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ui  Cable direction vector ∈ ℝ
3

�  Cable tensions vector ∈ ℝ
m

we  External wrench vector ∈ ℝ
3

W  Wrench matrix ∈ ℝ
3×m

1 Introduction

The last few years have seen a real transition in the 
employment of cable-driven parallel robots (CDPRs) 
from the academic to the industrial sphere. 

The architecture of CDPRs mainly involves the use 
of cables, driven by electric motors through a system 
of pulleys, to guide a load. These well-established 
mechanical devices make CDPRs moderately priced 
and suitable for high-speed tasks, collaborative opera-
tions and also applications that require large work-
spaces [1].

Recently, the industry has been demanding for col-
laborative robots. In other words, a lot of effort is now 
spent in order to enable the robot working safely with 
the human to perform a task. In this regard, although 
cables fit perfectly for collaborative purposes, due to 
their inherent deformability, they are also the source 
of a major issue when a cable breaks.

The failure of a cable shrinks the wrench feasi-
ble workspace (WFW), defined by [2], of the robot. 
As a consequence, the load suddenly lies outside 
the WFW and can not be controlled properly. The 
majority of the works in the literature focus on 
establishing a strategy for recovering the load to 
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avoid dangerous collisions with the surrounding 
environment.

In [3], when the cable breaks, a recovery strat-
egy, which consists in re-planning the load trajec-
tory to bring it to a new equilibrium position within 
the new WFW, is employed. However, here, it is 
assumed the possibility to determine when the cable 
breaks, which, in general, is something unpredict-
able. Similarly, in [4] a straight-line path motion 
planning strategy is introduced to guide the load 
in a safe position inside the workspace. Further-
more, in [5], an after-failure oscillatory trajectory 
was proposed to steer the end-effector towards a 
safe landing location, guaranteeing positive and 
bounded tension limits. In [6] the authors propose a 
strategy that consists of detecting a cable failure and 
avoiding any consequent motion of the end-effector. 
Recently, a fault tolerant control framework rely-
ing on an adaptive estimation filter for simultaneous 
fault detection and diagnosis and task recovery has 
been introduced in [7].

The occurrence of a cable breakage can harm 
humans and the environment, hence in [8] the idea is 
to reduce the kinetic energy of the load while using 
potential fields to compute cable tensions outside 
the WFW. Another possibility explored by the same 
authors [9], consists in reconfiguring the CDPR to 
restore and enlarge the WFW, thus recovering the 
control over the load. Again, same authors [10] tries 
to control the dynamic behavior of the system with 
remaining cables to prevent further damage, such as 
collisions with the ground.

Another branch of work regards the computation 
of the cable tensions distribution. In other words, 
researchers spent effort in developing the so-called 
tension distribution algorithms (TDAs) both for nor-
mal operating conditions and when a cable fails. In 
particular, in [11] a methodology, based on the pro-
jection of the lost wire tension onto the null space of 
the Jacobian of the manipulator, is presented. In its 
subsequent work [12], the corrected cable tension 
is based on Lagrange multiplier for minimizing the 
norms of the correctional and overall cable tension, 
respectively. Another recent contribution is given in 
[13, 14] where a method to calculate cable forces out-
side the WFW of a CDPR is presented. Force distri-
butions are obtained based on the concept of distance 
and with the aim of simplifying the implementation 
while reducing the numerical cost.

Looking at the global context, together the two 
classes of the above-mentioned works focus on find-
ing the best recovery strategy and TDAs to govern the 
load when a cable fails. However, those contributions 
overlook the control part that could be used to make 
the system more robust and prepared in this scenario. 
The importance of a quick reaction by the control sta-
tion has been pointed out in [15]. To this end, this paper 
introduces an adaptive control technique in which the 
PID gains are automatically tuned by exploiting a slid-
ing surface, generally employed with sliding mode con-
trol [16, 17]. This solution allows reaching an equilib-
rium position inside the resulting WFW (i.e. after cable 
failure), while limiting the load oscillation, without 
assuming any prior knowledge about when the cable 
breaks.

