that the Euler characteristic is smaller than usual.
We could not prove this intuition, but we formalize it with the following conjecture.

Conjecture 3.6. For any Feynman diagram G and any linear subspace E ⊆ K, we
have PLDG(E) ⊆ ∇χ(E), where ∇χ(E) is the Euler discriminant for the family of very
affine varieties given by Xz = (C∗)E \ {GG(α; z) = 0}, z ∈ E.

We have verified Conj. 3.6 numerically in all our examples, and Ex. 3.10 below
shows that the opposite inclusion PLDG(E) ⊇ ∇χ(E) may fail.

3.3 Examples

Here we provide four examples illustrating the computation of the principal Landau
determinant. We start with the running example of the banana diagram, first with
generic masses in Ex. 3.7 and then with one zero mass in Ex. 3.8. In Ex. 3.9, we compare
our definition of PLDG(E) with recently proposed alternatives. In particular, in [56] the
singular locus of integrals with non-generic parameters E is studied by first computing
the principal A-determinant EA, then restricting each factor in (2.2) to E , and finally
discarding all discriminants ∆A∩Γ which vanish after restriction. Ex. 3.9 illustrates how
this can fail. The paper [21] proposes a more sophisticated approach based on Taylor
expansions. Finally, Ex. 3.10 shows that the opposite inclusion in Conj. 3.6 may fail to
hold.

Example 3.7. Consider the example G = B3 from Sec. 2.2. At first, let us pick E = K
to be the entire kinematic space parametrized by (m1, m2, m3, s), as in (2.7). On the
codimension-1 face Q = 2389, the initial form GB3,2389 is given by

GB3,2389 = (1 − m3α3)(α1 + α2)α3.

The corresponding incidence variety YB3,2389(K) is carved out by the system of equations

GB3,2389 = (1 − m3α3)(α1 + α2)α3 = 0,
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∂α1GB3,2389 = ∂α2GB3,2389 = (1 − m3α3)α3 = 0,

∂α3GB3,2389 = (1 − 2m3α3)(α1 + α2) = 0

on the total space (C∗)3 × K. It has a single 5-dimensional component

Y
(1)

B3,2389(K) = {(α, z) ∈ (C∗)3 × K : α1 + α2 = 1 − m3α3 = 0}.

Its projection ∇(i)
G,Γ(K) has codimension 0 (there is a solution α ∈ (C∗)3 for almost any

s, m1, m2, m3) and hence does not contribute to the principal Landau determinant.
On the other hand, the codimension-2 face Γ = 89 contained in 2389 gives

GB3,89 = −m3(α1 + α2)α2
3,

and the incidence variety YB3,89(K) is defined by the equations

GB3,89 = −m3(α1 + α2)α2
3 = 0,

∂α1GB3,89 = ∂α2GB3,89 = −m3α
2
3 = 0,

∂α3GB3,89 = −2m3(α1 + α2)α3 = 0.

It has a single 6-dimensional component

Y
(1)

B3,89(K) = {(α, z) ∈ (C∗)3 × K : m3 = 0},

whose projection πE(Y (1)
B3,89(K)) has codimension 1 and contributes ∆(1)

B3,89(K) = m3 to
the principal Landau determinant. Physically, it is a mass divergence, which causes a
possible singularity of the integral (2.6) on the subspace (2.7) if m3 = 0.

Repeating analogous analysis for all faces of Newt(GB3) gives the principal Landau
determinant:

EB3(K) = m1m2m3s
[
s4 − 4s3(m1 + m2 + m3)

+ 2s2(3m2
1 + 3m2

2 + 3m2
3 + 2m1m2 + 2m2m3 + 2m3m1)

− 4s(m3
1 + m3

2 + m3
3 − m1m2(m1 + m2) − m2m3(m2 + m3)

− m3m1(m3 + m1) + 10m1m2m3) + λ(m1, m2, m3)2
]
,

where
λ(a, b, c) := a2 + b2 + c2 − 2ab − 2bc − 2ac (3.5)

is the Källén function. The term in the square brackets comes from the facet 456789, 10
dual to the ray (−1, −1, −1). Once expressed in terms of the particle masses me (such
that me = m2

e), it factors into four components

[s−(m1 +m2 +m3)2][s−(m1 +m2 −m3)2][s−(m1 −m2 +m3)2][s−(m1 −m2 −m3)2].

This is a well-known result for the singular locus of the Feynman integral IB3 . ⋄
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Example 3.8. Consider the same example, but on the subspace E ⊂ K obtained by
setting m1 = 0. Note that E ⊂ {EB3(K) = 0}, which means we cannot reuse the results
of the previous example directly. Instead, the polytope Newt(GB3(E)) is smaller and has
f -vector (7, 11, 6). The principal Landau determinant on E is

EB3(E) = m2m3s λ(s, m1, m2),

where once again, the final factor factors in terms of me’s. The λ function contribution
comes from the face with the weight (−2, −1, −1).

We could have tested the inclusion E ⊂ {EB3(K) = 0} by computing Euler charac-
teristics. One of the simplest ways is to get them is by counting the number of critical
points of the log-likelihood function W = µ1 log f + ∑3

i=1 νi log αi, see [3, Sec. 5] for
details. In practice, this check can be performed by using the following self-contained
snippet in Julia, which we first run on the kinematic space K:

using HomotopyContinuation 1

2

@var α[1:3], s, m[1:3], u[1:4] 3

f = (1 - m[1]*α[1] - m[2]*α[2] - m[3]*α[3])* 4

(α[1]*α[2] + α[2]*α[3] + α[3]*α[1]) + s*α[1]*α[2]*α[3] 5

6

W = u[1] * log(f) + dot(u[2:4], log.(α)) 7

dW = System(differentiate(W, α), parameters = [s; m; u]) 8

9

Crit = monodromy_solve(dW) 10

crt = certify(dW, Crit) 11

println(ndistinct_certified(crt)) 12

After loading packages, the lines 4−6 define the variables of the problem and the
polynomial f . The system of equations is set up in the lines 8−9 and solved with one
command in line 11 using homotopy continuation [2], followed by certification [79] and
printing the result. The code returns 7 in agreement with the result quoted in Rmk. 2.6.
Specializing to the subspace E amounts to inserting the substitution

W = subs(W, m[1]=>0) 13

between the lines 8 and 9. This changes the result to 4, indicating that E belongs to
the principal Landau determinant hypersurface PLDB3(K). ⋄

– 20 –



Example 3.9. Consider the generalized Euler integral with ℓ = 1, n = 2, and take

f1 = (1 + α1)(a + bα1 + cα2 + dα1α2),

where E is parametrized by (a, b, c, d). In analyzing its singularities, one could attempt
to apply the definition of the principal A-determinant for f1 with generic coefficients
first and then specialize to E . In this case, the A matrix is

A =


0 1 0 2 1 2
0 0 1 0 1 1
1 1 1 1 1 1

 .

Direct computation gives the principal A-determinant

EA = z1z3z4z6(z2
2 − 4z1z4)(z2

5 − 4z3z6) (3.6)
(z2

3z2
4 − z2z3z4z5 + z1z4z

2
5 + z2

2z3z6 − 2z1z3z4z6 − z1z2z5z6 + z2
1z2

6).

The subspace E giving specialized coefficients we are interested in is

(z1, z2, z3, z4, z5, z6) = (a, a + b, c, b, c + d, d).

On this subspace, the final factor in (3.6) evaluates to zero. A naive approach would be
to simply discard it [56], but keep the rest (other proposals, based on taking limits also
exist [21]):

Enaive
A (E) = abcd(a − b)(c − d). (3.7)

However, this prescription does not correctly account for all singularities of the integral,
as one can verify on simple examples. For instance, taking µ1 = −2, ν1 = ν2 = 1, and
Γ = R2

+ one finds that

I(a, b, c, d) =
∫
R2

+

dα1 ∧ dα2

[(1 + α1)(a + bα1 + cα2 + dα1α2)]2

= 1
(a − b)(c − d) − 1

bc − ad

[
b2 log(a/b)
(a − b)2 + d2 log(d/c)

(c − d)2

]

for a, b, c, d > 0 and its analytic continuation elsewhere. The integral is singular when
bc = ad on most sheets of the logarithms, which was not detected by (3.7). We note
that, in order to interpret this integral as a pairing between a twisted cycle and a twisted
cocycle, one needs to replace Γ by its regularization, see e.g. [72, Theorem* 3.24].

Hence, the desired description of the singular locus of I(a, b, c, d) is

E(E) = abcd(a − b)(c − d)(bc − ad).
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The previously-missing component comes from the dense face Q (the interior of Conv(A)).
Let us see how it arises. The incidence variety YQ(E) is defined by

f1 = (1 + α1)(a + bα1 + cα2 + dα1α2) = 0 ,

∂α1f1 = a + b + 2bα1 + (c + d)α2 + 2dα1α2 = 0,

∂α2f1 = (1 + α1)(c + dα1) = 0.

The variety corresponding to the radical ideal of the polynomials above has 2 irreducible
components with dimensions 4 and 3, respectively. The first one is

Y
(1)

Q (E) =
{
(α, z) ∈ (C∗)2 × E : α1 + 1 = a − b + (c − d)α2 = 0

}
.

It is a dominant component, meaning that ∇(1)
Q (E) = E (there is a solution for every

(a, b, c, d) ∈ C4, except for {c = d} \ {a = b}, which are included in ∇(1)
Q (E) by closure),

and hence is discarded. However, we are not allowed to discard the second component:

Y
(2)

Q (E) =
{
(α, z) ∈ (C∗)2 ×E : bc−ad = a+bα1 = c+dα1 = a+cα2 = b+dα2 = 0

}
.

Its projection πE(Y (2)
Q (E)) has codimension 1 and gives the discriminant surface {bc = ad}

missed in the naive approach.
This example illustrates why throwing away faces with dominant components from

the principal A-determinant might lead to incorrect results, in addition to complicating
the computation in intermediate stages, and a more specialized definition of the principal
Landau determinant is necessary. Dominant components appear in nearly all examples
of Feynman integrals studied in this paper, since they are tied to UV/IR divergences. ⋄

Example 3.10. This example serves to illustrate why we cannot have the opposite
inclusion in Conj. 3.6. That is, we might have ∇χ(E) ⊊ PLDG(E). The simplest diagram
for which we observed this is the parachute diagram G = par. To understand the failure
of this inclusion from a mathematical perspective, it is instructive to consider a smaller
example first. We set ℓ = 1 and consider the very affine surface Xz ⊂ (C∗)2 defined by

f(α1, α2; z) = (α2 − 1)2 − (α1 − z)α2
1.

That is, Xz is the complement of a nodal cubic Vz = {f(α1, α2; z) = 0} ⊂ (C∗)2 in the
two-dimensional complex torus. Our parameter space is E = C. We claim that the
generic Euler characteristic χ∗ is equal to 4. To see this, we define the following set:

P = {(α1, α2) ∈ Vz : f(α1, 0; z) = 0 or α1 = z}.
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Figure 3. The very affine surface Xz is the complement of a nodal cubic for generic z (left).
For z = 0, it is the complement of a cuspidal cubic (right).

One checks that P consists of four points for generic z. These points are indicated in
blue in Fig. 3. We obtain a fibration Vz \ P → C∗ \ {4 points} by simply forgetting
the α2-coordinate. Fibres of this map consist of two points. Using the excision and
fibration properties of the Euler characteristic, we obtain

χ(Xz) = χ((C∗)2) − χ(Vz) = 0 − [χ(Vz \ P ) + χ(P )] = 0 − [−4 · 2 + 4] = 4.

When z = 0, V0 is a cuspidal cubic: the cusp is at (α1, α2) = (0, 1). A similar reasoning,
using a fibration V0 \ P → C∗ \ {3 points}, gives χ(X0) = 3. The dots with a dashed
border on the right part of Fig. 3 are not real. We have shown that 0 ∈ ∇χ(E). To make
sense of the principal Landau determinant in this example, we think of f as the graph
polynomial GG of a fictional diagram G. The polytope Conv(A) is the triangle with
vertices (0, 0), (3, 0), (0, 2). To compute PLDG(E), we investigate the incidence varieties
YG,Q(E) from (3.3) for the faces Q of that triangle. One checks easily that, when Q is a
vertex, YG,Q(E) is empty. The same is true for the two-dimensional face Q = Conv(A).
When Q is one of the edges (0, 0) − (0, 2), (0, 2) − (3, 0), the equations for YG,Q(E) do
not depend on z, so all its component are either empty or project dominantly to E .
Hence, also these faces do not contribute to PLDG(E). Finally, when Q is the edge
(0, 0) − (3, 0), YG,Q(E) is defined by 1 − (α1 − z)α2

1 = −3α2
1 + 2zα1 = 0. Eliminating α1

gives 4z3 + 27 = 0. In particular, we have 0 /∈ PLDG(E).
We have concluded that the PLD analysis does not detect the drop in the Euler

characteristic for z = 0. Here is an ad hoc remedy for this. When z = 0, the nodal
singularity at (α1, α2) = (0, 1) becomes a cusp. We now look at the incidence equations
f = α1

∂f
∂α1

= α2
∂f

∂α2
= 0 in a partial compactification C2 ⊃ (C∗)2 which contains the

boundary {α1 = 0} containing the cusp. The ideal generated by these three equations
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in the ring C[α1, α2, z] has three primary components:〈
f, α1

∂f

∂α1
, α2

∂f

∂α2

〉
= ⟨α1, α2 − 1⟩ ∩ ⟨α2, 3α1 − 2z, 4z3 + 27⟩ ∩ ⟨z, α2 − 1, α3

1⟩. (3.8)

The first component projects dominantly to the parameter space E , reflecting the fact
that there is always (at least) a nodal singularity at (0, 1). The second component
projects to the PLD given by 4z3 + 27 = 0. Finally, and most importantly, the third
component projects to z = 0. It is an embedded point supported on the first primary
component ⟨α1, α2 − 1⟩, indicating that for z = 0, the nodal singularity gets extra
singular. The same happens for G = par, see Sec. 3.5. App. C presents a toric
compactification which can be used systematically to detect such components. ⋄

3.4 Different formulations

Our Def. 3.5 is based on a specialized GKZ analysis of the Feynman integral IG. That
integral is viewed as a generalized Euler integral of the type (2.3), with n = E the
number of internal edges, ℓ = 1 and f = f1 = UG + FG. A different integral formula
for IG, called Feynman representation establishes it as (2.3) with n = E − 1, ℓ = 2 and
f = (f1, f2) = (UG, FG). Here f is the dehomogenization of f , where we set αE = 1. At
the level of integrals, we have the following well-known result.

