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Abstract—Multiple precision libraries typically use assembly-
optimized loops for basecase operations on variable-length
operands. We consider the alternative of generating lookup
tables with hardcoded routines for many fixed sizes, e.g. for all
multiplications up to 16 by 8 words. On recent ARM64 and x86-
64 CPUs, we demonstrate up to a 2x speedup over GMP for
basecase-sized multiplication and a 20% speedup for Karatsuba-
sized operands. We pay special attention to the computation of
approximate products and demonstrate up to a 3x speedup over
GMP/MPFR for floating-point multiplication.

Index Terms—integer multiplication, multiple precision,
bignum arithmetic, floating-point arithmetic, performance

I. INTRODUCTION

We consider arithmetic on natural numbers in the standard
form

∑n−1
i=0 ciβ

i with 0 ≤ ci < β, where we assume a full-
word radix β = 2B , B = 64, on a typical 64-bit machine.
A popular software implementation allowing operands with
variable size n is the low-level mpn layer of GMP [6].

The most performance-critical operation is arguably multi-
plication which for n≫ 1 is much more expensive than addi-
tion and also serves as the backbone for fast implementations
of higher operations such as division [17]. Given operands
a =

∑m−1
i=0 aiβ

i and b =
∑n−1

i=0 biβ
i where we may assume

m ≥ n ≥ 1, the schoolbook multiplication algorithm [14,
§4.3.1] forms the product

c =

m+n−1∑
i=0

ciβ
i =

m−1∑
i=0

n−1∑
j=0

aibjβ
i+j

using mn single-word multiplications (with double-word out-
put) interleaved with additions with carry-in and carry-out.

The asymptotic complexity of multiplication is improved
by using Karatsuba, Toom-Cook or FFT algorithms [8], but
such methods only beat the schoolbook method for large m
and their performance depends on having an efficient school-
book multiplication as the “basecase” for recursive smaller
multiplications.1 In GMP, the general-purpose multiplication
routine mpn_mul dispatches to the internal schoolbook mul-
tiplication routine mpn_mul_basecase for all sizes below
the machine-dependent Karatsuba threshold.
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1Some FFT multiplication algorithms are an exception, where it is prefer-
able to do all internal computations with single-word precision if possible.
However, the widely used (e.g. by GMP) Schönhage-Strassen FFT algorithm
specifically recurses to multi-word integers.

Basecase GMP routines are generally implemented in as-
sembly, using techniques such as partial unrolling and instruc-
tion reordering to optimize out-of-order execution. However,
most basecase routines are implemented as loops to support
variable m and n, and the overhead of this approach for few-
word operands can be considerable. In this work, we study
the alternative of generating tables of specialized routines for
all size pairs (m,n) roughly up to the Karatsuba threshold
(roughly m ≈ n ≈ 16 for balanced multiplication).

A. Overview of our contribution

Section II describes our approach to generate efficient base-
case multiplication routines for ARM64 and x86-64 assembly.
We benchmark these routines for fixed (m,n), demonstrating
significant speedups (roughly a factor two in some cases) over
the basecase multiplication in GMP 6.3.0.

Section III discusses the impact of using such basecases
in a general-purpose multiplication routine allowing variable
sizes and sizes beyond the basecase range, i.e. as a drop-in
replacement for GMP’s mpn_mul.

Section IV explores the analogous optimization of short
(truncated) products, with application to dot products and
matrix multiplication in multiple precision floating-point arith-
metic. We study properties of approximate high products in
detail to obtain a general algorithmic framework with rigorous
error analysis. We demonstrate significant speedups (roughly
a factor three in some cases) over MPFR 4.2.1 [5].

Our implementations are freely available under the LGPL 3
license and have been contributed to the development version
3.2.0-dev of FLINT [19].

B. Restrictions and related work

Our goal is to optimize serial, scalar operations in a way that
remains efficient for few-word and mixed-size operands, for
the benefit of applications such as FLINT which rely heavily
on low-level GMP functions and the associated data model.

The technique of hardcoding arithmetic routines for specific
numbers of words is common in cryptography where one
works over Z/NZ for some fixed bit size of N , and where
side-channel resistance is a significant concern aside from raw
performance. Examples of cryptography-oriented multiple pre-
cision libraries and code generators include [1], [4]. However,
there seem to have been few attempts to base general-purpose,
variable-size arithmetic routines on such basecases.