This paper is structured as follows. Section 2 recalls 
the main equations governing the CDPRs. Section  3 
reviews the issues in finding a solution for the cable 
distribution problem when a cable fails. Section  4 
describes the control technique used for this work. In 
Sect. 5, a tracking task where a cable fails for a spatial 
CDPR is investigated and the SM-APID performances 
are compared with a PID. Finally, the results are sum-
marized in Sect. 6.

2  System modeling

In this section, the main equations and symbols nec-
essary to describe the CDPR are hereby reported, see 
Fig. 1.

The static or dynamic equilibrium of a load in the 
space, guided by m cables, is governed by the following 
equation

where we ∈ ℝ
3 is the external wrench, which takes 

into account also the dynamical actions applied to the 
platform, while � ∈ ℝ

m is the cable tensions vector, 
and the term W ∈ ℝ

3×m is the wrench matrix, which 
is defined as

(1)W� + we = 0,

(2)W =
(
u1 … um

)
,
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here, ui ∈ ℝ
3 represents the ith cable direction (uni-

tary vector). Thus, if the Degree of Redundacy1 
(DoR) is greater than one, i.e. DoR ≥ 1 , there exist 
infinite solutions of Eq. (1) grouped in the following 
set

However, to maintain the equilibrium of the platform, 
the cable tension limits have to be taken into account. 
Hence, the m-dimensional convex hypercube Π that 
defines the domain of the feasible tensions is

where � , � ∈ ℝ
m,+ are positive and different tension 

vectors limits; the tension limits components will be 

(3)Σ =
{
� |W� + we = 0

}
.

(4)Π =
{
� | 0 < � ≤ � ≤ �

}
,

Fig. 1  CDPR schematic: 
generic architecture of a 
cable-driven robot with m 
cables and a point-mass 
load

Fig. 2  Solution properties

1 A redundant CDPR is composed of m cables that exceed the 
Degree of Freedom (DOF) of the end-effector.
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considered equal inside the two vectors, respectively. 
Consequently, the set of feasible solutions Γ , see 
Fig. 2a, satisfying both Eqs. (1) and (4), is

Practically, the cable tensions can be computed as

where W† is the Moore–Penrose pseudo-inverse 
matrix of W , N ∈ ℝ

m×(m−n) contains the vectors that 
span the kernel of W , � ∈ ℝ

(m−n) belongs to the poly-
tope Λ defined as follows

It turns out that, to cope with the cable intrinsic prop-
erty guaranteeing the controllability of the platform 
during the tasks, a natural way to deal with Eq.(6) 
consists in solving an optimization problem.

3  On the TDAs for cable‑breakage scenario

So far, several approaches were presented in the liter-
ature, [18], to solve the tension distribution problem. 
Here, the Analytic Centre (AC), presented in [19] and 
[20], is employed. To motivate the benefit of using 
this TDA, even in case of cable breakage, this section 
compares it with the Nearest Corner method, which is 
specifically developed for cable failure scenarios in a 
series of papers by [13, 14].

In other words, when the load is outside the WFW 
then Γ = � . Therefore, one can adopt a specific strat-
egy to choose the cable tensions vector � in this 
case. However, one should notice that every tech-
nique would always be a fallback solution as it won’t 
respect Π and Σ contemporarily. Then, this latter will 
constitute an approximation that has to be compliant 
with the force boundaries Π so that it can be used for 
control purposes.

In this context, the most immediate idea, as 
explained in [13, 14], is basically to project the cor-
ners of the hypercube Π onto the affine space Σ and 
then using weights (accounting for the distance to the 
corners) to select a tension � as the solution. Although 
this technique has the advantage of not being iterative 
and can be easily implemented, it still has issues that 
are not present with the AC.