Proposition 3.11. Feynman integrals IG without numerators can be equivalently repre-
sented as integrals

IG =
∫
RE−1

+

dE−1α

UG
−µ1 FG

−µ2

E−1∏
i=1

αi
νi−1 = Γ(−µ1 − µ2)

Γ(−µ1)Γ(−µ2)

∫
RE

+

dEα

(UG + FG)−µ1−µ2

E∏
i=1

ανi−1
i

up to an overall normalization Γ(−µ2). Here, νi are the powers of propagators associated
to every internal edge and µ1 = −µ2 − D/2, µ2 = LD/2 −∑E

i=1 νi, where D is the space-
time dimension and L is the number of loops in the diagram.

Proof. The equality can be easily seen as an application of the identity

UG
µ1FG

µ2 = Γ(−µ1 − µ2)
Γ(−µ1)Γ(−µ2)

∫
R+

dy y−µ2−1(UG + yFG)µ1+µ2 ,

followed by the change of variables

y = αE, αi = αi

αE
for i = 1, 2, . . . , E − 1 .

To identify the factor ανE−1
E , one needs to use −µ2 − L(µ1 + µ2) −∑E−1

i=1 νi = νE.
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In App. B, we review how to also include numerator factors, which does not change
any of the conclusions of our analysis.

The E-dimensional very affine variety (C∗)E \ V(C∗)E(GG) (see (2.4)) is replaced
with (C∗)E−1 \ V(C∗)E−1(UGFG). In this new setup, the GKZ paradigm would lead us
to consider the principal A-determinant, where A is the matrix (2.5) with E + 1 rows
formed from the exponents A1 of UG and A2 of FG. In Sec. 3.2, one would replace the
graph polynomial GG by y1 ·UG +y2 ·FG, where y1 and y2 are new variables corresponding
to the last two rows of A. We obtain E + 2 critical point equations

y1 · UG + y2 · FG = ∂α1,...,αE−1,y1,y2(y1 · UG + y2 · FG) = 0

on the torus (C∗)E+1 with coordinates α1, . . . , αE−1, y1, y2. These are homogeneous in
y1, y2, so we may dehomogenize and set y1 = 1, y2 = y. This section explains why this
different approach would lead to the same definition. Here is the key observation.

Lemma 3.12. Let U , F ∈ C[α1, . . . , αE] be homogeneous polynomials of degree L and
L + 1 respectively. Let U , F be their dehomogenizations after setting αE = 1. The map

φ : (C∗)E → (C∗)E : (α1, . . . , αE−1, y) 7 −→ (yα1, . . . , yαE−1, y) (3.9)

is an isomorphism of tori which sends the hypersurface {U + y · F = 0} to {U + F = 0}.

Proof. The map φ is an isomorphism because the matrix of exponents

Q =



1 0 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 · · · 0 0
... ... ... . . . 1 0
1 1 1 · · · 1 1


(3.10)

has determinant 1. The second claim follows from the fact that the pullback φ∗(U + F)
of U + F under the map φ equals yL · (U + y · F).

Notice that, in (3.9), the first torus (C∗)E has coordinates α1, · · · , αE−1, y, and the
second has coordinates α1, . . . , αE. To avoid confusion, we will denote these tori by
T1 ≃ T2 ≃ (C∗)E, and φ : T1 → T2.

The linear map Q : RE → RE with Q as in (3.10) is an isomorphism which maps
ZE ⊂ RE bijectively onto itself. The Newton polytope P2 ⊂ RE of U + F is mapped to
the Newton polytope P1 ⊂ RE of U + y · F , and Q defines a bijection between faces of
P2 and faces of P1. For a face Q2 ⊂ P2, we write Q1 = Q(Q2) for the corresponding
face of P1. Note that P2 is the polytope Conv(A) in Sec. 3.2.
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Let HG = UG + y · FG. Similar to what we did for GG above, for each face Q1 ⊂ P1
we let HG,Q1 be the sum of the terms of HG whose exponents lie in Q1. For each face
Q2 of P2, we consider the incidence varieties

YG,Q2(E) = {(α, z) ∈ T2 × E : GG,Q2(α; z) = ∂α GG,Q2(α; z) = 0} ,

YG,Q1(E) = {(ᾱ, z) ∈ T1 × E : HG,Q1(ᾱ; z) = ∂ᾱ HG,Q1(ᾱ; z) = 0} .

Here YG,Q2(E) is identical to the incidence variety seen in (3.3), and the derivatives
appearing in the definition of YG,Q1(E) are with respect to ᾱ = (α1, . . . , αE−1, y).

Proposition 3.13. The restriction of the map φ × id : T1 × E → T2 × E , with φ as in
(3.9), to YG,Q1(E) is an isomorphism YG,Q1(E) → YG,Q2(E).

Proof. This follows from the fact that whether a Laurent polynomial defines a singular
hypersurface in a toric compactification does not depend on the choice of coordinates
on the lattice. In more down to earth terms, the statement follows by checking that the
substitution α = φ(ᾱ) = (yα1, . . . , yαE−1, y) in

GG,Q2(α; z) = ∂GG,Q2

∂α1
(α; z) = · · · = ∂GG,Q2

∂αE
(α; z) = 0 (3.11)

leads to a new set of equations which is equivalent to

HG,Q1(ᾱ; z) = ∂HG,Q1

∂α1
(ᾱ; z) = · · · = ∂HG,Q1

∂y
(ᾱ; z) = 0. (3.12)

A point (ᾱ, z) ∈ T1×E satisfies (3.12) if and only if (φ(ᾱ), z) ∈ T2×E satisfies (3.11).

It follows from Prop. 3.13 that using the Feynman representation would lead to the
same definition of the principal Landau determinant, as the projections of our incidence
varieties to the parameter space E are identical.

A well-known observation is that passing from Lee–Pomeransky to Feynman repre-
sentation preserves the Euler characteristic. We prove a more general result.

Theorem 3.14. Let F and U be homogeneous polynomials in C[α1, . . . , αE] of degree
dF and dU respectively, with dF > dU . Let F , U be the dehomogenizations obtained by
setting αE = 1. We have

χ
(
(C∗)E \ V(C∗)E(F + U)

)
= (dU − dF) · χ

(
(C∗)E−1 \ V(C∗)E−1(F · U)

)
.

Proof. Let T = (C∗)E be the torus with coordinates α1, . . . , αE−1, y and consider the
hypersurface complement T \ VT (y · F + U). The first step is to show that this has
Euler characteristic χ

(
(C∗)E−1 \ V(C∗)E−1(F · U)

)
. To this end, we decompose

T \ VT (y · F + U) = (T \ VT (y · F + U)) \ VT (F · U)
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⊔ VT (F) \ VT (U) ⊔ VT (U) \ VT (F).

Forgetting the y-coordinate (α1, . . . , αE−1, y) 7→ (α1, . . . , αE−1) gives three maps

(T \ VT (y · F + U)) \ VT (F · U) −→ (C∗)E−1 \ V(C∗)E−1(F · U),
VT (F) \ VT (U) −→ V(C∗)E−1(F) \ V(C∗)E−1(U),
VT (U) \ VT (F) −→ V(C∗)E−1(U) \ V(C∗)E−1(F).

Each of these maps is a fibration, with fibers isomorphic to C∗ \ {y + 1 = 0}, C∗ and
C∗ respectively, with Euler characteristics −1, 0 and 0. We conclude that

χ
(
T \ VT (y · F + U)

)
= χ

(
(T \ VT (y · F + U)) \ VT (F · U)

)
+ χ

(
VT (f) \ VT (U)

)
+ χ

(
VT (U) \ VT (F)

)
= −1 · χ

(
(C∗)E−1 \ V(C∗)E−1(F · U)

)
+ 0 · χ(V(C∗)E−1(F) \ V(C∗)E−1(U)) + 0 · χ(V(C∗)E−1(U) \ V(C∗)E−1(F))

= −χ
(
(C∗)E−1 \ V(C∗)E−1(F · U)

)
.

We now consider a different torus T̃ = (C∗)E with coordinates α1, . . . , αE. The map
T̃ → T given by

(α1, . . . , αE) 7 −→
(

α1

αE
, . . . ,

αE−1

αE
, αdF−dU

E

)
sends T̃ \ VT̃ (F + U) to T \ VT (y · F + U). Fibers consist of dF − dU points. Hence,

χ(T̃ \ VT̃ (F + U)) = (dF − dU) · χ(T \ VT (y · F + U))
= (dU − dF) · χ

(
(C∗)E−1 \ V(C∗)E−1(F · U)

)
.

Note that, when the polynomials U and F depend on parameters z, the Euler
discriminants of the hypersurfaces defined by U(α; z) + F(α; z) and U(α; z) · F(α; z)
coincide. We point out that [80, Lem. 48] is a special instance of Thm. 3.14.

3.5 Beyond the standard classification

In this section, we make a comparison between the principal Landau determinant
and a textbook formulation of Landau equations. In particular, we explain how our
classification of singularities is different from that usually employed in the literature.

Let us first consider the case with all internal massive edges, mi ̸= 0, which
closely matches with the standard formulation [11, 81]. Recall that for any connected
subdiagram γ ⊂ G, the result of substituting αe → ϵαe for every e ∈ γ is

UG|αγ→ϵαγ
= ϵLγ Uγ UG/γ + O(ϵLγ+1) , FG|αγ→ϵαγ

= ϵLγ Uγ FG/γ + O(ϵLγ+1) ,

GG|αγ→ϵαγ
= ϵLγ Uγ GG/γ + O(ϵLγ+1)

(3.13)

– 27 –



where G/γ denotes the reduced diagram obtained from G by contracting all the edges in
γ and identifying all the vertices in γ. The above assumption on the masses implies that
the right-hand sides have at least one non-vanishing monomial at order ϵLγ . The proof
is standard, see, e.g., [3, Prop. 4]. This result allows us to label facets by subgraphs γ.
Let wγ be the weight vector whose entries are 1 for every edge i ∈ γ and 0 otherwise:

wγ =
∑
i∈γ

ei ,

where ei is the i-th basis vector in RE. We think of these as vectors in the normal fan of
the Newton polytope of GG. They select a face of that Newton polytope by minimizing
the scalar product. The face Q corresponding to w is the Newton polytope of the
corresponding initial form, denoted by inw(GG) = GG,Q. We will consider the cases
w = 0, wγ , −wγ , and −wG to match the types of singularities studied in the literature.

Leading second-type singularities. Firstly, the dense face (the interior of the
polytope) corresponds to w = 0. The incidence variety (3.3), is defined by the equations

GG(α; z) = ∂αeGG(α; z) = 0 for all e ∈ G

for α ∈ (C∗)E. The corresponding components in PLDG are known in the literature as
leading (also called pure) second-type singularities [16, 82].

Leading first-type singularities. The simplest nonzero weight vector is −wG =
(−1, . . . , −1). Since the homogeneity degree of FG in the α’s is one higher than that of
UG, only the monomials in the first polynomial survive in the initial form:

in−wG
(GG) = FG .

The corresponding incidence variety is defined by the equations

∂αeFG(α; z) = 0 for all e ∈ G (3.14)

for α ∈ (C∗)E. Since FG is homogeneous in α, the equation FG = 0 would be redundant
and hence does not need to be written down. If we additionally impose the inequality
UG ̸= 0, these would give what are known in the literature as leading singularities (of
the first type) [8–10], later formalized as the Landau discriminant [3].

Subleading second-type singularities. For the weights wγ , applying the factoriza-
tion properties (3.13) gives

inwγ (GG) = Uγ GG/γ . (3.15)
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Recall that the variables α in γ and G/γ are disjoint. There are several components
and we first consider the case GG/γ ̸= 0. The system of equations defining the incidence
variety involves ∂αeUγ = 0 for all e ∈ γ for α ∈ (C∗)E (once again, Uγ = 0 is redundant).
Since none of the equations depends on the kinematic variables z, it either gives no
solutions or a dominant component that we discard from the PLD. Hence we need
GG/γ = 0 for non-trivial solutions. In this case, the system is

∂αeGG/γ(α; z) = 0 for all e ∈ G/γ

for α ∈ (C∗)E. Note that the variables αe for e ∈ γ do not appear and hence are
unconstrained. This is the same system of equations as for the dense face, but for
the diagram G/γ instead of G. In the literature, these are referred to as subleading
singularities of the second type (also called mixed second type) [33, 83].

Subleading first-type singularities. Finally, let us consider the weights −wγ . Using
homogeneity properties of UG and FG, we find

in−wγ (GG) = UγcFG/γc .

Here, γc denotes the complement of γ in G. The analysis is entirely analogous to the
case (3.15). The solutions with FG/γc ̸= 0 can be discarded. We are hence left with

∂αeFG/γc(α; z) = 0 for all e ∈ G/γc

for α ∈ (C∗)E. This is the same system of equations as (3.14), except with G/γc instead
of G. Solutions of such equations are known as subleading singularities of the first kind.

One of the simplest examples of Landau singularities is associated to the parachute
diagram G = par illustrated in Fig. 1k. In order to make it more interesting and
conform to the above assumptions, we will make all the masses distinct and non-zero.
The kinematic space K is therefore parametrized by (s, M3, M4, m1, m2, m3, m4) ∈ C7.
The graph polynomial is Gpar = Upar + Fpar with

Upar = (α1 + α2)(α3 + α4) + α3α4,

Fpar = sα1α2(α3 + α4) + M3α1α3α4 + M4α2α3α4 − (m1α1 + m2α2 + m3α3 + m4α4)Upar.

The rays of the normal fan of Newt(Gpar) index its facets. They are given by

{(−1, −1, −1, −1), (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1),
(0, 0, 1, 1), (1, 1, 1, 0), (1, 1, 0, 1), (1, 1, 1, 1)}.
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The f -vector is (15, 33, 27, 9). Hence, together with the dense face, there are in total 85
systems of equations to solve. Note that this is much larger than the naive counting
24 = 16 (each edge collapsed or not) of reduced diagrams. Let us first discuss a few
interesting cases that lead to discriminants with degree larger than 1. We will keep
using the notation mi = m2

i whenever convenient.

Weight (−1, −1, 0, 0). The weight vector (−1, −1, 0, 0) lies in the relative interior of
the 2-dimensional cone generated by (−1, −1, −1, −1) and (0, 0, 1, 1). Its initial form is

in(−1,−1,0,0)(Gpar) = (α3 + α4)[(s − m1 − m2)α1α2 − m1α
2
1 − m2α

2
2] .

It gives rise to the incidence variety carved out by the following set of equations:

(α3 + α4)[(s − m1 − m2)α1α2 − m1α
2
1 − m2α

2
2] = 0,

(s − m1 − m2)α1α2 − m1α
2
1 − m2α

2
2 = 0, (3.16a)

(α3 + α4)[(s − m1 − m2)α2 − 2m1α1] = 0,

(α3 + α4)[(s − m1 − m2)α1 − 2m1α2] = 0.