We do not study SIMD techniques in this work, which under
favorable conditions can achieve even greater speedups. For
example, using AVX512-IFMA and conversion to a carry-save
representation, Edamatsu and Takahashi [3] report breaking
even with GMP’s multiplication around 1024 bits and achiev-
ing speedup factors around 2-3 for operands larger than 3072
bits while Didier et al. [2] report speedup factors around 4-5
over GMP for batched 1024-bit operations. For extreme (e.g.
million-digit) precision, state of the art NTT multiplication
uses SIMD [21]. Some operations such as matrix multiplica-
tion can benefit even further by performing batched operations
in a residue number system. A common limitation in these
examples is that one needs either quite large operands, data
conversions or batched operations on many fixed-size numbers
for SIMD to pay off due to the restrictions of present-day
instruction sets (e.g. lack of vectorized carry handling); in the
setting of multiple precision arithmetic, SIMD and non-SIMD
approaches therefore remain complementary.

II. MULTIPLICATION IMPLEMENTATION DETAILS

When implementing multiplication routines for ARM64 and
modern x86-64 processors, we note the following. Modern
x86-64 processors are equipped with the ADX instruction
set, allowing two carry chains to be executed concurrently.
While this instruction set is useful, x86-64 suffers from its
two-address instruction format with only 15 usable general-
purpose registers. On the contrary, ARM64 has a three-address
instruction format with 29 usable general-purpose registers,
which speaks in favor of ARM64.

For straight-line programs, i.e. functions without loops or
branches, the decoder of the processor remains an important
aspect. The modern Zen 4 architecture is only able to decode
four instructions per cycle from the instruction cache, or six
instructions per cycle assuming optimal usage of the operation
cache. Now, consider the O(n) operation r ← a− 2eb on an
x86-64 system displayed in Fig. 1. As this algorithm grows
by seven instructions per word, the Zen 4 decoder limits the
upper performance of this algorithm between 7/6 to 7/4 cycles
per word, somewhat far from the optimal one cycle per word.
In contrast, Apple M1 is not limited by its decoder in these

shrx e, s1, s0 // Assume s1 = b[ix]
mov (i+1)*8(b), s1
shlx f, s1, s2 // f = 64 - e
lea (s0, s2), s2
mov i*8(a), s0
sbb s2, s0
mov s0, i*8(r)

Fig. 1. The i-th step of a straight-line program for the operation r ← a−2eb
for 0 < e < 64 on x86-64 architecture.

aspects, with the ability to decode eight instructions from the
instruction cache per cycle [13].

Basecase multiplication, however, is typically constrained
by the number of multiplication ports and the dependency
chains arising from the carry chains. Specifically, the decoder
should not be a problem for x86-64 architectures since the

routine consists of chains of mulx, adcx, adox instructions,
where an optimal routine will consume one cycle for a section
of these three instructions.

For full multiplication on ARM64, we chose a semi-unrolled
approach, whose algorithm is displayed in Fig. 2 and was
handwritten in assembly.

function mul_m_n
Input: c : pointer to at least m+ n allocated words,

a =
∑m−1

i=0 aiβ
i, b =

∑n−1
i=0 biβ

i,
m ∈ Z≥2: compile-time constant,
n ∈ Z≥2

Output: c ← a · b
(x0, . . . , xm−1) ← (a0, . . . , am−1)
⟨c0, r0, . . . , rm−1⟩ ← ⟨x0, . . . , xm−1⟩ · b0
for j ← 1 to n− 1 do

for i ← 0 to m− 1 do
si ← xi · bj mod β // mul

end
sm ← ⌊xm · bj/β⌋ // umulh
⟨cj , s1, . . . , sm−1, rm−1⟩ ←
⟨s0, . . . , sm−1, sm⟩+ ⟨r0, . . . , rm−1, 0⟩

for i ← 0 to m− 2 do
ri ← ⌊xi · bj/β⌋ // umulh

end
⟨r0, . . . , rm−1⟩ ←
⟨s1, . . . , sm−1, rm−1⟩+ ⟨r0, . . . , rm−2, 0⟩

end
(cn, . . . , cm+n−1) ← (r0, . . . , rm−1)

end

Fig. 2. Semi-unrolled basecase multiplication suited for ARM64 architectures
with the notation ⟨r0, . . . , rn⟩ =

∑n
i=0 riβ

i where 0 ≤ ri < β.

For full multiplication on x86-64, the two-address instruc-
tion format requires complete unrolling to avoid intermediate
loads, stores and moves; the implemented algorithm for x86-
64 can be seen in Fig. 3 and was generated from a script.

A. Block decomposition

Eventually m and n become too large for a fully unrolled
schoolbook multiplication to be worthwhile. For one thing,
efficiency will degrade when we run out of registers and need
to start writing to the stack; more importantly, extremely large
unrolled loops will start to incur instruction cache misses.

