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DNA Repair Systems  
 

A preserved genome is essential for the preservation and 

continuation of life. DNA, however, is known to be an 

intrinsically reactive molecule and is highly susceptible to 

chemical modifications from endogenous or exogenous agents; 

exogenous factors include environmental hazards such as toxic 

heavy metals and radiation, whereas endogenous factors 

comprise molecules or reactive species released by cellular 

metabolism inside the body or after cell damage and the loss of 

cell membrane integrity [1]. For example, naturally occurring 
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reactive oxygen species (ROS) inside cells can thus lead to 

various types of endogenously caused-DNA damage, which can 

be in the form of deamination, methylation, or oxidation of 

bases, but also as single- or double-strand breaks. Similarly, 

exposure to exogenous agents such as ultraviolet (UV) light, 

ionizing radiation, benzopyrene, or alkylating agents can also 

lead to the accumulation of various types of lethal DNA lesions 

[2]. 

 

DNA damage caused by either endogenous or exogenous sources 

can ultimately lead to DNA mutations. Mutations refer to 

changes in the DNA sequence, which can occur due to either 

exposure to DNA damaging agents (in this case mutagens) or to 

errors during DNA replication. Some mutations are beneficial 

and in fact play an important role in evolution and development 

of life, while others are associated with diseases, tumorigenesis, 

and aging. Because the accumulation of mutations can be 

unfavorable and lead to drastic carcinogenic consequences, cells 

have evolved complex DNA repair, damage tolerance, cell cycle 

checkpoints, and cell death pathways to maintain the integrity of 

the genome [2]. 

 

There are several types of mutations, ranging from single base-

pair alterations to multi base-pair deletions, insertions, 

duplications, and inversions [3]. Depending on the type and 

location of the mutation, the effect can be classified as 

beneficial, neutral, detrimental, or lethal. However, recent 

research has shown that several other factors might play a role in 

determining the effect of a certain mutation, as in the case of 

“Epistasis” where the effect of a gene mutation is dependent on 

the presence or absence of other mutations in a manner that the 

environmental genetic background of such a particular DNA 

mutation might play a role in changing its effect [4]. Mutations 

that cause death or reduced life expectancy of individuals are 

referred to as lethal mutations, as in the case of Tay Sachs 

disease, where life expectancy is around 4-5 years of age [5]. 

 

Preserving one’s genome after such genomic attacks and 

mutations is thus vital for an organism. For this purpose, the 

DNA repair machinery efficiently localizes and eliminates DNA 
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lesions to maintain genomic integrity and stability, and minimize 

the formation of mutations. The cell cycle includes four different 

stages and three checkpoints; upon detection of DNA damage, 

the cell cycle halts, and the DNA damage response (DDR) is 

activated; depending on the type of lesion, different DNA repair 

pathways can be initiated. There are at least six major DNA 

repair pathways, including direct reversal/repair (DR), base 

excision repair (BER), nucleotide excision repair (NER), 

mismatch repair (MMR), homologous recombination (HR), and 

non-homologous end joining (NHEJ) repair pathways [2,4] 

(Figure 1). Normally, if the damage is unrepairable, the cell 

undergoes apoptosis or necrosis [6]. 

 

Certain DNA lesions can be directly repaired. The O6-

alkylguanine (O6-AG)-DNA methyltransferase (MGMT) also 

known as O6-alkylguanine-DNA alkyltransferase (AGT) can 

indeed repair DNA damage by removing alkyl groups from 

thymine or guanine bases without removing the base itself [7]. 

Other DNA repair pathways include multi-enzyme complexes 

that work together or sequentially to remove specific types of 

damaged bases. For example, the BER pathway involves 

numerous proteins that aid in maintaining genome integrity by 

repairing small single base DNA lesions caused by DNA 

alkylation or oxidation [8] including 8oxoGuanine (8oxoG), the 

most abundant BER substrate, which results from the oxidation 

of guanine, and if left unrepaired can lead to transversion 

mutations [9]. The NER pathway plays an important role in 

repairing UV-induced photoproducts, bulkier DNA lesions such 

as base adducts created by genotoxic agents like cisplatin, and 

DNA crosslinks [10]. In these two excision repair pathways, the 

damaged nucleotide and in some cases the neighboring DNA is 

excised and replaced with newly synthesized DNA using the 

normal DNA replication machinery. The MMR pathway plays a 

role in correcting single base-pair mismatches and misaligned 

short nucleotide repeats introduced accidently by the DNA 

polymerase during DNA replication; if left unrepaired they can 

lead to point or frameshift mutations [11]. MLH-1, MSH-2, 

MSH-6, and PMS-2 are the most clinically relevant MMR 

proteins, which participate in the repair of such errors by 

excising the DNA harboring the mismatch site and re-
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synthesizing the correct DNA. Both HR and NHEJ are DNA 