(5)Γ = Σ ∩ Π.

(6)� = −W†we + N�,

(7)Λ ∶= {� ∈ ℝ
(m−n) | � ≤ −W†we + N� ≤ �}.

One practically-relevant issue concerns the conti-
nuity of the solution. Similarly as in the Linear Pro-
gramming (LP) method, [21], when the affine space 
undertakes a sequence of orientation, such that it 
becomes parallel to one face of Π , then the solution 
is not unique. Moreover, looking at the mentioned 
sequence of orientation in Fig. 2b, it is evident that 
one can step from one corner to another of Π hence 
generating a jump (discontinuity) in cable tension 
profiles.

The second aspect that should be considered, 
regards the weights used in this method. Indeed, it 
seems that the weights determining the tension � are 
not bounded. This can cause problems as it can hap-
pen that the solution contains components requiring 
more than the highest (or lowest) tension value. In 
case the highest tension is selected, this will stress 
more the remaining cables and can generate a col-
lapse of the overall structure if other cables fail.

As explained in [20], above mentioned issues do 
not occur when using the AC. Indeed, barrier func-
tions guarantee the continuity of the solutions and 
automatically avoid selecting cable tensions outside 
Π . Notice that other TDAs can be suitable and then 
used while respecting continuity and returning a 
solution inside Π . However, the advantages of using 
the AC, as pointed out in [20], make it our preferred 
solution.

Remark 1 Using an optimization problem some-
how translates into reducing the distance between Γ 
and Π . Indeed, the solver aims at reducing the resid-
ual of Eq.(1), while satisfying Π , as much as possible. 
Moreover, using AC, one could define a slack vari-
able [19], to mitigate the infeasibility Γ = � , similarly 
as done in [22].

4  Sliding‑mode adaptive PID

The objective of the control is to ensure that the 
load is safely (i.e. reducing the risk of undertak-
ing harmful oscillations) stopped in the new WFW, 
when a cable breaks. Generally, the Sliding Mode 
(SM) control is used to guide a system under the 
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effect of disturbances and uncertainties [23]. To 
avoid the typical chattering2 of the SM control, the 
main control command is demanded to an Adaptive 
PID which is added to the SM part. The fusion of 
the two will enable controlling the system in pres-
ence of external disturbances, limiting the chatter-
ing issue.

4.1  Control structure

As anticipated above, the control input is split into 
two terms [23, 24]

where us is the supervisory control that keeps the sys-
tem state within some defined boundaries, guarantee-
ing the stability of the dynamical system. The PID 
exploits a gradient-based adaptation law for updat-
ing its gains, providing robustness of the control. The 
design of both us and uPID has been defined in [16].

Remark 2 The action of the control u takes the role 
of the external wrench we in Eq. (1) that the cables 
have to generate to guide the load along the desired 
trajectory.

4.2  Design of the supervisory control

The role of us is to keep the system state inside a 
designed constraint set

where x̃, ̇̃x ∈ ℝ
n form the system’ state 

x = [x̃, ̇̃x]T ∈ ℝ
2n , Mx is a pre-specified param-

eter usually chosen such that Mx ≥ ||y||∞ with 
y =

[
x̃des, ̇̃xdes

]
 representing the desired state vector.

Its design relies on the stability of the system, 
which is briefly outlined below. Hence, to asymp-
totically attain the zero-error condition, the following 
Lyapunov function candidate is considered