In this case, one option is to fall back to a loop-based
implementation like mpn_mul_basecase. An alternative is
to split the operands blockwise and call the fully unrolled base-
cases for smaller sizes. There are various possible splittings
of an (m,n) product, for example:

• Peeling: (m0, n0)+ (m−m0, n−n0) where (m0, n0) is
the largest available fully unrolled block,

• Balanced: (m, ⌊n/2⌋) + (m, ⌈n/2⌉) or (⌊m/2⌋, n) +
(⌈m/2⌉, n), or

• Karatsuba: three products of size about (m/2, n/2).



function mul_m_n
Input: c : pointer to at least m+ n allocated words,

a =
∑m−1

i=0 aiβ
i, b =

∑n−1
i=0 biβ

i,
m,n ∈ Z≥3: compile-time constants

Output: c ← a · b
rz ← 0
(c0, r0, . . . , rm−1) ← a · b0
for j ← 1 to n− 1 do

(rscr, rm) ← a0 · bj // mulx
cj ← r0 + rscr // adcx + mov
r1 ← r1 + rm + CF // adcx
for i← 1 to m− 2 do

(r0, rscr) ← ai · bj // mulx
ri ← ri + r0 + OF // adox
ri+1 ← ri+1 + rscr + CF // adcx

end
(r0, rm) ← am−1 · bj // mulx
rm−1 ← rm−1 + r0 + OF // adox
rm ← rm + (rz + CF) + (rz + OF)
(r0, . . . , rm) ← (r1, . . . , rm, r0)

end
(cn, . . . , cm+n) ← (r1, . . . , rm)

end

Fig. 3. A basecase multiplication routine which in its unrolled and expanded
form avoids intermediate loads, stores or moves. Here, CF and OF stands
for the carry flag and overflow flag in the x86 architecture, respectively, and
adcx and adox are instructions in the ADX instruction set.

For moderate (m,n), one can exhaustively test splitting
strategies to find the optimal method for a given machine.

B. Implementation results on x86-64

On x86-64, our basecase function table covers all sizes
m,n ≤ 16. We use fully unrolled schoolbook routines up
to size m = 16, n = 8, while larger cases are written as C
functions that call the smaller routines. For example, we use
the following decompositions for the balanced (m = n) cases:

• For 9 ≤ n ≤ 11: peeling as (n, 8) plus repeated (n −
8 times) (n, 1) multiplications (here, we rely on GMP’s
mpn_addmul_1 for fused (m, 1) multiply-adds).

• For n = 12, 14, 16, Karatsuba with (6, 6), (7, 7) and
(8, 8) basecases.

• For n = 13, 15, peeling to reduce to the (n − 1, n − 1)
Karatsuba product.

Table I shows timings for our x86-64 implementation on an
AMD Ryzen 7 PRO 5850U (Zen 3 architecture) with a base
frequency of 1.90 GHz. To estimate cycle counts, we disabled
CPU frequency boosting and sampled the rdtsc counter over
a loop of 1024 function calls, taking the best time out of 1000
total runs. The baseline overhead of calling a no-op function
in a similar loop is roughly 8 cycles per call.

We observe a significant speedup over GMP’s
mpn_mul_basecase, close to a factor two for very
short products (3-5 words) and up to 30% for larger balanced
products. The equivalent number of cycles per word in the

schoolbook algorithm, i.e. cycles / (mn), is an interesting
metric. Our largest fully unrolled schoolbook basecases
((m, 8), 1 ≤ m ≤ 16) achive roughly 1.36 cycles per word;
the subsequent block-based versions (n ≥ 9) perform slightly
worse until we reach the (16, 16) Karatsuba routine.

For reference, GMP switches from basecase to Karatsuba
multiplication at 20 words on the Zen 3 architecture.

TABLE I
TIMINGS FOR BASECASE MULTIPLICATION ON X86-64 (ZEN 3).

Words GMP (mpn_mul_
basecase)

Ours (flint_mpn_
mul_m_n)

m n Cycles C/(mn) Cycles C/(mn) Speedup
Balanced (m = n)

1 1 8 8.00 8 8.00 1.00
2 2 12 3.00 9 2.25 1.33
3 3 33 3.67 15 1.67 2.20
4 4 46 2.88 26 1.62 1.77
5 5 64 2.56 37 1.48 1.73
6 6 85 2.36 52 1.44 1.63
7 7 106 2.16 69 1.41 1.54
8 8 128 2.00 88 1.38 1.45
9 9 160 1.98 117 1.44 1.37

10 10 192 1.92 149 1.49 1.29
11 11 231 1.91 187 1.55 1.24
12 12 267 1.85 214 1.49 1.25
13 13 313 1.85 264 1.56 1.19
14 14 357 1.82 282 1.44 1.27
15 15 416 1.85 331 1.47 1.26
16 16 467 1.82 333 1.30 1.40