repair pathways involved in repairing double-strand breaks 

(DSB). Proteins encoded by BRCA1, BRCA2, RAD51, and 

PALB2 genes mediate HR, which functions by resecting part of 

the DNA sequence around the DSB, after which the homologous 

sister chromatid is used as a template for the synthesis of the new 

non-damaged DNA. HR can thus only operate during the S and 

G2 phases of the cell cycle during which the sister chromatids 

are present. NHEJ, in contrast, repairs DSBs by directly ligating 

the loose ends of the DSBs and can therefore function 

throughout the cell cycle, but is more error-prone [12]. 

 

 
 

Figure 1: DNA damage and the associated DNA repair pathways. 

 

Defects in DDR Genes and Cancer  
 

Cancer is a disease that develops gradually. According to the 

mutator phenotype hypothesis, the ability of cancer cells to 

divide, invade, and metastasize is due to mutations in driver 

genes that regulate DNA repair and genetic stability. Such 

mutations result in deficiencies in DNA repair pathways leading 

to an increased mutation rate; those mutations can take place in 

other DNA repair genes thereby initiating a cascade of mutations 

in the genes that maintain genomic stability [13-15]. Eventually, 

this leads to genomic instability which is believed to be the main 

cause of tumorigenesis [16-18]. Thus, such deficiencies in DNA 

repair genes are the hallmark behind genomic and epi-genomic 

instability in case of cancer development [14]. 
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The cancer cell genome has been shown to include several 

mutation classes such as substitutions, insertions, or deletions of 

small or large DNA segments, rearrangements, gene 

amplifications, copy number reduction, etc [19-22]. Several 

epigenetic changes that alter both chromatin structure and gene 

expression have also been identified in cancer cells [23,24]. 

Furthermore, some cancer cells have acquired exogenous DNA 

sequences from tumorigenic viruses such as Epstein Barr virus, 

hepatitis B virus, human T lymphotropic virus-1, and human 

herpes virus-8 [25]. 

 

DNA damage and mutations play an important role in cancer 

development; this is particularly obvious in case of genetic 

defects in the DNA repair machinery [26]. For instance, 

individuals with somatic or inherited germline mutations 

affecting DNA repair genes typically exhibit an increased risk of 

developing cancer. In what follows, is a list of the most 

commonly occurring cancer-related DNA repair defects. 

 

Cancer-Related Defects in HR Genes: BRCA1 and 2 are tumor 

suppressor genes that control cell growth and differentiation. 

Besides their role in the regulation of gene expression, they are 

also known to take part in the repair of DSBs in the HR pathway. 

Upon HR activation, DSBs are resected into a 3'-single-stranded 

DNA (ssDNA) overhang, which is directly coated with the high 

affinity ssDNA-binding protein, RPA. After that, BRCA1, 

BRCA2, and PALB2 form a crucial network of proteins to 

mediate the replacement of RPA by RAD51, which is the main 

effector protein in the subsequent steps of the HR pathway 

[27,28]. Lung, ovarian, breast, pancreatic, and prostate 

carcinoma are now known to be associated with mutations in HR 

genes, particularly BRCA1 and BRCA2 [29-32]. A recent 

analysis estimated the lifetime risk of developing prostate cancer 

by age 85 to be 29% and 60% for BRCA1 and BRCA2 carriers, 

respectively, and that the risk of developing male breast cancer is 

18- and 80-fold higher in BRCA1 and BRCA2 carriers, 

respectively [31,32]. Besides that, it was estimated that breast 

cancer families with BRCA2 mutations have a 10-fold higher 

risk of developing pancreatic cancer than families without such 

mutation [29,34]. 
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Cancer-Related Defects in BER Genes: MUTYH gene 

encodes for the MYH DNA glycosylase enzyme, a BER protein 

that functions in repairing oxidative DNA damage resulting from 

exposure to various carcinogens. In particular, MYH is known to 

bind the mismatched 8oxoG:A base-pair resulting from 

misincorporation of adenine opposite 8oxoG during replication 

of 8oxoG-containing DNA, after which it excises the 

mismatched adenine, thereby preventing T:A transversion 

mutations in the following rounds of DNA replication [35]. 