(8)u = uPID + us,

(9)ℭ = {x ∈ ℝ
2n| ||x||∞ ≤ M

x
},

(10)Ve =
1

2
eT�e,

where e = [ẽ, ̇̃e]T ∈ ℝ
2n and ė = [ ̇̃e, ̈̃e]T ∈ ℝ

2n are the 
state error vectors, which are the time derivatives of 
e = y − x . Generally, � is defined as a positive defi-
nite and symmetric matrix that springs out as the 
solution of the Lyapunov equation [16, 25]

where the matrix Q ∈ ℝ
2n×2n is a given, posi-

tive definite symmetric matrix, whereas the matrix 
A ∈ ℝ

2n×2n pops out by rewriting the error dynamics 
as

where u∗ is the so-called feedback linearization con-
trol whereas A and B are the structure matrices

where g(x, ẋ) is the affine term of dynamical system 
[25]. Note that k0 ∈ ℝ

n×n and k1 ∈ ℝ
n×n are diagonal 

matrices whose coefficients are chosen such that the 
roots of the characteristic polynomial, associated with 
the differential equation ̈̃e + k1 ̇̃e + k0ẽ = 0 , belong to 
the left-half complex plane.

Thus, a classical strategy to reach the desired 
output is to exercise a control action that strictly 
decreases Ve , which means that us must meet V̇e < 0.

The derivative of the Lyapunov function can be 
computed as follows [17]

Therefore, to satisfy Eq.  (14), the supervisory con-
troller can be chosen as

With this design, us constantly intervenes in the con-
trol process and the presence of the sgn function leads 
to chattering. Therefore, to adhere with its supervi-
sory definition and to reduce the chattering, the set of 
constraints ℭ is used. In particular, the Indicator func-
tion If  is introduced in the us design as follows

(11)AT
� +�A = −Q,

(12)ė = Ae + B(u∗ − uPID − us),

(13)A =

(
0 I

−k0 −k1

)
and B =

(
0

g(x, ẋ)

)
,

(14)

V̇e =
1

2
(ėT�e + eT�ė) ≤ −

1

2
eTQe + |eT�B|(|u∗| + |uPID|)

− eT�Bus.

(15)us = sgn (eT�B)(|u∗| + |uPID|).

(16)ũs = If us where If =

{
1, Ve > VM ,

0, Ve ≤ VM ,
2 The chattering is a switching phenomena that makes the con-
trol action discontinuous, see Fig. 1.7 at Pag. 8 of [23] to better 
understand.
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with

where �min(�) is the minimum eigenvalue of the 
Lyapunov matrix � [16, 25]. The introduction of the 
Indicator function completes its design.

4.3  PID adaptive laws

The APID is then supposed to steer the system under 
ordinary conditions (i.e. Ve ≤ VM ). The adaptation 
laws are derived with the aim to reach the so-called 
sliding mode S = 0 (i.e. insensitivity to external dis-
turbances), where S is the sliding surface defined as 
in [23]

To guarantee approaching the sliding mode, the Lya-
punov function approach is exploited with a Lyapu-
nov function candidate as

Again, requiring that S(t) → 0 for t → ∞ coincides 
with reducing V. Consequently, the gradient method 
is employed to choose the gains which take directions 
of maximum slope over V. Now, the common expres-
sion for a PID controller is

using the gradient method and the chain rule, it is 
possible to obtain the adaptation laws for the control 
gain matrices KP , KI and KD

(17)VM =
1

2
�min(�)(Mx − ||y||∞)2,

(18)S = ̇̃x − ̇̃xdes − k1ẽ − k0 ∫ ẽ dt.

(19)V =
1

2
S
2.

(20)uPID = KPẽ +KI ∫ ẽ dt +KD
̇̃e,

(21a)K̇P,ii = − 𝛾
𝜕SṠ

𝜕KP

= −𝛾
𝜕SṠ

𝜕uPID

𝜕uPID

𝜕KP

= −𝛾Sẽ,

(21b)

K̇I,ii = − 𝛾
𝜕SṠ

𝜕KI

= −𝛾
𝜕SṠ

𝜕uPID

𝜕uPID

𝜕KI

= −𝛾S∫ ẽ dt,

(21c)K̇D,ii = − 𝛾
𝜕SṠ

𝜕KD

= −𝛾
𝜕SṠ

𝜕uPID

𝜕uPID

𝜕KD

= −𝛾S ̇̃e,

where minus is placed opposite to the energy flow 
V and � ∈ ℝ

+ is called learning rate.3
Hence, the behaviour of the controller can be 

resumed as follows: if us = 0 , the PID gains adapt 
themselves to decrease V to zero (i.e. reach the sliding 
mode), whereas if us ≠ 0 , the PID gains are not able 
to decrease V and then also Ve under VM.