Unbalanced (some examples)
4 2 26 3.25 14 1.75 1.86
8 1 16 2.00 14 1.75 1.14
8 4 67 2.09 47 1.47 1.43

12 1 24 2.00 21 1.75 1.14
12 4 94 1.96 80 1.67 1.18
12 8 181 1.89 130 1.35 1.39
16 1 29 1.81 27 1.69 1.07
16 4 123 1.92 110 1.72 1.12
16 8 234 1.83 174 1.36 1.34
16 12 347 1.81 286 1.49 1.21

C. Implementation results on ARM64

On ARM64, our basecase functions fix the size m and
admit n as a variable. Our lookup table covers the cases 1 ≤
m ≤ 15, and only employs schoolbook multiplication.

Table II shows timings for our ARM64 implementation
on the Apple M1 processor. A similar strategy to obtain-
ing the clock cycle was used, but here the special register
CNTVCT_EL0 was used to determine the virtual counter and
CNTFRQ_EL0 was used to determine its frequency.

In contrast to the results for x86-64, the speedup on ARM64
is more significant and sustained. In particular, the perfor-
mance measure cycles per word is about 1.00 for all sizes
which is optimal.

However, it should be noted that GMP does not imple-
ment a native basecase multiplication routine for ARM64.
Instead, it falls back to mpn_mul_1 joined with a chain of
mpn_addmul_1, resulting in more function calls. Nonethe-
less, the results obtained for our implementation is as good as
one can expect.



TABLE II
TIMINGS FOR BASECASE MULTIPLICATION ON ARM64 (APPLE M1).

Words GMP (mpn_mul_
basecase)

Ours (flint_mpn_
mul_m_n)

m n Cycles C/(mn) Cycles C/(mn) Speedup
Balanced (m = n)

1 1 9 9.00 3 3.00 3.00
2 2 13 3.25 3 0.75 4.33
3 3 22 2.44 9 1.00 2.44
4 4 32 2.00 16 1.00 2.00
5 5 45 1.80 24 0.96 1.88
6 6 60 1.67 36 1.00 1.67
7 7 77 1.57 50 1.02 1.54
8 8 109 1.70 64 1.00 1.70
9 9 136 1.68 81 1.00 1.68

10 10 169 1.69 101 1.01 1.67
11 11 181 1.50 120 0.99 1.51
12 12 229 1.59 146 1.01 1.57
13 13 254 1.50 169 1.00 1.50
14 14 279 1.42 200 1.02 1.40
15 15 299 1.33 228 1.01 1.31

III. GENERAL-PURPOSE MULTIPLICATION

Given a table of basecase multiplication functions for all
n ≤ m ≤ mmax (mmax = 16 in our implementation on x86-
64), we can define a general-purpose multiplication routine
compatible with GMP’s mpn_mul as follows:2

mp_word_t mul(mp_word_t * c,
const mp_word_t * a, mp_size_t m,
const mp_word_t * b, mp_size_t n)

{
if (m <= m_max)
return mul_tab[m][n](c, a, b);

else
return mul_fallback(c, a, m, b, n);

}

Here, the fallback subroutine dispatches to Karatsuba,
Toom-Cook and other subquadratic algorithms (or some form
of schoolbook multiplication for very unbalanced products).

The FLINT function flint_mpn_mul is defined as an
inline function of this form. The inline definition allows an
optimizing C/C++ compiler to eliminate the comparisons and
table lookup overheads whenever m and n are known or
bounded. C/C++ code making consecutive calls with fixed m
and n (e.g. in a loop) is then potentially as fast as code calling
the fixed-size basecase functions directly.

Table III compares the performance of GMP’s mpn_mul
with flint_mpn_mul without inlining of the latter.

We observe a speedup for basecase-sized operands sim-
ilar to that when calling the basecase functions directly.
For balanced multiplications between roughly 20 and 90
words, GMP is using Karatsuba multiplication on top of
mpn_mul_basecase. Here our implementation uses GMP’s
Karatsuba code on top of our own basecase multiplication;
we observe speedup factors between 1.1 and 1.3 compared
to GMP. It is likely that such speedups will extend into the
domain of Toom-Cook multiplication (n,m ≳ 90), but we do
not investigate this effect in the present study.

2Besides writing the output to c, the function returns the most significant
word cm+n−1 for compatibility with GMP.

TABLE III
TIMINGS FOR MULTIPLICATIONS ON X86-64 (ZEN 3) AND ARM64 (AP-
PLE M1), COMPARING GMP’S mpn_mul AGAINST OUR flint_mpn_mul

IN NUMBER OF CLOCK CYCLES.