Somatic and germline MUTYH gene mutations are known to be 

associated with a high risk of developing polyposis and 

colorectal cancer [36]. Furthermore, recent studies to understand 

the role of the mutated MUTYH gene in the development of 

extracolonic cancer estimated that biallelic MUTYH carriers 

have a 19- and 17-fold increased risk of developing urinary 

bladder and ovarian cancer, respectively, compared with the 

general population, and that monoallelic MUTYH carriers are at 

increased risk of developing gastric, liver, breast, and 

endometrial cancer [37]. Another study suggests that monoallelic 

MUTYH carriers may progress to ovarian cancer if somatic 

MUTYH mutations co-occur, leading to a homozygous somatic 

state [38]. Both mutated MUTYH related-cancer types can occur 

due to the failure of MUTYH driven-BER mechanism in 

MUTYH-mutated individuals [38]. 

 

Cancer-Related Defects in NER Genes: ERCC1 is a 

multifunctional protein that plays an essential role in the NER 

pathway. Together with XPF, it forms the structure-specific 

endonuclease XPF/ERCC1 complex which is known to be 

essential for repairing various bulky DNA lesions, pyrimidine 

dimers, DNA crosslinks, and DSBs. ERCC1 has been identified 

as the most frequently deficient DNA repair protein in non-

small-cell lung cancer (NSCLC). Besides that, mammalian cells 

with mutated ERCC1 and XPF genes develop various genetic 

disorders, which result from deficient NER pathway, including 

Xeroderma pigmentosum (XP), trichothiodystrophy (TTD), and 

Cockayne syndrome (CS) [39-42]. In the same context, studies 

published by the Cancer Genome Atlas (TCGA) and others, 

demonstrate that somatic mutations in ERCC2, a DNA helicase 
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that also plays an important role in NER, were identified in 

approximately 12% of bladder cancer [43-46]. 

 

Cancer-Related Defects in MMR genes: MSH2, MSH6, 

MLH1, and PMS2 play an essential role in mediating the MMR 

pathway, which aids in repairing base-base mismatches, 

insertions, and deletions generated during DNA replication and 

recombination. Several types of cancer are associated with a 

deficient MMR pathway, including colorectal, endometrial, 

gastrointestinal, and ovarian cancers. A deficient MMR pathway 

is known to occur in 15-20% of colon and 10% of rectal cancers 

[47-50]. For instance, mutations in MLH1, MSH2, and MSH6 

are the cause behind the occurrence of hereditary nonpolyposis 

colorectal cancer (HNPCC), the latter being characterized by 

colorectal, endometrial, and other cancer clusters [51,52]. 

Several studies have also demonstrated the existence of MMR 

mutations in ovarian cancer, one of which noted that the 

incidence of germline MMR mutations in ovarian cancer is 2%, 

while other inactivated gene forms occur in up to 29% of the 

cases [53-55]. 

 

Cancer-Related Defects in DR Genes: As previously 

mentioned, MGMT functions as an alkyl-acceptor that 

irreversibly transfers the methyl group from the O6-

methylguanine and O4-methylthymine into its internal acceptor 

site (the sulfur atom of its active site cysteine), thereby repairing 

such alkylated adducts. Loss of MGMT function, mainly due to 

hyper-methylation-mediated silencing of its promoter, or 

mutation, has been associated with various tumor types, 

including glioma, gastrointestinal, esophageal, breast, and 

prostate cancer [56-58]. A recent analysis demonstrated the loss 

of MGMT protein expression in 44.5% (65/137) of 

gastrointestinal stromal tumors, with 10.9% (15/137) exhibiting 

MGMT promoter methylation [57]. Besides that, loss of MGMT 

protein occurs frequently in esophageal cancer patients from 

north India, where the absence of such protein is associated with 

65% of the cases (52/80), together with a significant hyper-

methylation of the MGMT promoter region [58]. 
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Cancer-Related Defects in the tp53 Gene: tp53 is a tumor 

suppressor gene that encodes for the p53 protein, which in turn 

plays an important role in protecting the cell from DNA damage. 

It is a transcription factor that facilitates the DDR by halting the 

cell cycle to allow for the repair machinery to restore genome 

stability. It controls genes involved in the regulation of the cell 

cycle and/or apoptosis [59]. Under normal conditions, it is 

expressed at low levels; upon detecting DNA lesions, a series of 

post-translational modifications including phosphorylation and 

acetylation take place leading to the accumulation and activation 

of p53. As a transcriptional activator, p53 regulates and activates 

several genes involved in various DNA repair pathways (NER, 

BER, MMR, NHEJ, and HR) and induces either cell cycle arrest 

or apoptosis depending on the extent of DNA damage [59,60]. 