Remark 3 Notice that, when the cable breaks, the 
load is hardly controllable as the WFW changes. 
However, the nature of the problem causes the load 
to sink into the new WFW [3], making it controllable 
again. From then on, the APID adapts the gains, i.e. 
it acts actively on the load, in order to reach x̃s while 
minimising the oscillations or loops around it. There-
fore, the change in the WFW can be considered as the 
presence of uncertainty in the model.

5  Study cases

In this section, a CDPR with four cables suspending 
a point mass load is considered, see Fig.  3 for sake 
of clarity. The tests consist in tracking a circular and 
helical trajectory till the cable breaks. When the cable 
failure occurs, the load is supposed to be positioned 

Fig. 3  WFW: the shape of the WFW is hereby depicted, using 
the capacity margin  [27]. When all the four cables are work-
ing, the WFW is symmetric and the trajectory result to be fully 
inside the green volume. (Color figure online)

3 To avoid cumbersome notation, the subscript ii (emphasizing 
the diagonal structure of the gain matrices) has been inserted 
only to the left-hand side of the equation, intending the deriva-
tive operation to be carried out component-wise, [26].

user
Rectangle 



1933Meccanica (2024) 59:1927–1937 

Vol.: (0123456789)

inside the new WFW at the pre-computed safety posi-
tion x̃s = (−1.2

√
2, −1.2

√
2, z(tcb))

4, while mini-
mizing the kinetic energy by requiring ̇̃xs = (0, 0, 0) . 
Observe that one could also combine this procedure 
by introducing one of the strategy given in the litera-
ture; however, this is out of the scope of this paper as 
the focus is on testing the control part. To simulate 
this scenario, the integration step is set to dt = 10−3 s 
and it is supposed that the fourth cable is going to 
fail. This latter does not constitute a loss of generality 
as indeed, any other cable can be chosen to break by 
coherently changing the coordinate of x̃s within the 
new WFW.

Regarding the simulation data, the attach-
ment points are A1 = (3.75,−4.34, 2.78)  m, 
A2 = (−3.75,−4.34, 2.78)  m, 
A3 = (−3.75, 4.34, 2.78) m, A4 = (3.75, 4.34, 2.78) m, 
the entire simulations last 20 s, the mass of the load is 
mL = 2 kg and it is supposed to follow a circular

or a helical trajectory

The gains for the PID are set to be equal to the initial 
ones of the APID, hence KP,ii = KI,ii = KD,ii = 10.

Remark 4 Literature often reports simulations 
where, even if a cable breaks, the load remains over-
constrained. However, a more significant scenario 
arises when the load becomes under-constrained after 
a cable breaks. This would place maximum demands 
on the controller and enable us to comprehend worst-
case performance. Furthermore, notice that consider-
ing the suspended architecture makes the case even 
more challenging since the WFW is not approximated 
to a cube but to a flipped pyramid and, also, forces 
along the negative direction of the z-axis can not be 
generated.

(22)

⎧⎪⎨⎪⎩

x(t) = cos(2�s(t)) s(t) ∈ [0, 1],

y(t) = sin(2�s(t)) t ∈ [0, 20] s,

z(t) = 1.5,

(23)

⎧⎪⎨⎪⎩

x(t) = sin(�∕8 t),

y(t) = cos(�∕8 t),

z(t) = 1 + 0.05 t.
5.1  Performances index

This section is placed before the numerical simula-
tions with the scope of introducing a metric to make 
comparisons between the various control techniques. 
The index intended to be used here is based on the 
distance between the load and the safe position. In 
particular, since the load is expected to oscillate 
around x̃s , the measure of the distance is taken when 
the load velocity changes its sign. In other words, the 
position of the load when it inverts its motion x̃inv to 
get x̃s is used for computing the measure. Mathemati-
cally the index is defined as

which, merely, represents the maximum radius of the 
sphere, with centre x̃s , within which one can find the 
load oscillating.