Words x86-64 (Zen 3) ARM64 (Apple M1)
m n GMP Ours Speedup GMP Ours Speedup
1 1 17 11 1.55 21 8 2.62
2 2 20 13 1.54 18 6 3.00
3 3 38 15 2.53 27 9 3.00
4 2 31 14 2.21 20 8 2.50
4 4 50 26 1.92 36 16 2.25
8 8 131 90 1.46 114 67 1.70

12 4 96 81 1.19 70 49 1.43
16 16 454 333 1.36 368 279 1.32
20 20 675 579 1.17 541 393 1.38
31 31 1481 1191 1.24 1138 908 1.25
32 32 1543 1192 1.29 1207 931 1.30
33 33 1635 1393 1.17 1293 1019 1.27
40 40 2179 1896 1.15 1733 1297 1.34
63 63 4939 3830 1.29 3756 2982 1.26
64 64 4876 3824 1.28 3778 3016 1.25
65 65 5123 4234 1.21 3952 3159 1.25
96 96 9362 8207 1.14 7134 5517 1.29

A. Non-constant sizes

Consecutive multiplications of a fixed size (m,n) represents
an idealized benchmark. While it remains realistic for certain
applications, e.g. modular arithmetic with a fixed modulus or
numerical arithmetic with a fixed precision, other applications
may generate operands of varying size. An advantage of
fully unrolled basecases is the lack of internal branches that
risk being mispredicted. On the other hand, the CPU may
mispredict the jump into the function table and a too large
function table may saturate the L1 instruction cache (I-cache).
Roughly speaking, the penalty of either a jump misprediction
or an L1 cache miss is on the order of 10 cycles. To analyze
the impact, we consider the following synthetic benchmarks:

• Factorial: defining P (a, b) =
∏b

n=a n recursively
via P (a, b) = P (a, ⌊a+b

2 ⌋)P (⌊a+b
2 ⌋ + 1, b) whenever

b − a ≥ 2, we compute b! = P (1, b) for 106 uniformly
randomly chosen 1 ≤ b ≤ N . This results in a skewed
distribution of small and large multiplications (both bal-
anced and unbalanced) alternating in a tree pattern.

• Random: perform 107 multiplications with input
lengths m,n ∈ {1, . . . , N}, chosen uniformly randomly.
This benchmark is designed to be adversarial for large
function tables.

We used Valgrind [18] to simulate the percentage of condi-
tion branch mispredictions, indirect jump address mispredic-
tions and L1 I-cache misses. Results are shown in Table IV.
The timings in seconds indicate the actual running time on the
native CPU without emulation in Valgrind.

On x86-64, we observe that indirect jump address mis-
predictions and I-cache misses are slightly increased on the
Factorial benchmark and significantly increased on the Ran-
dom benchmark. The speed advantage of our basecase routines
remains significant enough to outperform GMP despite these
drawbacks, although the speedup over GMP becomes quite
small on the Random benchmark.



TABLE IV
MULTIPLICATION PERFORMANCE, CONDITIONAL BRANCH MISPREDICTION
RATES “C”, INDIRECT JUMP ADDRESS MISPREDICTION RATES “J” AND

INSTRUCTION CACHE MISS RATES “I” ON SYNTHETIC BENCHMARKS.

GMP (mpn_mul) Ours (flint_mpn_mul)
N Time C J I Time C J I

Factorial, x86-64 (Zen 3)
100 0.37 s 4.5% 1.1% 0% 0.25 s 5.6% 5.1% 0.00%
500 2.20 s 5.5% 2.9% 0% 1.41 s 6.4% 10.7% 0.13%

1000 5.11 s 6.1% 3.6% 0% 3.60 s 7.1% 12.6% 0.15%
2000 12.57 s 6.6% 4.1% 0% 9.78 s 7.7% 13.3% 0.11%

Random, x86-64 (Zen 3)
8 0.32 s 18.3% 22.3% 0% 0.18 s 20.9% 48.4% 0.00%

16 0.55 s 10.0% 18.2% 0% 0.43 s 14.3% 33.1% 3.05%
32 1.39 s 10.5% 12.7% 0% 1.32 s 10.7% 16.7% 0.41%
64 4.48 s 11.5% 11.6% 0% 4.29 s 12.9% 14.3% 0.12%

Factorial, ARM64 (M1)
100 0.50 s 4.3% 0% 0% 0.25 s 6.6% 5.3 % 0.00%
500 2.51 s 4.8% 0% 0% 1.40 s 6.8% 9.6 % 0.03%