The incidence variety has 2 components, both of dimension 9. The first one has equation
α3 + α4 = 0 and (3.16a) and hence projects dominantly to the kinematic space. It has
the physical interpretation of a UV sub-divergence associated to shrinking the bubble
subdiagram. The second component is seen by setting α3 + α4 ̸= 0. It projects to
codimension 1 in the kinematic space, giving the discriminant:

Epar,1(K) = λ(s, m1, m2) = [s − (m1 + m2)2][s − (m1 − m2)2] , (3.17)

where λ is the Källén function (3.5). It corresponds to a 3-dimensional fiber with
(α1 : α2) = (1/m1 : ±1/m2) and any α3, α4 ∈ C∗, see [3, Sec. 2.6]. These components
are called normal and pseudo-normal thresholds in the s-channel.

In [17, Sec. 6.4], the authors identify a component [17, Eq. (6.15)] of what they call
the Landau variety (see also [15, 16]). In our notation, this component is

Fpar = s(M4 − m1)(M3 − m2) − (m1M3 − m2M4)(m2 − m1 + M4 − M3) = 0. (3.18)

Unfortunately, this is not part of the principal Landau determinant. The reason is similar
to what we saw in Ex. 3.10. To analyze this in more detail, we made the simplification
(M3, M4, m1, m2, m3, m4) = (1, 1, 2, 3, 1, 2). We modify the incidence equations as follows:

α−2
2 α4 · Gpar(α; z) = α−2

2 α4 · αe · ∂αeGpar(α; z) = 0 for all e ∈ par.

This does not change the solutions in (C∗)E. Then, we apply the invertible change of
coordinates (α1, α2, α3, α4) = (y1y

−1
4 , y−1

4 , y2y3y
−1
4 , y2y

−1
4 ). This leads to five polynomials

– 30 –



in C[s][y1, y2, y3, y4]. For the reader who is familiar with toric geometry, we are expressing
the incidence equations in coordinates on a copy of C4 inside the toric variety associated
to Newt(Gpar). More precisely, y1, . . . , y4 are coordinates on the affine piece of this
projective toric variety corresponding to the smooth vertex (0, 2, 0, 1) [84, Sec. 3.5].

Our two-dimensional cone coming from weight (−1, −1, 0, 0) now corresponds to
the coordinate subspace {y2 = y4 = 0}. The ideal generated by our equations in
C[s][y1, y2, y3, y4] has six primary components, of which we display the following two:

P1 = ⟨ y3 + 1, y2, 2y2
1 − y1y4 − sy1 + 5y1 − y4 + 3 ⟩,

P2 = ⟨2s + 1, y4, (y3 + 1)2, 2y2 + 5y3 + 5, y1 − y3 + 1⟩.

The first component P1 was identified above: it projects dominantly to s-space and is
contained in α3 + α4 = 0 (in our old coordinates). The second primary component P2

is an embedded component of P1, which is contained in {y2 = y4 = 0} and projects
to {2s + 1 = 0}. One checks that this is the component (3.18) identified by Berghoff
and Panzer, specialized to our choice of masses. Like in Ex. 3.10, we analyzed primary
components of the incidence equations, extended to a partial compactification containing
the locus of the singularity, in this case {y2 = y4 = 0}.

Weights (−1, −1, 1, 0) and (−1, −1, 0, 1). Similarly, one obtains the contributions
coming from the three-dimensional cones constructed by adding either the ray (0, 0, 1, 0)
or (0, 0, 0, 1) to the above two-dimensional cone. Due to symmetry, it is enough to look
at the first case, which has weight (−1, −1, 1, 0) and the initial form:

in(−1,−1,1,0)(Gpar) = α4[(s − m1 − m2)α1α2 − m1α
2
1 − m2α

2
2] .

The discussion is parallel to the previous case and hence these faces also lead to the
discriminant Epar,1(K) from (3.17). However, physically, it comes from the Schwinger
proper times expanding and contracting at different relative rates according to the
weights (−1, −1, 1, 0). This phenomenon was previously observed in [15] in a more
ad-hoc manner.

Weights (−1, 0, −1, −1) and (0, −1, −1, −1). The two-dimensional cone generated
by −(1, 1, 1, 1) and (0, 1, 0, 0) contains the weight −(1, 0, 1, 1). The initial form is

in(−1,0,−1,−1)(Gpar) = M4α1α3α4 − (m1α1 + m3α3 + m4α4)(α1α3 + α1α4 + α3α4) .

It corresponds to the reduced diagram obtained by shrinking the edge with the Schwinger
parameter α2. Hence, the equations are analogous to those appearing in Ex. 3.7 for the
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banana diagram B3 with modified kinematics. It has two components that contribute to
the principal Landau determinant:

Epar,2(K) = [M4 − (m1 + m3 + m4)2][M4 − (m1 + m3 − m4)2]
· [M4 − (m1 − m3 + m4)2][M4 − (m1 − m3 − m4)2],

and {M4 = 0}. The former comes from the one-dimensional fiber with (α1 : α3 : α4) =
(1/m1 : ±1/m3 : ±1/m4) and α2 ∈ C∗ and is the subleading first-type singularity,
also known as the normal and pseudo-normal thresholds in the M3-channel. The
latter is associated to a one-dimensional fiber determined by {m1α1 + m3α3 + m4α4 =
0} ∩ {α1α3 + α1α4 + α3α4 = 0} and is the subleading second-type singularity.

By symmetry, an analogous computation for the weight (0, −1, −1, −1) leads to

Epar,3(K) = Epar,2(K)
∣∣∣
m1→m2,M4→M3

and M3 = 0.

Weight (−1, −1, −1, −1). The one-dimensional cone given by the ray (−1, −1, −1, −1)
has the initial form

in(−1,−1,−1,−1)(Gpar) = Fpar.

This is the leading singularity. One of its components is an irreducible variety of degree
6 in K given by:

Epar,4(K) = (m2
1M3s + m2

3M3s + m2
4M3s + 2m3m4M3s + m2

2M4s + m2
3M4s + m2

4M4s

+ 2m3m4M4s + m4
1 + M3m

2
1M2

3 + m2
2m

2
1M3 + m2

3m
2
1M3 + m2

4m
2
1M3

+ 2m3m4m
2
1M3 + m2

2m
2
1M4 − m2

3m
2
1M4 − m2

4m
2
1M4 − 2m3m4m

2
1M4

+ m2
1M3M4 − m2

2M2
4 − m2

2m
2
3M3 − m2

2m
2
4M3 − 2m2

2m3m4M3 − m4
2M4

+ m2
2m

2
3M4 + m2

2m
2
4M4 + 2m2

2m3m4M4 + m2
2M3M4 − m2

3s
2 − m2

4s
2

− 2m3m4s
2 − m2

2m
2
1s + m2

3m
2
1s + m2

4m
2
1s + 2m3m4m

2
1s − m4

3s − m4
4s

− 4m3m
3
4s + m2

2m
2
3s + m2

2m
2
4s − 6m2

3m
2
4s − 4m3

3m4s + 2m2
2m3m4s

− M3M4s)(m3 ↔ m4), (3.19)

where the factor (m3 ↔ m4) is given by switching the variable m3 with m4 in the first
factor. It has zero-dimensional fibers, i.e., the Schwinger parameters are localized to
points. As before, we used mi = m2

i , in terms of which the discriminant factors into two
irreducible components. Another component is of degree 2 and given by

Epar,5(K) = λ(s, M3, M4), (3.20)

which also comes from a 0-dimensional fiber.
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Weight (0, 0, 0, 0). Finally, the contribution from the dense face has the initial form
equal to the graph polynomial itself:

in(0,0,0,0)(Gpar) = Gpar.

It has a one-dimensional fiber which also projects down to the component Epar,5(K). It
is the leading second-type singularity.

Principal Landau determinant. The remaining discriminants can be analyzed in
an analogous fashion and yield only degree-1 or empty components. As a result of this:

Epar(K) = m1m2m3m4M3M4s
5∏

i=1
Epar,i(K).

Likewise, after including the component (3.18), the Euler discriminant is given by

∇χ(K) = {Epar(K)Fpar = 0} .

We verified that (3.18) is the only extra factor by running cgReduction [23] and
collecting all candidate components on which the signed Euler characteristic drops, see
App. A for details. Subsets and special cases of these Landau singularities were also
found in [15–17, 28, 85].

For diagrams involving massless particles, the face structure of Newt(GG) may be
drastically different, because the factorization implied by (3.13) changes in such cases.
More specifically, for a given γ, we might encounter FG/γ = 0 and O(ϵLγ+1) terms are
needed to understand the leading behavior. Physically, such situations are associated
with infrared (IR) divergences [67]. Let us illustrate it on the parachute example from
the previous subsection. This time, we consider the kinematic subspace

E = K ∩ {s = m1 = m2 = 0}.

It means that Gpar(E) = Upar + Fpar(E) with

Fpar(E) = M3α1α3α4 + M4α2α3α4 − (m3α3 + m4α4) Upar.

The resulting polytope Newt(Gpar(E)) has fewer faces compared to the generic-mass
case and its f -vector is (11, 23, 19, 7). The principal Landau determinant reads

Epar(E) = m3m4M3M4(M3 − M4)λ(M3, m3, m4)λ(M4, m3, m4).

Dominant components have been filtered out according to Def. 3.5. We verified that
∇χ(E) = {Epar(E) = 0}, i.e., PLD does not miss any components in this case.
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4 One-loop and banana diagrams

In this section, we consider the application to the simplest examples of one-loop
diagrams with n external legs and banana diagrams with E internal edges. Singularities
of Feynman integrals belonging to these families are well-known, see, e.g., [81]. The
purpose of the forthcoming discussion is to demonstrate how to phrase this analysis in
terms of principal Landau determinants.

4.1 One-loop diagrams

For the family of one-loop diagrams An with n external legs, E internal edges with
n = E, and generic masses, illustrated in [3, Fig. 1a], the Symanzik polynomials are

UAn = α1 + · · · + αn, FAn =
∑
i<j

(si,i+1,...,j−1 − mi − mj) αiαj −
n∑

i=1
miα

2
i . (4.1)

In the special case j = i + 1, si = Mi. The s = n +
(

n+1
2

)
coefficients of the polyno-

mial GAn
:= UAn + FAn are either constants, or linear functions of si,i+1,...,j−1, mi that

parameterize the kinematic space K ⊂ Cs. We will write An for the integer matrix of
size n × s with columns given by the exponents of GAn . As explained in Sec. 2, the
polynomial GAn defines a hypersurface VAn,(si,i+1,...,j−1,mi) in the algebraic torus (C∗)n

when fixing the coefficients si,i+1,...,j−1, mi. To simplify the notation, we will drop the
subscript (si,i+1,...,j−1, mi) when referring to this variety.

In what follows, we study the principal Landau determinant EAn(E) associated
to one-loop diagrams An, when restricting to the subspaces E of the kinematic space
K ⊂ Cs introduced in Sec. 2. In particular, we show that none of the factors of the prin-
cipal A-determinant vanishes identically when substituting parameters in {K, E (Mi,0)}.
Furthermore, we conjecture that the same statement holds for E (0,0). Geometrically, this
means that intersecting the principal A-determinant variety with the kinematic space
results in a proper subvariety of both. In accordance with Thm. 2.3, this behaviour is
predicted from the computations of the Euler characteristic of the variety VAn(E) and
the normalized volume of the polytope Conv(An(E)) shown in Tab. 2.

For the subspace E (0,0), we verified the equality between volume and Euler charac-
teristic for n = 2, . . . , 10. However, understanding the face structure of the polytope
Conv(An(E (0,0))) turns out to be quite challenging. Therefore, we could not prove the
formula in the last column of Tab. 2 in full generality.

According to Def. 2.2, computing the principal A-determinant for a one-loop diagram
boils down to two steps: (i) understanding the faces of the polytope Conv(An(E)); and
(ii) computing the discriminant associated to each face.
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K E (Mi,0) E (0,me) E (0,0)

(−1)n · χ(VAn(E)) 2n − 1 2n − 1 − n 2n − 1− n 2n − 1 + n− n2

vol(An(E)) 2n − 1 2n − 1 − n 2n − 1 2n − 1 + n− n2

Table 2. Values of signed Euler characteristic (−1)n · χ(VAn(E)) and volume vol(An(E)) for
one-loop diagrams An with n ≥ 2 external legs. We thank Hjalte Frellesvig for providing the
formulas in the case E(0,0). To our knowledge, bold entries are conjectured, others are proved.

Since GAn has degree 2, in step (ii) we can make use of well-known descriptions of the
discriminant of a quadratic form in terms of its symmetric matrix, see [22, Ex. 1.3 (b)].
A general quadratic form in the variables α = (α1, . . . , αn) supported on An is

fn(α; z) =
∑

0≤i≤j≤n

zij αi αj = 1
2(1 α1 · · · αn)


0 z01 · · · z0n

z01 2z11 · · · z1n

... ... . . . ...
z0n z1n · · · 2znn




1
α1
...

αn

 , (4.2)

where, in the first expression, we set α0 = 1 and z00 = 0 for convenience. We denote the
coefficient matrix of size n + 1 displayed above by Z. The principal An-determinant is
a polynomial in the coefficients zij. Restricting to the subspaces of the kinematic space
listed above corresponds to setting some of the entries of the matrix Z to zero. It will
be convenient to use the symmetric matrix Z to describe the factors of the principal
Landau determinant EAn(E).

4.1.1 Generic masses

We begin the study of the principal Landau determinant EAn(K) by understanding in
detail the facet description of the Newton polytope of the polynomial GAn . The Newton
polytope is a truncation of a dilated standard simplex, and the associated toric variety
is the blow-up of Pn at one of its torus invariant points. To make this precise, we
introduce the following notation. Let [n] = {1, . . . , n} and write ei for the i-th standard
basis vector of Rn. For any subset I ⊂ [n], we write

T (I) = Conv( ei, 2 · ei : i ∈ I ).

With this notation, we have Newt(GAn) = T ([n]). The polytopes T ([2]), T ([3]) and a
Schlegel diagram for T ([4]) are shown in Fig. 4. To describe the faces of the truncated
simplices T ([n]), it is convenient to introduce the notation

S(I) = Conv(ei : i ∈ I), D(I) = Conv(2 · ei : i ∈ I), I ⊂ [n],
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Figure 4. The truncated simplices T ([2]), T ([3]) and T ([4]).

for the (|I|−1)-dimensional simplices (S) and dilated simplices (D) associated to the
index set I. The following lemma gives a complete description of the face structure of
the polytope T ([n]).

Lemma 4.1. The polytope T ([n]) has 2n vertices given by e1, . . . , en, 2 · e1, . . . , 2 · en.
Its faces of dimension 1 ≤ k ≤ n − 1 consist of

1.
(

n
k+1

)
simplices {S(I) : I ⊂ [n], |I|= k + 1},

2.
(

n
k+1

)
dilated simplices {D(I) : I ⊂ [n], |I|= k + 1}, and

3.
(

n
k

)
truncated simplices {T (I) : I ⊂ [n], |I|= k}.

In particular, the f-vector of T ([n]) is given by
(
2n, 2

(
n
2

)
+ n, 2

(
n
3

)
+
(

n
2

)
, . . . , 2 + n

)
.