(24)I = ||x̃s − x̃inv||,

Fig. 4  Tension profiles: the trend of tension profiles when the 
fourth cable at tcb = 5 s breaks are reported. The tension distri-
bution algorithm used is based on the Analytic centre defined 
in [20]; dotted red lines identify the cable tension limits. 
(Color figure online)

Fig. 5  distance to the final goal: here the trend of the distance 
to x̃s recorded, when the cable breaks at t = 5 s, along the three 
Cartesian directions for both the controller PID and APID is 
represented, respectively

4 Where z(tcb) is the z-coordinate recorded at the moment 
when the cable breaks at a generic time tcb.
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5.2  Study case one

To start, let’s consider the circular trajectory case and 
set z(t) = 1.5  m. Therefore, the tension profiles and 
the trends of the position and velocity errors for both 
the PID and APID control are depicted in Figs. 4, 5 
and 6, respectively. First, from the error trends, it is 
possible to see that, when the cable breaks at tcb = 5 s, 
the new x̃s position is automatically defined by the 
control, and the load is guided toward it. Indeed, at 
tcb the error suddenly increases since x̃s is generally 
far from the actual load position. Moreover, it should 
be evident, comparing the trends, that the use of an 
adaptive technique makes the system more robust and 
safer than the PID, as the amplitude of the load oscil-
lations is smaller, see Fig. 5 about 6–13 s. Concern-
ing the convergence to x̃s and ̇̃xs , from Figs. 5 and 6, 
it should be clear that the APID performs better as it 
reaches 0 error before the PID.

A second noteworthy aspect regards the influ-
ence of tcb on the control performances. In particular, 
changing the tcb will help us demonstrate the inde-
pendence of the APID when the cable fails as well as 
the robustness of the method.

Therefore, to show what mentioned above, let’s 
consider also cases in which the cable breaks at 
tcb = 2.0 s and tcb = 3.7 s. The results of the trajecto-
ries followed are depicted in Fig. 7a–c. It seems clear 
that the PID leads to wider oscillations around x̃s than 
the APID. The motivation is linked to its fixed gains. 
Indeed, once selected, they will not be optimal as, in 
general, the cable breaks unexpectedly.

Comparing the radius IAPID < IPID only shows 
the superiority of the APID in guaranteeing safety 
around a chosen x̃s . To show its independence from 
time, one should notice that the radius under which 

the load oscillates is always smaller than the one 
defined by the constraint ℭ in Eq. 9. In other words, 
ℭ traces a sphere, inside which the load should stay 
by adapting the gains. If this condition can not be 
satisfied, then the us intervenes as said at the end 
of Sec.  4. Notice that the definition of ℭ depends 
on the scalar value Mx which, indeed, is independ-
ent from the time. Moreover, one should observe 
that the radius of the circle IPID decreases while 
going from tcb = 2  s to tcb = 5  s. In other words, 
the higher the time tcb , the lower the radius. This 
can be explained by observing that, for this case 
study, the distance to x̃s reduces when tcb increases. 
Therefore, since the distance reduces, the amount 
of time where the motion of the load is uncon-
trolled reduces and then the PID should correct the 
trajectory less to reduce the error.

Remark 5 Practically, the parameter Mx , as defined 
in Sec.  4, translates in requiring a certain level of 
safety by posing limits on I  . Clearly, Mx = 0 means 
that the load must stop at x̃s and no oscillations are 
permitted.