1000 5.65 s 5.1% 0% 0% 3.38 s 6.9% 10.7% 0.08%
2000 13.52 s 5.1% 0% 0% 8.82 s 7.2% 11.1% 0.08%

Random, ARM64 (M1)
8 0.30 s 11.4% 0.00% 0.00% 0.23 s 11.2% 41.7% 0.01%

16 0.50 s 10.9% 0.00% 0.00% 0.43 s 10.5% 41.6% 0.00%
32 1.31 s 9.6% 0.00% 0.00% 1.13 s 10.0% 13.9% 0.00%
64 4.16 s 8.3% 0.20% 0.02% 3.82 s 9.8% 4.2% 0.06%

On ARM64, the I-cache miss rate remains small thanks to
the semi-unrolled basecases which allow for a function table
with much smaller code size than on x86-64.

Particularly on x86-64, we speculate that a different table
design may improve overall performance in more complex
applications where integer multiplications are interleaved with
calls to other functions competing for the same I-cache.

IV. SHORT MULTIPLICATION

Let a =
∑n−1

i=0 aiβ
i and b =

∑n−1
i=0 biβ

i be two n-word
integers. We define the high and low product of a and b
as Hn(a, b) = ⌊ab/βn⌋βn and Ln(a, b) = ab − Hn(a, b),
respectively. We can compute Ln in roughly half the time of
the full schoolbook multiplication for ab. Alternatively, we
can approximate Hn (or ab itself) with an error around βn

in about the same time as computing Ln. Such short products
are interesting for division algorithms, modular arithmetic, and
floating-point arithmetic. We focus here on high products.

As illustrated in Fig. 4, we define an approximate high
product H ′

n(a, b) =
∑2n−1

i=n−1 c
′
iβ

i by

H ′
n(a, b) =

∑
i+j≥n−1

aibjβ
i+j , (1)

and a refined approximation H ′′
n(a, b) =

∑2n−1
i=n−1 c

′′
i β

i by

H ′′
n(a, b) = H ′

n(a, b) +
∑

i+j=n−2

H1(ai, bj)β
i+j . (2)

Both H ′
n and H ′′

n have n − 1 low zero words (which an
implementation might omit writing) and n + 1 high words
which may be nonzero. The following theorem is proven by
counting the omitted terms from the full product, using the
facts that aibj < β2 and L1(ai, bj) < β.

a0

a1

a2

a3

a4

a5

b0 b1 b2 b3 b4 b5

Fig. 4. High multiplication between a =
∑n−1

i=0 aiβ
i and b =

∑n−1
j=0 bjβ

j

for n = 6. The word products aibj contributing to H′
n(a, b) are shown

in gray, and the refinement terms H1(ai, bj) contributing to H′′
n(a, b) are

shown crosshatched.

Theorem 1. We have H ′
1 = H ′′

1 = ab. If n, β ∈ Z≥2, then

ab− βn < Hn(a, b) ≤ ab, (3)
ab− (n− 1)βn < H ′

n(a, b) ≤ ab, (4)

ab− (2n− 3)βn−1 < H ′′
n(a, b) ≤ ab. (5)

The following corollary shows how one can use the high
products H ′ and H ′′ for fixed-point arithmetic where one
simply discards the low n words.

Corollary 2. Assume that 2n < β and that we are given in-
tegers a, b ∈ [0, βn) representing n-word fixed-point numbers
in [0, 1). If we approximate the product using Hn(a, b)/β

n,
⌊H ′

n(a, b)/β
n⌋ and ⌊H ′′

n(a, b)/β
n⌋, then the errors are strictly

smaller than 1, n and 2 ULPs, respectively.

For floating-point arithmetic where radix 2 is more common
than radix β, it is useful to consider normalized high products
which given normalized significands a, b ∈ [βn/2, βn) return
2eh ∈ I with I = [β2n/2, β2n) such that h ≈ ab. The high
products H , H ′ and H ′′ all give an h for which either h ∈ I
or 2h ∈ I , so we always have e ∈ {0, 1}.

Corollary 3. If 4n < β and a, b are normalized, then
⌊2eH ′′

n(a, b)/β
n⌋ · 2nB−e with e = 1 if H ′′

n(a, b) < β2n/2,
e = 0 otherwise, gives a normalized nB-bit floating-point
approximation of ab with less than 2 ULPs error.

As the next corollary illustrates, the “control word” C =
c′′n−1 of H ′′

n allows us to compute n-word products with cer-
tified correct rounding, where it is extremely rare for random
inputs that the certification fails. For instance, with β = 264

and n = 32, the failure probability is about 3× 10−18.