As such, p53 plays a central role in maintaining genomic 

integrity. It is thus no surprise that over 50% of human cancers 

are indeed associated with loss of function p53 mutations 

[61,62]. Some cancers with p53 mutations are in addition 

chemo-resistant, which reinforces the critical role of p53 in 

cancer progression [59]. 

 

Cancer-Related Defects in the PTEN Gene: PTEN is also a 

tumor suppressor gene that encodes for the PTEN (phosphatase 

and tensin homolog) protein, a lipid phosphatase that plays a 

major role in the regulation of the phosphatidylinositol 3 kinase 

(PI3K)/AKT cascade, one of the most important signaling 

pathways activated in response to DNA damage. PI3K/AKT 

regulates cell cycle progression, induction of cell death, 

transcription, translation, stimulation of angiogenesis, and stem 

cell self-renewal [63-65]. By dephosphorylating 

phosphoinositide signaling molecules like PIP3, PTEN can 

inhibit signal transduction [66] and thereby block cell migration 

and cell-cycle arrest [67,68]. New evidence also suggests that 

PTEN can regulate DDR factors such as Chk1 and p53, therefore 

playing an indirect role in maintaining genomic integrity [69]. 

PTEN loss of function mutations are associated with genetic 

mutations, epigenetic mutations, and gene silencing mechanisms; 

this loss of function is present in several cancers such as gastric 

cancer [70] and breast cancer [71]; loss of PTEN causes the 

increase in PIP3 levels and the persistent activation of PI3K 
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effectors which causes uncontrolled cell proliferation, apoptosis 

resistance, angiogenesis, genomic instability, stem cell self-

renewal, cellular senescence, and cell migration [72]. 

 

When loss of function in direct or indirect DNA repair proteins 

occurs, more genomic alterations ranging from point mutations 

to chromosomal alterations are bound to occur. This is referred 

to as “genomic instability” [73] and is proving to be one of the 

major hallmarks of cancer, since it also affects other hallmarks 

such as oxidative stress, proteotoxic stress, metabolic stress, 

DNA damage and DNA replication, and mitotic stress [74]. 

 

DNA Repair Deficiency Disorders and 

Increased Risks of Cancer  
 

DNA repair deficiency disorders are caused by germline 

mutations in DNA repair genes. Several hereditary diseases 

characterized by genetic defects in DNA repair mechanisms are 

known to be associated with increased risk of cancer [75]. This is 

the case of Bloom’s Syndrome, Xeroderma Pigmentosum, Lynch 

Syndrome, Ataxia telangiectasia, and several other disorders 

described in this section. 

 

Bloom’s Syndrome (HR-deficient) 
 

Bloom’s syndrome is an autosomal recessive disease that occurs 

due to a loss of function mutation in BLM [76]. BLM encodes 

for the RecQ helicase, a DNA helicase that functions in HR 

repair of DSBs. BLM has also been shown to have a function in 

the early sensing of DNA damage, where it assembles with p53 

and hRAD1 at sites of stalled replication and DSBs. It interacts 

with several other proteins to promote survival in response to 

DNA damage, DNA blockage, chromatin remodeling, etc. Thus, 

BLM has a significant role in maintaining genomic integrity and 

stability [76,77]. 
 

Previous in vivo studies have shown that the loss of function of 

BLM plays a significant role in enhancing the tumorigenesis of 

both basal cell carcinoma (BCC) (a type of skin cancer) and 

rhabdomyosarcomas (RMS) [78]. Not only that, but it has also 
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been demonstrated that any deficiency in the levels of BLM 

induces hyper-recombination in epithelial cells [79] and 

promotes tumorigenesis [80]. This evidence further proves that 

BLM is necessary for maintaining genomic stability. 
 

Xeroderma Pigmentosum (NER-deficient)  
 

Xeroderma pigmentosum (XP) is an autosomal recessive 

disorder that is characterized by increased sensitivity to sunlight. 

Individuals with XP present freckle-like pigmentation and 

lesions in the areas where the skin was exposed to the sunlight. 

XP patients are at high risk of developing skin cancer, both non-

melanoma and melanoma, before the age of 10. XP patients are 

10,000 times more likely to develop non-melanoma skin tumors 

and 2,000 times more likely to have melanoma before the age of 

20 as compared to healthy people [81]. 
 