Fig. 6  Velocity errors: velocity errors recorded when the cable 
breaks at t = 5 s, along the three Cartesian directions for both 
the controller PID and APID, respectively

Fig. 7  Multi-failure scenario: tracked trajectories for different 
cable-breakage times tcb = 2 s, tcb = 3.7 s and tcb = 5 s for both 
PID and APID controls. Note the circles highlights the differ-
ences in distances between the two methods blue for the PID 
and purple for the APID. In general, the PID leads to larger 
oscillations around the safe position x̃s w.r.t. the APID. (Color 
figure online)
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For sake of completeness, the gains profiles, 
Fig. 8, are also reported to show how they change 
over time. Observe that these graphs tell us when 
the load enters the new WFW. Indeed, this happens 
when the gains stabilize at a steady value.

The analysis can be concluded by considering 
the influence of � on the APID performance. Here, 
� has been considered fixed to � = 0.005 in order 
to make fair comparisons with the PID. However, 
several possibilities are available. One can, for 
example, have different values along each Car-
tesian direction. Now, despite the broad range of 
possibilities one has for choosing � , practically, its 
influence on the global behaviour of the control is 
what interests us for designing the control. In this 
context, it appears clear that, when � → 0 , then 
the APID behaves as the PID. Therefore, one can 
think that the higher is � the better it is in terms 
of adaptation and then performance. This latter 
conclusion is, however, wrong. Indeed, increas-
ing � can lead to overreaction to errors change, see 
Eqs.  (21a)–(21c). Practically speaking, this last 
phenomena is not a problem as far as the variation 
in the gains does not result in actuation saturation. 
Therefore, it is necessary to find a good compro-
mise between the reaction to error change and the 
quickness of adaptation.

5.3  Study case two

In this section, the trajectory is considered as a helix 
in order to show the generality of the method and see 
if major changes in the result occur.

Similarly to what was done before, let us analyse 
the performance of both the PID and APID when 
the fourth cable breaks. For brevity, only the case 
tcb = 2 s is reported as it is the worst case due to the 

large distance separating the point where the cable 
breaks and the x̃s.

Qualitatively comparing the trajectories under-
taken by the load in Figs. 9 and 10 suffices to con-
firm what said before IAPID < IPID.

One additional information that can be added by 
looking at the spatial trajectory in Fig.  9 regards 
the radius of the sphere around the safe position. 

Fig. 8  Gain trends: gain 
profiles over time for the 
APID. Observe that, when 
the cable breaks at tcb , there 
is a phase of transition 
before the gains stabilize 
again. The extremes of this 
transitional phase are tcb and 
the instant of time when the 
load enters the new WFW

Fig. 9  Simulation results: this figure represents the trajectories 
undertaken by the load when a cable breaks. In particular the 
red curve is obtained with the PID whereas the purple with the 
APID control. Notice that the green represents the ideal trajec-
tory to be followed when the cable braks. (Color figure online)

Fig. 10  PID control
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In previous simulations, the error in the z direction 
was small (about 0) and then there was no doubt 
about taking the radius as the maximum distance on 
the x − y plane. This time, one can argue that this 
consideration is not valid anymore. However, since 
typically the aim is to avoid lateral collisions first, it 
should be still valid taking the radius as the maxi-
mum on the x − y plane as safety criteria to compare 
the control performance.

6  Conclusion

Motivated by the question of whether a control 
technique could assist in controlling the load in 
the case of cable failure rather than using lock-
in strategies, in this paper, the performance of the 
SM-APID was investigated. The proposed con-
trol guarantees a higher robustness w.r.t. the well-
known PID method, which has fixed gains and then 
no flexibility in terms of responsiveness. Indeed, the 
obtained results served as motivation for integrat-
ing gain adaptation laws on CDPRs to make them 
more robust when unpredictable phenomena occur 
to destabilize the load. The experimental validation 
of this technique will be part of the future works.
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