Corollary 4. If C < β− (2n− 3), then H ′′
n(a, b)−Cβn−1 =

Hn(a, b).

This idea is used in MPFR for floating-point multiplica-
tion [20]. However, MPFR uses the high product H ′ which
for n-word precision requires zero-padding n-word inputs to
n + 1 words and evaluating H ′

n+1. It is potentially better to
work with H ′′

n which avoids such padding.

A. Block decomposition

We can express H ′
n or H ′′

n recursively as a combination of
smaller high and full products in various ways; see Fig. 5. To



Fig. 5. Examples of block decompositions for high products. From left to
right: peeling (6), balanced splitting (7) and Mulders-style splitting (10).

this end, denote ar:s =
∑

r≤i<s aiβ
i−r for a segment of an

operand. The following theorem gives an example of a peeling
strategy as well as a balanced splitting strategy.

Theorem 5. For n ≥ 2,

H ′′
n(a, b) = H ′′

n−1(a0:n−1, b1:n)β

+ an−1bβ
n−1 +H1(an−2, b0)β

n−2,
(6)

H ′′
n(a, b) = am:nbm:nβ

2m

+H ′′
m(ak:n, b0:m)βk +H ′′

m(a0:m, bk:n)β
k

+

({
H1(am, bm), n even
H1(ak, bm) +H1(am, bk), n odd

)
βn−2,

(7)

where k = ⌈n/2⌉ − 1 and m = ⌊n/2⌋ − 1. The analogous
formulas with H ′ instead of H ′′ hold if the βn−2 terms are
omitted.

For peeling-based squaring, a symmetric version of (6)
which recurses to H ′′

n−2 is preferable, since this allows reduc-
ing to a smaller squaring rather than a general multiplication.

For Karatsuba-sized n, rather than computing H ′
n or H ′′

n

precisely, it is more efficient to use Mulders’s strategy [7],
[9], [16] to compute some approximation

H ′
n(a, b) ≤ H̃ ′

n(a, b) ≤ ab (8)

or
H ′′

n(a, b) ≤ H̃ ′′
n(a, b) ≤ ab (9)

by allowing a full (k, k) product to extend above the diagonal
in Fig. 4.

Theorem 6. Let k := k(n) be an arbitrary parameter chosen
from the range ⌊n/2⌋ < k ≤ n, and let m = n− k. If k = n,
define H̃ ′′

n(a, b) = ab. Otherwise, define H̃ ′′
n recursively by

H̃ ′′
n(a, b) = am:nbm:nβ

2m

+ H̃ ′′
m(ak:n, b0:m)βk + H̃ ′′

m(a0:m, bk:n)β
k

+
(
H1(ak−1, bm−1) +H1(am−1, bk−1)

)
βn−2, (10)

Then H̃ ′′
n satisfies (9). The analogous statement for H̃ ′ holds

if one omits the βn−2 term in (10).

The optimal value of k as a function of n is discussed in [7].
In practice, one precomputes a table of the best measured k
up to the FFT range where k = n becomes optimal.

We note that error bounds for H ′ and H ′′ as approximations
of ab (e.g. Theorem 1, corollaries 2, 3 and 4) are valid also for
the Mulders variants H̃ ′ and H̃ ′′ which are never less accurate.

B. Implementation results

We have implemented fully unrolled basecases for H ′′
n based

on the algorithm in Fig. 6 for n ≤ 9 (x86-64) and n ≤ 8
(ARM64). In the following, we only discuss the results for
x86-64. For n ≥ 10, we have considered both a generic
loop-based routine in the style of mpn_mul_basecase and
block decomposition variants. On a Zen 3 machine, we found
optimal results using the n = 9 basecase together with
peeling for 10 ≤ n ≤ 13, balanced block decomposition
for 14 ≤ n < 40, and the Mulders decomposition for H̃ ′′

n

for n ≥ 40. The multiplication routine discussed in section III
is used internally for full products.

We have added several new functions to FLINT. The main
function flint_mpn_mulhigh_n computes H ′′

n (or H̃ ′′
n for

large n), writing the n words c′′n, . . . , c
′′
2n−1 to the output

array and returning the word c′′n−1. The new nfloat type
holds floating-point numbers with nB-bit precision; it uses the
multiplication of Corollary 3 based on a normalized variant
of flint_mpn_mulhigh_n with separate basecases for
n ≤ 9.

Timings are shown in Table V. Comparing to Table I, we
observe that our high products are always faster than or equal
to full products, with a speedup of up to around a factor 1.8
(n = 9).