The disorder is the consequence of genetic defects in XP repair 

proteins, the latter being involved in mediating various steps in 

the NER pathway, thereby leading to a defective NER system. 

For instance, XP cells are unable to perform unscheduled DNA 

synthesis (UDS) after UV irradiation. UDS is a part of the NER 

pathway; it refers to the DNA synthesis that occurs after the 

removal of the DNA damage during the repair process. There are 

different classifications of XP; Classical XP (XP-A to XP-G) 

which is characterized by a deficiency in the removal of DNA 

damage through NER, and XP-V cells which are characterized 

by the ability to tolerate DNA lesions by replicating damaged 

templates through TLS. Due to their inability to remove 

mutations effectively and their ability to tolerate lesions, XP 

cells have an increased level of mutagenesis [81,82]. In addition 

to that, mutagenesis in XP can also be increased due to UV-

induced signature mutations in tumor suppressor genes such as 

p53 [81,83]. 
 

Lynch Syndrome (MMR-deficient)  
 

This disease is the most frequent - autosomal dominant - cause 

of hereditary colorectal cancer. It is caused by a germline 

mutation in one of the MMR genes (MLH1, MSH2, MSH6, 

PMS2, and EPCAM), which leads to the loss of function of its 

protein and thus a defective MMR pathway [49,84]. Lynch 
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syndrome is known to be associated with a high lifetime risk of 

developing several types of tumors, including colorectal (20-

70%), endometrial (15-70%), gastric (6-13%), and ovarian (4-

12%) cancer [49]. Furthermore, its association with increased 

risk of urothelial carcinoma has been noted as well [85]. A 

deficient MMR pathway leads to a high mutational incidence in 

the repetitive DNA sequences, leading to microsatellite 

instability. It is important to note that 95% of Lynch syndrome-

associated cancer present microsatellite instability [85,86]. 
 

Ataxia Telangiectasia (NHEJ, HR- deficient)  
 

Ataxia telangiectasia is a single gene autosomal recessive 

disorder that is characterized by mutations of both alleles of the 

ATM (ataxia-telangiectasia mutated) gene. The ATM gene codes 

for the ATM serine/threonine kinase responsible for initiating 

cell cycle arrest and DNA repair in response to DSBs. ATM is 

considered to be the main regulator of the DDR as it is 

responsible for activating several downstream effectors through 

phosphorylation; those proteins include BRCA1, SMC1, Ch2, 

etc. ATM is also responsible for the phosphorylation of p53. As 

such, ATM function is associated with genome integrity [87,88]. 

Mutations in the ATM gene thus inevitably affect the DNA 

repair capacity of cells. In fact, individuals with Ataxia 

telangiectasia have a 50 to 150-fold increased risk of developing 

cancer [89]. 
 

Other Disorders: Two human syndromes are associated with 

mutations in genes encoding DNA helicases that play important 

roles in HR, NHEJ, or excision repair pathways. When mutated, 

these genes lead to a defective repair mechanism [90-95]. 

Werner Syndrome is an autosomal recessive disorder resulting 

from an inherited mutation in the WRN gene, which encodes for 

the WRN ATP-dependent helicase, a member of the RecQ 

helicase family, while Rothmund Thomson syndrome results 

from a germline mutation in the RECQL4 gene. Fanconi anemia 

is another autosomal recessive disorder resulting from a mutation 

in FA genes, the latter being involved in the HR pathway [96]. 

These three syndromes with different deficiencies in DNA repair 

pathways are also associated with increased risks of developing 

cancer [97-101]. 
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DNA Repair and Cancer: The Link  
 

Perhaps the best way to study the role of DNA repair pathways 

in tumorigenesis is to investigate the molecular bases of 

inherited genetic disorders associated with defects in genes 

encoding DNA repair factors. Many of these defects have indeed 

been shown to favor cancer development. In recent years, this 

relationship between DNA repair and cancer has gained a lot of 

attention, notably with the finding that defects in the MMR are 

the cause of hereditary non-polyposis colorectal cancer 

(HNPCC) and enhance cancer development [102]. However, 

recent studies have also revealed the complexity of this 

relationship. Depending on the disease stage and the DNA repair 

pathway, defects in DNA repair factors may either increase or 

decrease the rate of survival. Mutations in DNA repair genes can 

thus be considered as double-edged swords in the context of 

radio- and chemotherapy [103]. In the future, a better 

understanding of the molecular mechanisms underlying the 

functions of the DNA repair machinery will certainly facilitate 

the development of more targeted and personalized anti-cancer 

treatments to overcome these difficulties. 
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