Proof. We sketch the proof and leave the details to the reader. Let Σ be the normal fan
of the standard simplex Conv(0, e1, . . . , en) ⊂ Rn and let σ = R≥0 · {e1, . . . , en} ⊂ Rn

be the positive orthant. The normal fan of T ([n]) is the star subdivision Σ∗(σ) of Σ
along σ. The 2n vertices of T ([n]) correspond to its 2n full-dimensional cones. The
(n − k)-dimensional cones come in three types. In terms of ray generators, these types
are described by:

1. the ray (1, 1, . . . , 1) and {ei : i ∈ [n] \ I}, for |I|= k + 1,

2. the ray (−1, −1, . . . , −1) and {ei : i ∈ [n] \ I}, for |I|= k + 1,

3. the rays {ei : i ∈ [n] \ I}, for |I|= k.

The corresponding k-dimensional faces are those listed in the lemma.

Next, we investigate the principal An-determinant EAn corresponding to our trun-
cated simplices T ([n]). Notice that the columns of the matrix An are precisely the
lattice points in T ([n]) ∩ Zn. We will express EAn as a product of discriminants ∆F ,
where F runs over the faces of T ([n]) listed in Lem. 4.1, as described in (2.2). For this
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purpose, we index the rows and columns of the matrix Z in (4.2) by {0, 1, . . . , n} and,
for any I ⊂ {0, 1, . . . , n}, we write ZI for the square submatrix with rows and columns
indexed by I.

Lemma 4.2. The face discriminants of An = T ([n]) ∩ Zn are given by the following
formulae:

1. ∆S(I) = 1 for I ⊂ [n] and 2 ≤ |I|≤ n,

2. ∆D(I) = det(ZI) for I ⊂ [n] and 2 ≤ |I|≤ n, and

3. ∆T (I) = det(Z{0}∪I) for I ⊂ [n] and 2 ≤ |I|≤ n. When |I|= 1, we have ∆T (I) = 1.

In particular, the An-discriminant equals det(Z).

Proof. Point 1 follows from the fact that the A-discriminant of a standard simplex
equals 1, and point 2 is a well-known formula for the discriminant of a quadratic form in
terms of its symmetric matrix, see [22, Ex. 1.3 (b)]. For point three, it suffices to show
the case I = [n]. First, note that det(Z) ̸= 0, as plugging in z01 = z11 = · · · = znn = 1/2
and 0 for all other i, j gives 1/4. It is also clear that ∆T ([n]) divides det(Z): if fn has
a singularity in the torus, the determinant must vanish, as it is the discriminant of
the corresponding quadric (see point 2). To show equality, it suffices to check that the
degree formula in [22, Chpt. 9, Thm. 2.8] gives deg(∆T ([n])) = n + 1.

We have the following immediate corollary of Lem. 4.1 and 4.2.

Theorem 4.3. The principal An-determinant corresponding to the polytope T ([n]) is

EAn =
(

n∏
i=1

z0izii

)
·

 ∏
I⊂[n]
|I|=2

∆D(I)

 ·
n−1∏
k=2

 ∏
I⊂[n]
|I|=k+1

∆D(I) ·
∏

I⊂[n]
|I|=k

∆T (I)

 · ∆T ([n]).

Here, the factors are sorted by increasing dimension of the corresponding face of T ([n]).
Equivalently, this polynomial is the product of (∏n

i=1 z0i) with all principal minors of Z[n],
and all principal (k + 1)-minors of Z involving the index 0, with k ≥ 2. The degree is

2n + 2 ·
(

n

2

)
+

n−1∑
k=2

((
n

k + 1

)
+
(

n

k

))
· (k + 1) + (n + 1) = (n + 1) · (2n − 1).

Note that the right hand side in the last formula is (n + 1) · vol(T ([n])), consistently
with Tab. 2, which is the degree of the An-resultant. The next question is what happens
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when we substitute the coefficients of GAn from (4.1) in the principal An-determinant.
In what follows, we will indicate this substitution with a tilde: for any face Q of T ([n]),

∆̃Q = (∆Q)|z0i←1, zii←−mi, zij←si,i+1,...,j−1−mi−mj ,i ̸=j,

and
Z(E) = Z|z0i←1, zii←−mi, zij←si,i+1,...,j−1−mi−mj ,i ̸=j.

These are polynomials in the variables si,i+1,...,j−1, mi. Recall that, when j = i + 1, we
set si = Mi.

Lemma 4.4. For all I ⊂ [n] with 2 ≤ |I|≤ n, we have ∆̃D(I) ̸= 0 and ∆̃T (I) ̸= 0.
Moreover, these are homogeneous polynomials with deg(∆̃D(I)) = deg(∆̃T (I)) + 1 = |I|.

Proof. For the sake of symplicity, we denote Z(E) = Z̃. To show that ∆̃D(I) ̸= 0, by
Lem. 4.2 it suffices to observe that Z̃I is invertible for the choices mi = 0 and sij = 1
for all i, j. The statement deg(∆̃D(I)) = |I| follows easily from the fact that Z̃I only
involves coefficients of FAn , which are homogeneous of degree 1 in the parameters.
For ∆̃T (I), the same choice mi = 0 and sij = 1 works to show that ∆̃T (I) = det(Z̃{0}∪I) ̸=
0 and deg(∆̃T (I)) = |I|−1 follows from the fact that det(Z̃{0}∪I) is homogeneous of
degree 2 in the coefficients of UAn , and homogeneous of degree |I|−1 in those of FAn .

Theorem 4.5. Substituting the coefficients of GAn in the principal An-determinant gives
a nonzero polynomial in the kinematic variables of degree

n + 2 ·
(

n

2

)
+

n−1∑
k=2

((
n

k + 1

)
· (k + 1) +

(
n

k

)
· (k − 1)

)
+ (n − 1) = (n − 1) · 2n + 1.

Its square-free part defines the principal Landau determinant EAn(K).

Remark 4.6. In the physics literature, ∆D(I) = 0 with |I|= 1 are called mass singular-
ities, those with |I|= 2 are the normal and pseudo-normal thresholds, and those with
2 < |I|< n and |I|= n are the subleading and leading Landau singularities (of the first
type). Similarly, ∆T (I) = 0 with 1 < |I|< n and |I|= n are the subleading and leading
Landau singularities of the second type, respectively.

Example 4.7. For n = 2, we have

Z(K) =


0 1 1
1 −2m1 s − m1 − m2

1 s − m1 − m2 −2m2

 ,

– 38 –



where s := M1. The principal Landau determinant EA2(E) is given by the vanishing
locus of the degree 5 polynomial

EA2(K) = m1m2λ(m1, m2, s)s,

where λ is the Källén function (3.5). ⋄

Example 4.8. For n = 3, we have

Z(K) =


0 1 1 1
1 −2m1 M1 − m1 − m2 M3 − m1 − m3

1 M1 − m1 − m2 −2m2 M2 − m2 − m3

1 M3 − m1 − m3 M2 − m2 − m3 −2m3

 .

The principal Landau determinant EA3(E) is given by the vanishing locus of

EA3(K) = m1m2m3

3∏
i=1

λ(mi, mi+1, Mi)M1M2M3(m2
1M2 + m1M2

2

+m2m1M1 − m3m1M1 − m2m1M2 − m3m1M2 − m1M1M2 − m2m1M3 + m3m1M3

−m1M2M3 + m3M2
1 + m2M2

3 + m2
3M1 − m2m3M1 + m2m3M2 − m3M1M2 + m2

2M3

−m2m3M3 − m2M1M3 − m3M1M3 − m2M2M3 + M1M2M3)λ(M1, M2, M3),

where the subscripts are taken modulo 3. The above polynomial has degree 17. ⋄

Example 4.9. For n = 4, we further specialize to the equal-mass subspace E (M,m) of K
given by Mi = M, mi = m, for which

Z(E (M,m)) =



0 1 1 1 1
1 −2m M − 2m s − 2m M − 2m
1 M − 2m −2m M − 2m t − 2m
1 s − 2m M − 2m −2m M − 2m
1 M − 2m t − 2m M − 2m −2m

 .

The principal Landau determinant on this subspace is given by the square-free part of
the polynomial

m4(M − 4m)4M4(s − 4m)s(t − 4m)ts2
(
4mM − ms − M2

)2

t2
(
4mM − mt − M2

)2
M4st · st

(
16mM − 4ms − 4mt − 4M2 + st

)
·s2(4M − s)2t2(4M − t)2st(4M − s − t).

The degree is 49. ⋄
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Remark 4.10. Notice that, restricting to the subspace E (0,me) ⊂ K where the external
masses Mi vanish, does not change the monomial support of the Symanzik polynomi-
als. However, the principal An-determinant identically vanishes when substituting the
kinematics parameters in E (0,me), e.g., the minor ∆T ({1,2}) is zero for all n ≥ 3. This
is consistent with the Euler characteristic being smaller than the volume in the third
column of Tab. 2.

4.1.2 Zero internal masses

In this section, we compute the principal Landau determinant when restricting to the
subspace E (Mi,0) ⊂ K where the internal masses me = 0 vanish. This assumption does
not change the polynomial UAn , while the second Symanzik polynomial becomes

FAn(E (Mi,0)) =
∑
i<j

si,i+1,...,j−1 αiαj, (4.3)

with subscripts taken modulo n. The Newton polytope of the polynomial GAn(E (Mi,0)) is
the (n − 1)-dimensional hypersimplex in Rn:

∆n,2 = Conv( ei, ei + ej : i, j ∈ [n], i < j )
= {(α1 . . . , αn) ∈ [0, 1]n : 1 ≤ α1 + · · · + αn ≤ 2}.

Its f -vector is described in [86, Cor. 4]. We write it explicitly for completeness:((
n + 1

2

)
,

(
n + 1

2

)
· (n − 1),

(
n + 1
k + 1

)
· (n − k + 1) for 2 ≤ k ≤ n

)
. (4.4)

Notice that the hypersimplex ∆n,2 can be thought of as a slice of the unit hypercube
[0, 1]n by the hyperplanes ∑αi = 1 and ∑αi = 2. It is well-know that the normalized
volume of the hypersimplex ∆n,2 equals the Eulerian number An,1 [87], consistently with
the computation in Tab. 2. In what follows, we will compute the principal A-determinant
for the hypersimplices ∆n,2, where the columns of the matrix An(E (Mi,0)) are precisely
the vectors { ei, ei + ej : i, j ∈ [n], i < j}. A general polynomial in the variables
α = (α1, . . . , αn) supported on An(E (Mi,0)) is given by

f =
∑

0≤i<j≤n

zijαiαj, (4.5)

where we set α0 = 1 and the coefficients zij can be seen as the entries of the symmetric
matrix Z in (4.2) where all the diagonal entries are assumed to be zero. The following
lemma describes the face structure of the hypersimplex ∆n,2.
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Lemma 4.11. The zero- and one-dimensional faces of the polytope ∆n,2 are simplices.
These account for the first two entries in the f-vector (4.4). The faces of dimension
2 ≤ k ≤ n are:

1.
(

n+1
k+1

)
hypersimplices of dimension k, and

2.
(

n+1
k+1

)
· (n − k) simplices of dimension k.

Proof. Our strategy consists in listing the faces of the polytope ∆n,2 in each dimension,
accounting for numbers in the f -vector in (4.4). Since it does not change the face
structure of the polytope, we work with homogeneous coordinates. We denote ∆′n,2 =
Conv(ei + ej : i, j ∈ {0, . . . , n}, i < j), where ei ∈ {0, 1}n+1 is the i-th basis vectors of
Zn+1. Note that ∆′n,2 is the Newton polytope of f in (4.5), when α0 is not set to 1.
Each face of ∆′n,2 is uniquely determined by the corresponding cone in the normal fan
Σn,2 ⊂ Rn+1, and the weight vectors in each of the cones are considered modulo the
linearity space spanned by (1, 1, . . . , 1).
The vertices are determined by the weights in Σn,2 of type −(ei +ej) for i, j ∈ {0, . . . , n}
and i < j. Edges correspond to weights of type wj,I = −ej + ∑

i∈I ei, where j ∈
{0, . . . , n}, and I ⊂ {0, . . . , n} \ {j} with |I|= n − 2.

For 2 ≤ k ≤ n, the (n + 1 − k)−dimensional cones come in two types. In terms of
ray generators, these types are described by the vectors:

1. wI = ∑
i∈I ei, where I ⊂ {0, . . . , n} with |I|= n − k. There are precisely

(
n+1
k+1

)
many of such vectors. We have

inwI
(f) =

∑
i,j∈J,i<j

zijαiαj,

where J = {0, . . . , n} \ I. Its Newton polytope is a k-dimensional hypersimplex;

2. wj,I as above, with |I|= n − k − 1. There are
(

n+1
k+1

)
(n − k) such vectors. We have

inwj,I
(f) = αj ·

∑
i∈{0,...,n}\I

zijαi,

whose Newton polytope is a k-dimensional simplex.

The following theorem follows from Lem. 4.11 and Thm. 1.2 in [22, Chpt. 10]:

Theorem 4.12. The principal An(E (Mi,0))-determinant corresponding to ∆2,n is

EAn(E(Mi,0)) =
∏

I⊂{0,1,...,n}
3≤|I|≤n+1

det(ZI) =
∏

0≤i<j≤n

zn−1
ij ·

∏
I⊂{0,1,...,n}
4≤|I|≤n+1

det(ZI).

Its degree is (n − 1) ·
(

n+1
2

)
+ ∑n+1

k=4 k ·
(

n+1
k

)
= (n + 1) · (2n − 1 − n).
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Proof. The discriminant of a face hypersimplex determined by a subset I ⊂ {0, . . . , n}
of size 4 ≤ |I|≤ n + 1, as described in the proof of Lem. 4.11, is given by det(ZI), see
[88]. The exponents n − 1 of the factors zij equal the subdiagram volume of any vertex
of the hypersimplex, see [88, Prop. 4.7]. Finally, the degree count shows that the degree
of the An(E (Mi,0))-resultant agrees with (n + 1) · vol(∆n,2), consistently with Tab. 2.

We now investigate what happens when substituting the coefficients of the Symanzik
polynomials in (4.3) in the principal An(E (Mi,0))-determinant. The matrix Z after
substituting the parameters in the subspace E (Mi,0) is given by

Z(E (Mi,0)) = Z|z0i←1, zij←si,i+1,...,j−1,i ̸=j,

where no substitution is required for the entries zii since they are set to zero.

Theorem 4.13. Substituting the coefficients of GAn(E (Mi,0)) in the An(E (Mi,0))-determinant
gives a polynomial in the kinematic variables of degree

(n − 1) ·
(

n

2

)
+

n∑
k=4

k ·
(

n

k

)
+

n∑
k=3

(k − 1) ·
(

n

k

)

= 1
2[n(n − 1)2 + (n − 2) · (2n − 1 − n) + n(2n − n2 + n − 2)]. (4.6)

Its square-free part defines the principal Landau determinant variety PLDAn(E (Mi,0)).

Proof. Let I ⊂ {0, 1, . . . , n} with 3 ≤ |I|≤ n + 1. For simplicity, we denote Z̃ =
Z(E (Mi,0)

An
). It is enough to observe that det(Z̃I) ̸= 0 for the choices si,i+1,...,j−1 = 1. To

compute the degree we first observe that the contribution from the principal minors
of type Z̃I , where 0 /∈ I have degree |I|. Their contribution accounts for the second
summand in (4.6). The first summand instead comes from the minors of size 3. Finally,
the last summand comes from the det(Z̃{0}∪I), where I ⊂ [n] and 3 ≤ |I|≤ n. In
particular, in these cases the degree of det(Z̃{0}∪I) equals |I|−1.

Example 4.14. For n = 4, the principal Landau determinant of the graph A4 with
coefficient matrix

Z(E (Mi,0)) =



0 1 1 1 1
1 0 M1 s M4

1 M1 0 M2 t

1 s M2 0 M3

1 M4 t M3 0


is given by the square-free part of the polynomial

s3t3M3
1M3

2M3
3M3

4 · λ(M3, M4, s) · λ(M2, M3, t) · λ(M1, M4, t) · λ(M1, M2, s)
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· (M2
1M3 − M1M2M3 + M1M2

3 − M1M2M4 + M2
2M4 − M1M3M4 − M2M3M4

+ M2M2
4 + M1M2s − M1M3s − M2M4s + M3M4s − M1M3t + M2M3t

+ M1M4t − M2M4t − M1st − M2st − M3st − M4st + s2t + st2)
· λ(M1M3, M2M4, st).

The degree is 33. ⋄

4.1.3 Zero internal and external masses

In this subsection, we further specialize the family of one-loop diagrams to the subspace
E (0,0) where both internal and external masses equal zero. In this case, the second
Symanzik polynomial is given by

FAn(E (0,0)) =
∑
i<j,

j ̸=i+1
j ̸=i−1(mod n)

si,i+1,...,j−1αiαj.

The Newton polytope of GAn(E (0,0)) can be described as

Pn = Conv( ei, ei + ej : (i, j) ∈ [n], i < j, j ̸= i + 1, j ̸= i − 1(mod n)).

For n ≥ 4, Pn is a full-dimensional polytope in Rn with
(

n
2

)
vertices. Furthermore, we

extrapolated from computations for small n that it is defined by the inequalities

αi ≥ 0, αi + αi+1 ≤ 1,
∑
i∈[n]

αi ≥ 1,
∑
i∈[n]

αi ≤ 2,

where the indices are considered modulo n. Notice that, in particular, the last hyper-
plane just appears for n ≥ 5, accounting for 2n + 1 facets. We denote An(E (0,0)) the
matrix whose columns are the lattice points in Pn ∩Zn. However, the complexity of the
combinatorics of this polytope makes more complicated to develop an analogous discus-
sion to determine the principal An(E (0,0))-determinant corresponding to the polytope
Pn. A general polynomial in the variables α = (α1, . . . , αn) with support in An(E (0,0))
can be written as in (4.5) where the matrix Z must have all diagonal entries and all
entries zij with j = i + 1(mod n) set to zero. We will write Ẑ for such a matrix.

Conjecture 4.15. The principal An(E (0,0))-determinant variety corresponding to the
polytope Pn is the vanishing locus of the square-free polynomial

EAn(E(0,0)) =
∏

I⊂{0,1,...,n}
4≤|I|≤n+1

det(ẐI). (4.7)
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The intersection of the principal An(E (0,0))-determinant variety with the subspace E (0,0)

is a hypersurface in E (0,0). Its defining equation is the principal Landau determinant
EAn(E (0,0)) and it can be attained by substituting the coefficients of the polynomials
GAn(E (0,0)) into (4.7).

Conj. 4.15 presents a number of challenges, the main one being that the combina-
torics of the polytope Pn is hard to understand. A degree check indicates that we should
expect nontrivial integer exponents, as in (2.2), also for discriminants corresponding
to faces of dimension greater than one. Computing such exponents would prove the
formula for the number of master integrals in the last column of Tab. 2.

4.2 Banana diagrams

Let BE denote the banana diagram with E ≥ 2 internal edges, see Fig. 2 (left) for an
example. We denote α = (α1, . . . , αE), then the Symanzik polynomials are given by

UBE = σE−1(α), FBE = s
E∏

e=1
αe −

( E∑
e=1

meαe

)
UBE ,

where σE−1(α) denotes the elementary symmetric polynomial of degree E − 1 in E
variables. For example, UB3 = α1α2 + α2α3 + α1α3. We will denote AE the matrix whose
columns are the exponent vectors of the graph polynomial GBE . When choosing generic
coefficients for the parameters me, s in the kinematic space K ⊂ CE+1, the computation
of the Euler characteristic and the volume return different values. More precisely, we
verified using Julia that for 2 ≤ E ≤ 10 we have

|χ(VBE(K))| = 2E − 1, vol(AE(K)) =
(

2E − 1
E

)
.

These values for the Euler characteristic are proven, see [80, 89]. When restricting
to the subspace E (0,0) ⊂ K, i.e., setting the internal and external masses to zero, the
graph polynomial GBE(E (0,0)) is supported on the vertices of an E-dimensional simplex.
Therefore, we have vol(AE(E (0,0))) = 1. As mentioned in Ex. 3.8, the signed Euler
characteristic of a smooth very affine variety coincides with its maximum likelihood
degree, see [77, 90]. Furthermore, varieties with maximum likelihood degree one were
geometrically characterized in [91]. We will use that characterization to prove that the
signed Euler characteristic (−1)E · χ(VAE(E (0,0))) equals one for all E ≥ 2.

Proposition 4.16. If s ̸= 0, the signed Euler characteristic of VAE(E (0,0)) is one:
(−1)E · χ(VAE(E (0,0))) = 1. Moreover, the likelihood function L = αν1

1 · · · ανE
E Gµ

BE(E (0,0))
has one unique critical point given by

((E − 1) · µ + ν1 + · · · + νE) ·
(

− 1
s(µ + ν1)

, . . . , − 1
s(µ + νE)

)
.
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Proof. The proof is an application of [91, Thm. 1 and Thm. 2]. We let

A =
(
1 1 · · · 1 1

)
∈ Z1×(E+2), B =



1 1 . . . 1 E − 1
−1 0 . . . 0 −1
0 −1 . . . 0 −1
... ... . . . ... ...
0 0 . . . −1 −1
0 0 . . . 0 1


∈ Z(E+2)×(E+1)

and we choose the vector d = (1/s, . . . , 1/s, 1/sE−1). Plugging these data into [91,
Thm. 2], which uses the same notation, proves that (−1)E · χ(VAE(E (0,0))) = 1. The
critical points of the function L are determined via the map in [91, Thm. 1].

5 Computing principal Landau determinants

Our definition of the principal Landau determinant in Sec. 3.2 hints at an algorithm
for computing it via elimination of variables. Standard methods for this are based on
Gröbner bases. They are implemented, for instance, in the software package Oscar.jl
[1]. The advantage of such methods is that they return the exact answer. That is,
they are guaranteed to return the principal Landau determinant with exact, integer
coefficients. In large examples, such as those illustrated in Fig. 1, it is not feasible to
use these methods. We then resort to a numerical sampling algorithm that attempts to
reconstruct the principal Landau determinant using homotopy continuation methods.
This goes a long way in tackling such larger cases, and gives reliable answers in practice.
It is a generalization of the strategy used to compute Landau discriminants in [3].

These algorithms are implemented in a Julia package PLD.jl, publicly available at

https://mathrepo.mis.mpg.de/PLD/.

The website contains a database of diagrams, the source code, and a tutorial exemplifying
its use. For instance, for the parachute diagram, the principal Landau determinant is
computed as follows:

edges = [[3,1],[1,2],[2,3],[2,3]]; 1

nodes = [1,1,2,3]; 2

getPLD(edges, nodes, internal_masses = :generic, 3

external_masses = :generic) 4

Here, edges and nodes encode the diagram in the same format as in [3]: each vertex is
assigned a number; edges is the list of pairs of vertices that are connected by internal
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edges; nodes is the list of vertices to which we attach external momenta p1, p2, . . ..
The internal masses m1, m2, . . . and Schwinger parameters α1, α2, . . . are assigned in
the same order as they appear in edges. For example, above the vertex 1 has the
momentum p1 + p2, vertex 2 has p3, and vertex 3 has p4. There are internal edges
connecting 3 to 1 with mass m1, 1 to 2 with mass m2, and 2 to 3 twice with masses m3

and m4. The resulting diagram is G = par from Fig. 1h.
When masses are set to :generic, the function getPLD automatically assigns distinct

variables to the internal masses squared m1, m2, . . ., and external masses squared M1, M2, . . .,
as well as Mandelstam invariants sij... = (pi +pj +. . .)2 in a cyclic basis (for n = 4, the
basis consists of s = (p1+p2)2 and t = (p2+p3)2). Other options of getPLD are explained
in detail in Ex. 5.2 and in the tutorial at https://mathrepo.mis.mpg.de/PLD/.

The output of the above command gives the results described in Sec. 3.5. For
example, a few lines of the output are

codim: 3, face: 1/33, weights: [-1, 0, 0, 0], discriminant: m1 1

codim: 3, face: 2/33, weights: [-1, 0, -1, 0], discriminant: 1 2

codim: 3, face: 3/33, weights: [0, 1, 1, 2], discriminant: 1 3

codim: 3, face: 4/33, weights: [-1, -1, 0, 1], discriminant: m1ˆ2 - 2*m1*m2 4

- 2*m1*s + m2ˆ2 - 2*m2*s + sˆ2 5

A verbose version of the output also prints other information, for example, whether a
given face has dominant components (UV/IR divergences), α-positive solutions, etc.

5.1 Symbolic elimination

Formally, the problem of elimination of variables can be phrased as follows.

Given a set of generators fi(α, z), i = 1, . . . , m for an ideal I ⊂ Q[α1, . . . , αn, z1, . . . , zs],
compute a set of generators of the elimination ideal Iz = I ∩ Q[z1, . . . , zs].

This is the algebraic version of coordinate projection. More precisely, let Y = V (I) be
the affine variety defined by I in Cn × Cs, and let πz(Y ) ⊂ Cs be its image under the
coordinate projection (α, z) 7→ z. The variety of the elimination ideal Iz is the Zariski
closure of πz(Y ) [92, Chpt. 3, §2]. Notice that, although we are interested in complex
algebraic varieties, we assume in this section that the equations are defined over Q. This
is necessary in order to manipulate the generators symbolically. A standard symbolic
tool for elimination is a Gröbner basis of I [92, Chpt. 2]. Many computer algebra
systems, including Oscar.jl [1], offer an implementation.

For our purposes, the variety Y is the incidence variety in (3.3). Recall that E ≃ Cs

is a linear subspace of the kinematic space K associated to a diagram G. Our variety
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lives in (C∗)E × Cs, where C∗ = C \ {0}. To enforce nonzero α-coordinates, we add
a new variable y and impose the condition y · α1 · · · αE − 1 = 0. This gives an ideal
IG,Q ⊂ Q[α, y, z] generated by E + 2 equations: the graph polynomial GG,Q restricted to
a face Q, its partial derivatives, and this extra equation. Explicitly,

IG,Q = ⟨GG,Q, ∂αGG,Q, y · α1 · · · αE − 1⟩. (5.1)

The variety V (IG,Q) ⊂ CE+1 ×E is isomorphic to YG,Q(E), and it has the same projection
onto E . Rather than computing this projection, we need to do this for each irreducible
component Y

(i)
G,Q(E) (see Sec. 3.2). Since we are only interested in the variety of IG,Q,

not in any non-reduced scheme structure, the Nullstellensatz allows us to replace IG,Q

with its radical [92, Chpt. 4]. We will therefore assume that IG,Q is a radical ideal from
now on. The ideals of the individual components Y

(i)
G,Q(E) are found from IG,Q using

primary decomposition [92, Chpt. 4, §8]. This too is implemented in most computer
algebra software systems, and returns a list of ideals I

(j)
G,Q such that

IG,Q =
⋂

i∈I(G,Q)
I

(i)
G,Q, (5.2)

and the ideals I
(j)
G,Q are prime. In particular, their varieties are irreducible. Note that

(5.2) is the algebraic counterpart of the irreducible decomposition (3.4).
We are now ready to eliminate: we compute the elimination ideals (I(i)

G,Q)z for
i ∈ I(G, Q). Among the results, the ideals that have codimension 1 are the nonzero
principal ideals. We add their generator to the list of factors ∆(i)

G,Q(E) of EG(E).
This method serves a more general purpose than computing principal Landau

determinants. Namely, we solve the following elimination problem. Let Y (i), i ∈ I be
the irreducible components of

Y = {(α, z) ∈ Cn × Cs : f1(α, z) = · · · = fm(α, z) = 0}. (5.3)

The map πz : (x, z) 7→ z projects onto z-space. We compute the unique (up to scale)
defining equation ∆(i) ∈ Q[z] of the projection πz(Y (i)), for all i ∈ I such that this
projection has codimension 1. In analogy with our notation in Sec. 3.2, we will denote
this subset of indices by I1 ⊂ I. We demonstrate this on a running example.

Example 5.1 (n = 1, s = 2 and m = 4). We consider four polynomials in Q[α, z1, z2]:

f1 = (z2
1 + z2

2 − 3α)(z2
1α − 2z1z

2
2 + 4z1z2α + 2z1z2 + z1α

2 − 3z1α − 4z3
2 − z2

2α

+ 6z2
2 + 2z2α

2 − z2α − 2z2 − 2α2 + 2α)(z2
1 − z2 + 2),

f2 = (z2
1 + z2

2 − 3α)z2(z1 + z2 + α − 1)(z2
1 − z2 + 2)(z1 − z2 + α − 1),
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f3 = (z2
1 + z2

2 − 3α)(z1 + z2 + α − 1)(z1 − 2)(z2
1 − z2 + 2)(z1 − z2 + α − 1),

f4 = (z2
1 + z2

2 − 3α)(2z2
1α2 − z2

1α − 4z2
1 + 6z1z

2
2 − 4z1z2α − 10z1z2 − 3z1α

2 − z1α

+ 12z1 + 2z2
2α2 + z2

2α − 6z2
2 − 4z2α

2 + z2α + 14z2 − 2α2 + 6α − 8)(z2
1 − z2 + 2).

The real part of the incidence variety Y = {f1 = f2 = f3 = f4 = 0} is shown in Fig. 5.
The ideal is constructed in Oscar.jl as follows:

R, vrs = PolynomialRing(QQ,["z1";"z2";"α"]); z1, z2 = vrs[1:2]; α = vrs[3]; 1

Q1 = z1ˆ2 + z2ˆ2 - 3*α; Q2 = z1ˆ2 - z2 + 2; 2

f1 = Q1*(z1ˆ2*α - 2*z1*z2ˆ2 + 4*z1*z2*α + 2*z1*z2 + z1*αˆ2 - ... + 2*α)*Q2 3

f2 = Q1*z2*(z1 + z2 + α - 1)*Q2*(z1 - z2 + α - 1) 4

f3 = Q1*(z1 + z2 + α - 1)*(z1 - 2)*Q2*(z1 - z2 + α - 1) 5

f4 = Q1*(2*z1ˆ2*αˆ2 - z1ˆ2*α - 4*z1ˆ2 + 6*z1*z2ˆ2 - 4*z1*z2*α - ... - 8)*Q2 6

I = ideal(R,[f1;f2;f3;f4]) 7

It turns out that this ideal is radical. This can be verified via

I == radical(I) 1

We now compute its primary decomposition. This is done with the command

PD = primary_decomposition(I) 1

We find that I = I1 ∩ I2 ∩ I3 ∩ I4 ∩ I5, with

I1 = ⟨α + z1 + z2 − 1, z2
1 + z2

2 − 1⟩, I2 = ⟨z1 − 2, z2⟩, I3 = ⟨3α − z2
1 − z2

2⟩,
I4 = ⟨α + z1 − z2 − 1, (z1 − 1)2 + (z2 − 1)2 − 1⟩, I5 = ⟨z2 − z2

1 − 2⟩.

Each of the ideals Ij contributes an irreducible component of the variety Y in Fig. 5.
We eliminate α from each Ij and record the generators of the nonzero principal ideals:

PLD = [] 1

for i = 1:length(PD) 2

E = eliminate(PD[i][1],[α]) 3

if length(gens(E)) == 1 && gens(E)[1] !=0 4

push!(PLD, gens(E)[1]) 5

end 6

end 7
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Figure 5. The incidence variety from Ex. 5.1.

The result consists of three equations ∆(1), ∆(4), ∆(5):

∆(1) = z2
1 + z2

2 − 1, ∆(4) = (z1 − 1)2 + (z2 − 1)2 − 1, ∆(5) = z2 − z2
1 − 2.

Here ∆(i) is the defining equation of the projection of Y (i) = V (Ii) onto (z1, z2)-space,
see Fig. 5. The components Y (2) and Y (3) do not contribute, because their projections
have codimension 2 and 0, respectively. ⋄

The above operations of computing the radical of IG,Q, then its primary decomposi-
tion, and then performing elimination of variables for each prime component tend to be
quite costly in practice. In larger examples, it is necessary to come up with a numerical
alternative. The resulting algorithm will compute the factors ∆(i)

G,Q(E) without ever
computing the generators of I

(j)
G,Q. The idea is to use sampling and interpolation instead.

5.2 Numerical elimination

We will present our numerical strategy in the general setup introduced in the previous
section. That is, Y ⊂ Cn × Cs is defined by m equations fi(α, z) ∈ Q[α, z]. It is then
straightforward to specialize the discussion to principal Landau determinants. Like
before, our aim is to compute the unique (up to scale) defining equation ∆(i) ∈ Q[z]
of the projection πz(Y (i)), for all i ∈ I1. In PLD.jl, this computation is executed by
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the function project codim1. Since this method uses numerical computations, the
input is now in the format of the package HomotopyContinuation.jl [2], rather than
Oscar.jl [1]. Here is an example code snippet based on our running Ex. 5.1.

using HomotopyContinuation; @var z1 z2 α; 1

Q1 = z1ˆ2 + z2ˆ2 - 3*α; Q2 = z1ˆ2 - z2 + 2; 2

f1 = ... # The code for generating f1, f2, f3, f4 is the same as above. 3

f = [f1;f2;f3;f4] 4

Δ, samples, gaps = project_codim1(f,[z1;z2], α; homogeneous = false) 5

In general, the inputs are f, the list of m equations fi, and two seperate lists of variables,
the second of which should be eliminated. We often call z the parameters, and α the
variables. The option homogeneous = false indicates that we do not expect the factors
of the PLD to be homogeneous polynomials in this example. It plays a role in numerical
interpolation, which is part of the algorithm (see below).

For ease of exposition, we assume that the vanishing ideal of each irreducible
component Y (i) with i ∈ I1, is a prime component of I = ⟨f1, . . . , fm⟩ ⊂ C[α, z]. If this
is not the case, I has higher multiplicity along the component Y (i), and our current
implementation will not find the defining equation ∆(i) of πz(Y (i)). The difficulty with
such non-reduced components is essentially that it is hard to compute points on them
numerically. To overcome this issue, new methodology in numerical algebraic geometry
is needed, which is beyond the scope of our article. In theory, and sometimes in practice,
our assumption can be realized by replacing the ideal I with its radical. The strategy
of project_codim1 can be summarized as follows:

(i) Compute a set of sample points S̃ ⊂ Cn × Cs on the incidence variety Y from
(5.3), so that all points in S̃ lie on a component Y (i) with codim(πz(Y (i))) ≤ 1.

(ii) Filter out points that lie on a component which projects dominantly to z-space,
i.e., codim(πz(Y (i))) = 0. Call the remaining set of samples S.

(iii) Divide S into groups according to which component Y (i) they lie on. Let S(i) ⊂ S

be the set of samples on Y (i).

(iv) Deduce the degree of πz(Y (i)) from the corresponding group of samples πz(S(i)).

(v) Sample sufficiently many more points on each component πz(Y (i)) to find unique
interpolating polynomials ∆(i).

We now explain each of these steps in more detail.
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Step (i) We choose a general line L ⊂ Cs in z-space. It is clear that π−1
z (L) ∩Y (i) ̸= ∅

if and only if codim(πz(Y (i))) ≤ 1. If πz(Y (i)) has codimension 1 in Cs and the restriction
of πz to Y (i) has finite fibres, i.e., i ∈ I1, this nonempty intersection consists of finitely
many points. These are regular solutions to the system of equations

f1(α; z) = · · · = fm(α; z) = 0 and z ∈ L. (5.4)

Here regular means that the Jacobian matrix of this system of equations, evaluated at
a point in π−1

z (L) ∩ Y (i), has rank n + s. Components which project dominantly to Cs

under πz contribute positive dimensional solution sets to (5.4). At each point on these
positive dimensional components, the Jacobian matrix has rank at most n + s − 1. We
conclude that all regular solutions to (5.4) lie on a component Y (i) for which i ∈ I1. We
solve (5.4) using HomotopyContinuation.jl, and add all regular solutions to S̃. The
presence of positive dimensional components will lead to singular solutions in the output.

However, it might happen that not all indices i ∈ I1 are accounted for. For instance,
in the situation of Fig. 5, the preimage π−1

z (L) of a general line L does not intersect Y (2),
as desired, and it makes a one-dimensional intersection with Y (3). The intersections
with Y (1) and Y (4) consist of 2 points each, and these are regular solutions to (5.4). This
gives four points in S̃. However, in that example, πz(Y (5)) also has codimension 1, and
π−1

z (L) ∩ Y (5) is positive dimensional. The reason is that the restriction of πz to Y (5)

has 1-dimensional fibres. We need to make sure that such components are not missed.
Our algorithm proceeds as follows. If (5.4) has singular solutions, let h1(α) =

c0 + c1α1 + · · · + cnαn be a random affine linear polynomial in the α variables. We cut
down the dimension of the fibres of πz by adding h1 to the system:

f1(α; z) = · · · = fm(α; z) = h1(α) = 0 and z ∈ L. (5.5)

The regular solutions to this system may lie on two types of componentes Y (i). Either
i ∈ I1 and πz has 1-dimensional fibres restricted to Y (i), or Y (i) projects dominantly
to Cs, with zero-dimensional fibres. Clearly, the first group of samples is the one we
want to keep. Filtering out spurious samples is taken care of in step (ii). For now, we
add all regular solutions to (5.5) to S̃. If (5.5) has singular solutions, there might be
indices i ∈ I1 for which Y (i) → πz(Y (i)) has 2-dimensional fibres, so we add another
random equation h2(α) = 0 to (5.5). We solve, retain regular solutions, and proceed in
this manner until no singular solutions are found.

Step (ii) To check whether p = (α∗, z∗) ∈ S̃ ⊂ Y lies on a component which
projects dominantly to Cs, it is enough to check whether its tangent space TpY projects
dominantly to Cs. This is the kernel of the Jacobian matrix of f1 = · · · = fm = 0,
evaluated at p. Computing the dimension of the projection of this linear space is an
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elementary task from linear algebra. We apply this test to all points in S̃, and discard
those points which lie on a dominant component. The remaining set is S.

Step (iii) Decomposing S into groups S(i) according to the irreducible components
of Y can be done using monodromy loops in HomotopyContinuation.jl. This was
applied for Landau discriminants in [3, Sec. 3.2], to which we refer for more details.

Step (iv) Notice that a general line L ⊂ Cs intersects ∇(i) = π(Y (i)) in deg(∇(i))-
many points, for i ∈ I1. Hence, the degree of this hypersurface is the number of distinct
points in πz(S(i)). For simplicity, we write di = deg(∇(i)) = deg(∆(i)).

Step (v) Finally, we gather more samples on each component ∇(i), i ∈ I1. The
minimal number of samples needed is the number of monomials that may appear in the
equation ∆(i), minus one. Indeed, vanishing on a sample imposes one linear condition
on the polynomial ∆(i), and the total amount of parameters is the dimension of the
space of polynomials in z1, . . . , zm of degree di. The formula is

(
m−1+di

di

)
if homogeneous

= true, and
(

m+di

di

)
if homogeneous = false. The way we collect more samples on

Y (i) is as follows. We pick a new line L′ ⊂ Cs, and move our initial line L continuously
towards L′. Along the way, we use homotopy continuation to track the points in S(i) to
a new set of samples (S(i))′. In such a homotopy, the sample points cannot leave their
irreducible component Y (i). We repeat this many times, until the necessary amount of
samples is achieved. For more details and numerical considerations, see [3, Sec. 3.2].

After we have used numerical interpolation to obtain floating point approximations
of the coefficients of ∆(i), we may use rationalization to recover the exact coefficients
in Q. This assumes the original equations fi were defined over Q, as is the case for
principal Landau determinants. We used the command rationalize in Julia for this.

The function project codim1 returns a list of polynomials ∆ with rational coeffi-
cients. The second output contains, for each component ∆(i), the list of samples used
to interpolate it. The third output, gaps, gives an indication of the quality of the
numerical interpolation for each component. More precisely, for each component, it
records the ratio between the second smallest and the smallest singular value of the
linear interpolation problem. As a rule of thumb, when gap = 10e for component ∆(i),
one can expect that its coefficients were approximated with e accurate digits. As a
tolerance for rationalization, we use 10−8 as a default. This means that if e < 8, the
answer should probably not be trusted. This was never the case in our experiments.

5.3 Overall algorithm

This subsection presents a pseudocode that illustrates the key steps of the algorithm
behind the function getPLD in PLD.jl, which was shown in the introduction to this
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Algorithm 1 The algorithm to compute the principal Landau determinant
Input: The vectors of nodes and edges encoding a Feynman diagram G, a subspace E of

the kinematic space K, a choice of method (:sym for symbolic, :num for numerical).
Output: A vector discs of specialized discriminants ∆(i)

G,Q(E) that constitute the
factors of the principal Landau determinant EG(E).

1▶ for each face Q of Newt(GG(E)) do
2▶ Compute the initial form GG,Q(E);
3▶ Define YG,Q by eqs := {GG,Q = ∂αGG,Q = y · α1 · · · αE − 1 = 0};
4▶ discs := [ ];
5▶ if method == :sym then
6▶ IG,Q := radical(ideal(eqs));
7▶ PD := primary_decomposition(IG,Q);
8▶ for I

(i)
G,Q in PD do

9▶ J := eliminate(I(i)
G,Q, [α, y]);

10▶ for all principal, codimension 1, non-zero ideals J (i) in J do
11▶ Add generator of J (i) to discs;
12▶ end for
13▶ end for
14▶ else if method == :num then
15▶ ∆G,Q, _ , gaps := project_codim1(eqs, pars, [α, y]);
16▶ for all components ∆(i)

G,Q in ∆G,Q with large gaps(i) do
17▶ Add ∆(i)

G,Q to discs;
18▶ end for
19▶ end if
20▶ end for
21▶ return discs;

section. The definition of the principal Landau determinant requires to perform elimi-
nation on the ideal IG,Q from (5.1), for each face Q of Newt(GG). Alg. 1 takes this into
account, and it summarizes all the steps explained in the previous subsections.

A tutorial on how to use PLD.jl can be found at https://mathrepo.mis.mpg.de/
PLD/. We here present an example to illustrate some of the optional inputs of the main
function, which makes it very easy to use.

Example 5.2. The following code snippet runs getPLD for the diagram G = outer-dbox:

@var m2; 1
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edges = [[1,2],[2,3],[3,4],[4,5],[5,6],[6,1],[3,6]]; 2

nodes = [1,2,4,5]; 3

getPLD(edges, nodes, internal_masses = [m2,m2,m2,m2,m2,m2,0], 4

external_masses = :zero, 5

method = :sym, 6

high_prec = false, 7

codim_start = -1, 8

face_start = 1, 9

single_face = false, 10

single_weight = nothing, 11

verbose = true, 12

homogeneous = true, 13

save_output = "", 14

load_output = "") 15

Only edges and nodes are required arguments. The options internal_masses and
external_masses can be set to either :generic, :equal, :zero (the default), or a
custom list of variables. In the first three cases, the variables are assigned automatically.
Above, we set all the internal masses to be equal to m, except for the edge [3,6], which
is massless, and all the external masses are set to zero.

The method can be either :sym (the default) or :num. Here, we use symbolic
elimination. The optional input high prec is only meaningful when using method =
:num. It tells the program to do the numerical interpolation in higher precision. This is
slower, but it might be necessary for exact rational reconstruction. It was not needed
for the examples we computed, listed at https://mathrepo.mis.mpg.de/PLD/, but
it was crucial to find some of the larger discriminants in [3]. The option verbose
= true makes sure that intermediate results are printed, and homogeneous = true
means we expect all factors of the PLD to be homogeneous polynomials. This helps for
interpolation, see Sec. 5.2.

The next important options are codim_start and face start. Our program runs
through the faces of Newt(GG) in order of decreasing codimension. That is, it runs
through all vertices first, then all edges, etc. If a computation was interrupted, or one is
for other reasons only interested in the result for a subset of all faces, it is convenient to
skip low dimensional faces. The faces in each codimension are numbered according to
the output of the function getWeights, which returns, for each codimension, a list of
weight vectors revealing the faces. This is illustrated in Ex. 5.3. The function getPLD
will start from face number face_start in codimension codim_start. If single_face
is true, it will do the computation only for that face. Similarly, if single_weight is
set to a weight list, the computation will happen only for the face with this specific
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weight. If codim_start = -1 (the default option), the program will run over all faces.
The output for each face can be saved by setting the variable save_output to the file
name. Likewise, it can be loaded by setting load_output to this file name, in which
case the discriminants will be loaded instead of computed from scratch. This option is
useful for quickly converting an output of the computation to Oscar format. ⋄

Example 5.3. The package PLD.jl provides the functions getWeights and getIF.
These compute weight vectors lying in the interior of each cone in the normal fan of the
Newton polytope of a polynomial (getWeights) and the initial form of a polynomial
for a fixed weight vector (getIF). Here is an example for G = par:

edges = [[3,1],[1,2],[2,3],[2,3]]; 1

nodes = [1,1,2,3]; 2

U, F = getUF(edges, nodes, internal_masses = :generic, 3

external_masses = :generic); 4

weights = getWeights(U+F); 5

getIF(U+F, weights[2]) 6

The following code lines compute the weights for the example of Sec. 3.5, as well as the
initial forms of the faces of the Newton polytope on Gpar of codimension 1 (recall that
Julia indexes lists from 1, but our codimensions start from 0).

For example, weights[2][1] gives the weight list [-1,-1,-1,-1] corresponding
to the first-type leading singularity. If we wanted to compute discriminants only for
this case, it is enough to run

getPLD(edges, nodes, internal_masses = :generic, external_masses = :generic,1

method = :num, single_weight = weights[2][1]) 2

The result is the discriminant with two components from (3.19) and (3.20). ⋄

Example 5.4. Even though our main focus is on Feynman integrals, the package PLD.jl
can be also used to analyze singularities of other classes of integrals, for instance those
appearing in applications to cosmological wavefunctions, gravitational-wave physics, or
energy correlators. As a simple example, consider the integral∫

R3
+

zε
1zε

2zε
3 d3z

(X1 + z1 + X2 + z2 + X3 + z3)(X1 + z1 + Y1)(X3 + z3 + Y2)
(5.6)

× (X1 + z1 + X3 + z3 + 2X2 + 2z2 + Y1 + Y2)
(X2 + z2 + Y1 + Y2)(X1 + z1 + X2 + z2 + Y2)(X2 + z2 + X3 + z3 + Y1)
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with ε ∈ C. Furthermore, all the symbols with capital letters are parameters and z1, z2, z3

are integration variables. This integral computes the three-chain graph wavefunction, see,
e.g., [93]. Its singularities can be obtained with the specialized principal A-determinant
applied to the Cayley configuration ∑6

i=1 αiPi, where Pi’s are the polynomial factors
in the denominator of (5.6) and the αi’s are adjoined to the list of variables. We can
dehomogenize it by setting, say α6 = 1. In PLD.jl, it amounts to running

R, pars = PolynomialRing(QQ, ["X1", "X2", "X3", "Y1", "Y2"]) 1

S, vars = LaurentPolynomialRing(R, ["z1", "z2", "z3", 2

"α1", "α2", "α3", "α4", "α5"]) 3

(X1, X2, X3, Y1, Y2) = pars 4

(z1, z2, z3, α1, α2, α3, α4, α5) = vars 5

6

P1 = X1 + z1 + X2 + z2 + X3 + z3 7

P2 = X1 + z1 + Y1 8

P3 = X3 + z3 + Y2 9

P4 = X2 + z2 + Y1 + Y2 10

P5 = X1 + z1 + X2 + z2 + Y2 11

P6 = X2 + z2 + X3 + z3 + Y1 12

Cayley = α1*P1 + α2*P2 + α3*P3 + α4*P4 + α5*P5 + P6 13

14

getSpecializedPAD(Cayley, pars, vars) 15

The output gives the discriminants

X1 + X2 + X3, X1 + X2 + Y2, X1 + X2 − Y2, X1 + X3 − Y1 − Y2, X1 + Y1,

X1 − X3 − Y1 + Y2, X1 − Y1, X1 − Y1 + 2Y2, X1 − Y1 − 2Y2, X2 + X3 + Y1,

X2 + X3 − Y1, X2 + Y1 + Y2, X2 + Y1 − Y2, X2 − Y1 + Y2, X2 − Y1 − Y2,

X3 + 2Y1 − Y2, X3 + Y2, X3 − 2Y1 − Y2, X3 − Y2, Y1, Y1 + Y2, Y1 − Y2, Y2 .

We verified that the singularities of the integral (5.6) evaluated in [93, Sec. 4.3] and [94,
App. B] are strictly contained in the above set.

⋄

5.4 Standard Model examples

We applied the above algorithm to all diagrams in Fig. 1. For each of them, we ran the
symbolic elimination described in Sec. 5.1 until the problems became too lengthy or
did not terminate. For example, for G = outer-dbox, the discriminants for all faces of
codimension-2 or higher were computed symbolically. Beyond this point, we apply the
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numerical algorithm from Sec. 5.2.1 In addition, we also ran HyperInt on the same set
of diagrams using the method outlined in App. A. In contrast with PLD.jl, HyperInt
terminated only for diagrams (a-e) and (g-h). For (b-e) and (g-h), HyperInt found
additional components of the Euler discriminant not found by PLD.jl. Out of the 114
diagrams we tested, HyperInt terminated for 64. For 25 diagrams among these 64, the
Euler discriminant contains at least one more component than the PLD.

Tab. 3 summarizes the basic information of each diagram G: the number of kinematic
variables it depends on (dim E), the f -vector of the Newton polytope Newt(GG(E)),
as well as the degrees of the discriminants found by either method. The notation
follows [3, Tab. 1] where [. . . , ab, . . .]1 means that there are b components with degree
a and the codimension in E is 1. All the detailed results are collected at https:
//mathrepo.mis.mpg.de/PLD/, where we also provide results for all the diagrams in
[3, Fig. 1] with various assignments of internal and external masses.2

An example output file is organized as follows. The header contains all the informa-
tion about the diagram:

################################ 1

# Diagram information 2

################################ 3

4

name = "outer-dbox" 5

6

edges = [[1, 2], [2, 5], [3, 5], [3, 4], [4, 6], [1, 6], [5, 6]] 7

nodes = [1, 2, 3, 4] 8

internal_masses = [m2, m2, m2, m2, m2, m2, 0] 9

external_masses = [0, 0, 0, 0] 10

11

U = x[1]*x[3] + x[1]*x[4] + x[1]*x[5] + x[1]*x[7] + # more terms 12

F = -m2*x[1]ˆ2*x[3] - m2*x[1]ˆ2*x[4] - m2*x[1]ˆ2*x[5] + # more terms 13

parameters = [m2, s, t] 14

variables = [x[1], x[2], x[3], x[4], x[5], x[6], x[7]] 15

16

1For comparison, the full computation for one of the simplest diagrams, G = inner-dbox, took 9.3
minutes, while the most difficult diagram, G = npl-dpent, took 63.7 hours on two Intel Xeon E5-2695
v4 CPUs with 18 cores each.

2To ensure stability of the rationalization step (v), we do not attempt to interpolate components
with > 10000 samples. For example, G = pentb from [3, Fig. 1] with all massless particles depends on
m = 5 kinematic parameters, which means we can reconstruct its discriminants up to degree di ⩽ 19,
while the case with all generic internal and external masses has m = 18, which gives di ⩽ 4.
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Diagram G dim E f -vector of Newt(GG(E)) Degrees of ∇χ(E)
inner-dbox 3 (37, 156, 294, 310, 195, 72, 14) [17, 2]1
outer-dbox 3 (39, 153, 271, 272, 165, 60, 12) [16, 2, 3]1
Hj-npl-dbox 4 (40, 174, 333, 350, 215, 76, 14) [113, 26, 33]1
Bhabha-dbox 4 (32, 162, 347, 393, 252, 90, 16) [16, 23]1
Bhabha2-dbox 4 (37, 187, 394, 435, 272, 96, 17) [17, 23, 3]1

Bhabha-npl-dbox 4 (35, 184, 402, 457, 291, 103, 18) [18, 23]1
kite 6 (24, 66, 73, 39, 10) [16, 24, 3, 42]1
par 7 (15, 33, 27, 9) [17, 22, 3, 42, 6]1

Hj-npl-pentb 7 (56, 294, 681, 884, 699, 343, 101, 16) [131, 216, 312, 47, 63, 122]1
dpent 9 (64, 528, 1770, 3158, 3336, 2171, 867, 202, 24) [130, 211, 46, 5, 6]1

npl-dpent 9 (64, 597, 2117, 3852, 4058, 2606, 1029, 239, 28) [152, 222, 36, 416, 57, 63]1
npl-dpent2 9 (63, 562, 1969, 3591, 3820, 2482, 988, 230, 27) [146, 221, 32, 412, 54, 63]1

Table 3. Summary table of the results for each diagram G: dimension of the kinematic
subspace E , f -vector of the corresponding Newton polytope Newt(GG(E)), and degrees of the
components of ∇χ(E) we found, see the main text for details.

χ_generic = 64 17

f_vector = [39, 153, 271, 272, 165, 60, 12] 18

Here, χ_generic is the generic signed Euler characteristic that can be found in Tab. 1,
while f_vector is the f -vector from Tab. 3. This header is followed by a list of individual
components (in this case, 8 of them), for example:

################################ 1

# Component 4 2

################################ 3

4

D[4] = m2*s + m2*t - 1//4*s*t 5

χ[4] = 55 6

weights[4] = [[-1, -1, 0, -1, -1, 0, -2], # more weights ] 7

computed_with[4] = ["PLD_sym", "PLD_num", "HyperInt"] 8

For each component, D[i] is the defining polynomial, χ[i] is the signed Euler char-
acteristic evaluated on D[i] = 0 (computed using reliable numerical techniques, see
Rmk. 2.6), weights[i] is the list of weights for which the component was found using
either method (no weights are recorded for HyperInt). Finally, computed_with[i]
summarizes which method was used to find the corresponding component.

In the above computations, we made heavy use of parallelization implemented in
HomotopyContinuation.jl to speed-up computations. On multi-core machines, the
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number of threads is controlled by the variable JULIA_NUM_THREADS, e.g., one can set it
with export JULIA_NUM_THREADS = 64 before running PLD.jl.

6 Conclusion and outlook

In this work, we revisited the Landau analysis of singular loci of Feynman integrals
using tools from computational algebraic geometry. With a practical view towards
explicit computations, we defined the principal Landau determinant (PLD) EG(E) of
a Feynman diagram as a subvariety of the parameter space E . It estimates the Euler
discriminant variety ∇χ(E), which is the locus of kinematic parameters for which the
signed Euler characteristic of the hypersurface defined by the graph polynomial GG

drops compared to its generic value.
Algorithms for computing the PLD are implemented in our open-source Julia

package PLD.jl available at https://mathrepo.mis.mpg.de/PLD/ together with a
tutorial explaining its features and a database containing the output of our algorithm
on 114 examples. Our definitions and algorithms are inspired by the principal A-
determinant from the work of Gelfand, Kapranov, and Zelevinsky (GKZ), which is
known to be the singular locus of a D-module, called A-hypergeometric system. Our
examples show that a careful adaptation of the GKZ framework is necessary, but it
results in an effective method for computing singularities of Feynman integrals. Sec. 4
presented the only cases we found in which the kinematic space is not properly contained
in the principal A-determinant. We leave the case of vanishing internal and external
masses with a conjectural formula (see Conj. 4.15) for the principal A-determinant. The
main obstacle in proving this formula is the complexity of the face structure of the
Newton polytope.

We compared our results with those of HyperInt for computing an upper bound
on the singularity locus of Feynman integrals (see App. A). The HyperInt computation
is based on Pham and Brown’s Landau variety [27, 35]. In future research, it would
be desirable to understand the relation between all these geometric objects in detail.
Concretely, which inclusions hold between the Landau variety, the Euler discriminant
variety, the principal Landau determinant variety, and the singular locus of the D-
module annihilating the Feynman integral? Our belief about the relation between the
varieties defined by the Euler discriminant and the PLD is stated in Conj. 3.6.

Furthermore, our algorithms for computing the PLD can be improved. For instance,
one could exploit sparsity, meaning the fact that its factors only have a few nonzero
coefficients. Also, to what extent can we shrink the gap between Euler discriminant
and PLD by (partially) compactifying Schwinger parameter space in our computations
(see Ex. 3.10 and App. C)?
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A Bounding the Landau variety with HyperInt

In this appendix, we explain how to use HyperInt [23] for computing an upper bound
on the singularity locus of Feynman integrals (the Landau variety in the sense of [35]).3
We then use the Euler discriminant to filter out spurious components and compare it
with the output of PLD.jl. As an illustrative example, we consider the double-box
diagram with an outer massive loop, G = outer-dbox, from Fig. 1c.

HyperInt implements the compatibility graph method of polynomial reduction
based on [35]. A Feynman diagram does not need to integrate to polylogarithms for
this algorithm to terminate. For the specific example at hand, the Maple code needed
to find it is

read "HyperInt.mpl": 1

2

edges := [{1,2}, {2,5}, {5,3}, {3,4}, {4,6}, {6,1}, {5,6}]: 3

nodes := [[1,0], [2,0], [3,0], [4,0]]: 4

internal_masses := [m2, m2, m2, m2, m2, m2, 0]: 5

6

U := graphPolynomial(edges): 7

F := subs({s12 = -s, s14 = -t}, 8

secondPolynomial(edges, nodes, internal_masses)): 9

10

S := irreducibles({U,F}): 11

L[{}] := [S, combinat[choose](S, 2)]: 12

3We thank Erik Panzer for suggesting to compare the output of HyperInt with PLD.jl, and for
clarifying the use of the command cgReduction.
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13

cgReduction(L, {s,t,m2}, 4): 14

candidates := {s,t,m2} union L[{seq(x[i], i=1..7)}][1]; 15

The notation matches that of PLD.jl as much as possible (the additional minus signs in
-s and -t are needed because HyperInt uses Euclidean conventions). Line 14 computes
the upper bound on the Landau variety, defined by the zero locus of polynomials in
s, t, and m2. In general, one can provide an additional parameter d to the command
cgReduction of HyperInt (line 14), see [23]. The default value is 1, and here it is chosen
to be 4. This parameter controls the maximum degree of the consecutive coordinate
projections of the algorithm. The result candidates is a list of 17 polynomials:

candidates := {m2, 1

s, 2

t, 3

m2 - s, 4

m2 - 1/2*s, 5

m2 - 1/4*s, 6

m2 - 1/4*t, 7

s + t, 8

s + 2*t, 9

m2*s + m2*t - 1/4*s*t, 10

m2*s + 2*m2*t - 1/2*s*t, 11

m2*t - 1/4*sˆ2 - 1/4*s*t, 12

m2*t + 1/4*sˆ2 - 1/4*s*t, 13

m2*t + sˆ2, 14

m2*sˆ2 + 4*m2*s*t + 4*m2*tˆ2 - s*tˆ2, 15

m2*sˆ2 + 2*m2*s*t + m2*tˆ2 - sˆ2*t, 16

m2ˆ2*s - 2*m2*s*t - 4*m2*tˆ2 + s*tˆ2} 17

They are candidates for the polynomials defining components of the Landau variety.
However, not all of them correspond to actual singularities. To detect which ones do,
we can use the Euler characteristic check. This can be achieved with the tools provided
in PLD.jl. After defining edges, nodes, internal_masses as above, it amounts to
running the following Julia code:

U, F, pars, vars = getUF(edges, nodes; 1

internal_masses = internal_masses, 2

external_masses = :zero); 3
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(m2, s, t) = pars; 4

candidates = # the above list with / → // 5

EulerDiscriminantQ(U+F, pars, vars, candidates) 6

The function EulerDiscriminantQ checks whether the provided candidate components
belong to the Euler discriminant by computing their signed Euler characteristics and
comparing them to the generic signed Euler characteristic χ∗. Moreover, to increase
reliability of the results, each Euler characteristic is computed ten times and the
maximum of the computed and certified values is selected. In particular, in the code
snippet above, line 6 scans over the list of candidates and finds that only 8 out of the
17 components lie in the Euler discriminant. They are

{m2, s, t, m2 − s/4, m2 − t/4, s + t, m2(s + t) − st/4, m4s − 2m2t(s + 2t) + st2} ,

where m2 = m2. They have Euler characteristics 12, 6, 33, 48, 63, 45, 55, 62, respectively,
compared to the generic 64. This list agrees with the singularities of this topology
of Feynman integrals that can be determined from the differential equations in [95,
App. A].

This output can be compared with the result of running PLD.jl. The latter
finds the first 7 out of the above 8 components. These results are summarized in
https://mathrepo.mis.mpg.de/PLD/ in the conventions explained in Sec. 5.4. Note
that, in order for HyperInt to return a non-empty list of components, one might have to
increase the optional parameter d of cgReduction (see above). In practice, one needs
to strike a balance: too low of a bound leads to no components, and computations
with too high of a bound might not terminate or consume too much memory. In our
experiments, we tried several values of d in an unstructured way. Using this parameter
in a more informed way, it might be that HyperInt can find an upper bound for the
Landau variety of a few more diagrams. For larger examples (f) and (i-l) from Fig. 1,
we found that HyperInt does not terminate, which means we could not make a direct
comparison with PLD.jl.

B From loop momentum to Schwinger parameters

In this appendix, we informally review the steps that bring a Feynman integral in
the loop-momentum representation into an integral over Schwinger parameters. This
derivation also defines the Symanzik polynomials for integrals involving numerators.

The starting point is a family of scalar Feynman integrals in D space-time dimensions
with n external legs and L loops:

Iν1,ν2,...,νm := 1
(iπD/2)L

∫ dDℓ1 dDℓ2 · · · dDℓL

P ν1
1 P ν2

2 · · · P νm
m

. (B.1)
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The integration variables are the L loop momenta ℓa with a = 1, 2, . . . , L, which are
vectors in the Minkowski space R1,D−1. Here, each inverse propagator Pj is a quadratic
polynomial in ℓa’s, the external momenta pi’s for i = 1, 2, . . . , n, and the masses mi. The
external momenta satisfy the momentum conservation ∑n

i=1 pi = 0. Finally, i =
√

−1,
and νj ’s are integer exponents. Their number m can be taken to be equal to the number
E of internal edges in the diagram or larger. In many applications, one extends this
set to span a basis of the kinematic invariants {ℓa · ℓb, ℓa · pi} with a, b = 1, 2, . . . , L and
i = 1, 2, . . . , min(D, n − 1). The number of such invariants is

m = L(L + 1)
2 + L min(D, n − 1)

if we assume that all ℓa’s are unconstrained (it is enough that D ≥ L+1
2 ). The most

interesting case is νj ≥ 0 for j = 1, 2, . . . , E for the set of propagators, and νj ≤ 0 for the
remaining j = E + 1, . . . , m called irreducible scalar products (ISP’s). However, in the
context of master integrals for differential equations, one often treats both as arbitrary
integers. Whenever (B.1) diverges, one treats it as a function of D in a procedure called
dimensional regularization.

We will derive two Schwinger-parametric representations of Feynman integrals (B.1),
depending on whether the powers νj for j = E + 1, . . . , m are arbitrary or constrained
to be non-negative.

B.1 Arbitrary powers of ISP’s

We first treat the case in which all νj ’s are arbitrary. We introduce Schwinger parameters
αj for j = 1, 2, . . . , m by writing

1
P

νj

j

= (−i)νj

Γ(νj)

∫ ∞
0

α
νj−1
j eiPjαj dαj . (B.2)

Applying this identity m times, we obtain4

Iν1,ν2,...,νm = 1
(iπD/2)L

(−i)
∑m

j=1 νj∏m
j=1 Γ(νj)

∫
dDℓ1 dDℓ2 · · · dDℓL

∫
Rm

+

m∏
j=1

α
νj−1
j ei

∑m

j=1 αjPj dmα .

Using the fact that each Pj is quadratic in the loop momenta, the sum in the exponent
can be further rewritten as

m∑
j=1

αjPj =:
L∑

a,b=1
ℓa · ℓb Qab + 2

L∑
a=1

ℓa · La + c ,

4Strictly speaking, we should use the identity (B.2) with 1
(Pj/µ2)νj with some mass scale µ so that

the exponent in the integrand is dimensionless, but here we work in the units where µ = 1.
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thus defining Q which is an L × L matrix, L is an L-vector whose entries are Minkowski
vectors, and c is a scalar. Each of Q, L, c is linear in the Schwinger parameters. At this
stage, we can complete the square in the loop momenta as follows:

m∑
i=1

αiPi =
[
ℓ + Q−1L

]⊺
· Q

[
ℓ + Q−1L

]
− L⊺ · Q−1L + c ,

where for brevity we used matrix notation with the vector [ℓ]a = ℓa. At this stage,
the integrals over the loop momenta are Gaussian and we can simply do them (Wick
rotation of the contour in the time component of R1,D−1 leads to an additional factor of
iL, see [96, App. A]):

Iν1,ν2,...,νm = iLD/2 (−i)
∑m

j=1 νj∏m
j=1 Γ(νj)

∫
Rm

+

1
UD/2

m∏
j=1

α
νj−1
j eiF/Udmα .

Here, we have defined the generalized Symanzik polynomials

U := det Q, F :=
(
−L⊺ · Q−1L + c

)
U .

Compared to the main text, we omit the subscripts G for clarity. They are homogeneous
polynomials with degrees L and L+1 in the Schwinger parameters respectively.

One can further massage this expression into the form used in the main part of the
paper. For example, without changing the value of the integral, we can multiply it by a
dummy propagator with the Schwinger parameter α0:

1
1ν0

= (−i)ν0

Γ(ν0)

∫ ∞
0

dα0 αν0−1
0 eiα0 ,

where the choice ν0 = (L + 1)D/2 −∑m
j=1 νj will turn out to be convenient. The integral

now takes the form

Iν1,ν2,...,νm = iLD/2 (−i)
∑m

j=0 νj∏m
j=0 Γ(νj)

∫
Rm+1

+

1
UD/2

m∏
j=0

α
νj−1
j ei(F+α0U)/Udm+1α .

Finally, we can integrate out the overall scale by a change of variables

(α0, α1, . . . , αm) → λ(1, α1, . . . , αm) .

where λ > 0 and the measure transforms as dm+1α → λmdλ dmα. Using homogeneity
properties of the Symanzik polynomials, the result is

Iν1,ν2,...,νm = iLD/2 (−i)
∑m

j=0 νj∏m
j=0 Γ(νj)

∫
R+

λD/2−1dλ
∫
Rm

+

1
UD/2

m∏
j=1

α
νj−1
j eiλ(F+U)/Udmα
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= Γ(D/2)∏m
j=0 Γ(νj)

∫
Rm

+

1
(F + U)D/2

m∏
j=1

α
νj−1
j dmα . (B.3)

In the final step we integrated out λ using the same identity as in (B.2). This is the
form of the Feynman integrals [97] used in the main text.

B.2 Non-positive powers of ISP’s

Let us now discuss the case in which the powers νj ≤ 0 are non-positive integers for
j = E + 1, . . . , m. The difference will be that now we can use a different Schwinger
parametrization:

1
P

νj

j

= (−i)−νj Γ(1−νj)
2πi

∮
|αj |=ε

α
νj−1
j eiPjαj dαj .

Apart from the prefactors, the difference to (B.2) is that we integrate αj over a small
anti-clockwise circle with radius ε around the origin.

Since the integrand is identical to the one encountered in the previous subsection,
we can carry out the same manipulations up to (B.3). Taking care of the overall
normalization, we get

Iν1,ν2,...,νm =
Γ(D/2)∏m

j=E+1(−i)−2νj Γ(1 − νj)
(2πi)m−E∏m

j=0 Γ(νj)

∫
RE

+×T m−E

1
(F + U)D/2

m∏
j=1

α
νj−1
j dmα .

The idea is to finish by carrying out the m − E integrations over the torus T m−E given
by the product of circles {|αj|= ε} for j = E + 1, . . . , m. To this end, let us define

U := U|αj=0, F := F|αj=0 for j = E+1, . . . , m .

These are the Symanzik polynomials of the Feynman diagram without any numerators,
as defined in [3, Defs. 1–2]. Recall that U and F can be computed combinatorially in
terms of sums over spanning trees and 2-trees. Let us write U = U + U ′ and F = F + F ′,
where the primed polynomials contain all the dependence on the Schwinger parameters
we want to integrate out. At this stage, we need to compute∏m

j=E+1(−1)−2νj Γ(1 − νj)
(2πi)m−E

∮
T m−E

1
(F + U + F ′ + U ′)D/2

m∏
j=E+1

α
νj−1
j dm−Eα

=: N
(F + U)D/2−

∑m

j=E+1 νj
,

which defines the polynomial N . The normalization is chosen such that it has degree
−∑m

j=E+1 νj ≥ 0 in the remaining Schwinger parameters αj with j = 1, 2, . . . , E.
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Putting everything together, we find that the Feynman integral with numerators
can be written as

Iν1,ν2,...,νE|νE+1,...,νm = Γ(D/2)∏m
j=0 Γ(νj)

∫
RE

+

N
(F + U)D/2−

∑m

j=E+1 νj

E∏
j=1

α
νj−1
j dEα .

In particular, since N is polynomial, it can be expanded in terms of monomials

N =
∑

k

ck

E∏
j=1

α
ρjk

j .

Here, the coefficients ck are independent of the αj ’s and all ρjk ∈ Z≥0. As a consequence,
any Feynman integral with non-positive powers νj of ISP’s, j = E + 1, . . . , m can be
expressed as a linear combination of those with no ISP powers and shifted D. Its
singularity analysis is then identical to the case without numerators, which leads to the
following result.

Proposition B.1. The PLD associated to the integral Iν1,ν2,...,νE|νE+1,...,νm with arbitrary
νj≤E and νj>E ∈ Z≤0 coincides with that of Iν1,ν2,...,νE|0,...,0 for arbitrary νj≤E.

In other words, numerators cannot introduce new components of the PLD.

C A toric view on principal Landau determinants

Our Def. 3.5 of the principal Landau determinant EG(E) uses the incidence varieties
YG,Γ(E) for each face Q of the polytope Conv(A). In this appendix, we define a global
object YG which captures all these incidence varieties at once. Let P = Newt(GG) and
write XP for the corresponding projective toric variety. We consider the equations

GG = α1 · ∂GG

∂α1
= · · · = αE · ∂GG

∂αE
= 0.

The Newton polytope of each of these equations is contained in P . Hence, we can regard
them as E + 1 global sections of the line bundle OXP

(DP ) ⊗ L on XP × E , where DP is
the divisor on XP associated to P (cf. [84, Ex. 5.30]), and L is the trivial bundle on E
with sections C[E ]. The intersection of their zero loci on XP × E is YG.

The toric variety XP is stratified by torus orbits, one for each face Q ⊂ P . We
denote these orbits by OQ, and have that OQ ≃ (C∗)dim Q. In particular, for the
full-dimensional face Q = P , we have that OP ≃ (C∗)E and

YG ∩ (OP × E) = YG,P .
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More generally, for lower dimensional faces Q ⊂ P , we have

YG ∩ (OQ × E) ≃ YG,Q/TQ,

where TQ is a (E − dim Q)-dimensional quasi-torus acting on (C∗)E so that (C∗)E/TQ =
OQ. Importantly, this means that the projections to the parameter space E agree:

πE(YG ∩ (OQ × E)) = πE(YG,Q).

Let YG = ⋃
i∈I(G) Y(i)

G be the irreducible decomposition of YG for some finite indexing
set I(G). As in Sec. 3, we define discriminants by projecting and taking the closure:

∇(i),◦
G = πE(Y(i)

G ), ∇(i)
G = ∇(i),◦

G .

Let I(G)1 = {i ∈ I(G) : dim ∇(i)
G = dim E − 1}. For each i ∈ I(G)1, there is a unique

(up to scale) polynomial ∆(i)
G with vanishing locus ∇(i)

G .

Definition C.1. The principal Landau determinant EG(E) is the unique (up to scale)
square-free polynomial EG(E) ∈ C[E ] such that

{EG(E) = 0} =
 ∏

i∈I(G)1

∆(i)
G (E) = 0

 =
⋃

i∈I(G)1

∇(i)
G .

This definition is equivalent to Def. 3.5. It is simpler to state, but it is less practical
for computations. Our approach in Sec. 5 uses explicit local equations for YG on OQ × E .
A similar algorithm for Def. C.1 would make use of an explicit global set of equations
for YG. Such equations can be obtained by using Cox coordinates on XP [84, Sec. 6].
This way, we do not have to run over all faces of P . However, these global equations
are more complicated: there is one Cox coordinate for each facet of P .

Example C.2. Next to simplifying the definition of the principal Landau determinant
and avoiding a for-loop over all faces of P , an advantage of using global coordinates is that
the ideal in the Cox ring sees embedded components such as the one in Ex. 3.10, and in
(3.18). We illustrate this for the problem of Ex. 3.10. The toric variety XP is a weighted
projective plane with Cox ring C[x0, x1, x2], where deg(x0) = 1, deg(x1) = 2, deg(x2) = 3.
The incidence variety YG is defined by the homogeneous ideal

⟨(x2 − x3
0)2 − x3

1 + zx2
0x

2
1, 2x2(x2 − x3

0), 3x3
1 + 2zx2

1x
2
0⟩.

This ideal has a primary component ⟨z, x3
1, x2 − x3

0⟩, which corresponds to the embedded
component ⟨z, α2 − 1, α3

1⟩ seen in (3.8). This suggests that the primary decomposition
of the ideal defining YG in the Cox ring of XP may bring us closer to the Euler
discriminant. In particular, one can ask if all irreducible components of the Euler
discriminant correspond to one of its primary components. ⋄
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