For reference, MPFR’s mpfr_mul computes correctly
rounded floating-point products, switching between special-
case code for precision up to 128 bits [15], mpn_mul,
and the internal function mpfr_mulhigh_n which com-
putes H ′

n or H̃ ′
n. Thanks to our basecase optimiza-

tions, flint_mpn_mulhigh_n is roughly 3× faster than
mpfr_mulhigh_n for small to medium n despite effectively
giving an extra word of accuracy, and nfloat_mul is faster
than mpfr_mul (here rounding to zero) by similar factors.

function mulhigh_n
Input: c : pointer to at least n allocated words,

a =
∑n−1

i=0 aiβ
i, b =

∑n−1
i=0 biβ

i,
n ≥ 2: compile-time constant,

Output: c← ⌊H ′′
n(a, b)/β

n⌋ and
returns c′′n−1(a, b)

⟨r0, r1⟩ ← an−1 · b0 + ⌊an−2 · b0/β⌋
for i← 1 to n− 1 do
⟨r0, . . . , ri+1⟩ ← ⟨r0, . . . , ri, 0⟩+
⟨an−i−1, . . . , an−1⟩ · bi + ⌊an−i−2 · bi/β⌋

end
(c0, . . . , cn−1) ← (r1, . . . , rn)
return r0

end

Fig. 6. Basecase algorithm for precise approximate high product.

We also time double-double and quad-double multiplication
(c_dd_mul and c_qd_mul) as implemented in the QD
library [10], giving roughly 2×53 = 106 and 4×53 = 212 bits
of precision respectively. The quad-double multiplication uses
a high product similar to H ′′

4 , requiring 13 total subproducts of



TABLE V
TIMINGS FOR n-WORD OR nB-BIT HIGH PRODUCT ON X86-64 (ZEN 3).

Integer Floating-point

n, nB
B = 64

mpfr_
mul

high_n

flint_
mpn_
mul

high_n

mpfr_
mul

nfloat_
mul

Cycles Cycles Speedup Cycles Cycles Speedup
1 64 14 7 2.00 41 14 2.93
2 128 25 8 3.13 70 16 4.38
3 192 39 12 3.25 102 22 4.64
4 256 55 18 3.06 114 32 3.56
5 320 72 25 2.88 137 43 3.19
6 384 90 34 2.65 151 53 2.85
7 448 101 44 2.30 171 63 2.71
8 512 118 54 2.19 197 70 2.81
9 576 135 65 2.08 229 85 2.69

10 640 152 87 1.74 272 117 2.32
16 1024 285 240 1.19 494 278 1.78
20 1280 426 393 1.08 636 435 1.46
32 2048 956 968 0.99 1214 1024 1.19
40 2560 1449 1456 1.00 1853 1519 1.22
64 4096 3613 3270 1.10 3971 3305 1.20

B = 53
c_dd_mul
c_qd_mul

2 106 16
4 212 154

which 10 products are computed in 106-bit precision (requring
a multiplication and a fused multiply-add) while 3 diagonal
corrections use ordinary 53-bit products for the high parts [11].
Our 128-bit nfloat multiplication is roughly as fast as
c_dd_mul and our 256-bit nfloat multiplication is 5 times
faster than c_qd_mul. An important caveat is that we have
not attempted to SIMD-vectorize the double-double and quad-
double operations in this benchmark, which should be more
effective than for the other types.

C. Application to dot products

Many operations (e.g. matrix multiplication) are conve-
niently expressed in terms of dot products

∑N
i=1 xiyi.

For multiple precision floating-point dot products, we
consider the algorithm of Johansson [12]. The origi-
nal implementation (available in FLINT as the function
arf_approx_dot) allows operands with mixed precision
and uses a mixture of mpn_mul and mpfr_mulhigh_n
for the multiplications. Our version shown in Fig. 7 uses
high multiplications exclusively and has been streamlined by
assuming that the word precision n is the same for all input
operands; however, like the original, the precision of each
multiplication varies optimally with the magnitude of the term.

Theorem 7. The final error in Algorithm 7 is at most N(n+2)
ULPs in s, i.e. the absolute error is at most N(n+2)µ where
µ = 2eβ−n−1.

Proof. We consider the three branches to compute the term t.
In the first branch, we compute an (n + 1)-word approx-

imation of aibi and then perform a truncating right shift by
δ ≥ 1 bits. Using Theorem 1, we can show that the error
in tµ is at most nµ. Indeed, if n = 1, the product is exact
and we get at most µ error from the shift. If n ≥ 2, the

function n-float_dot
Input: precision n ≥ 1; nonzero n-word binary

floating-point numbers x1, . . . , xN ,
y1, . . . , yN .

Output: (n+1)-word approximation of
∑N

i=1 xiyi
Write xi = (−1)vi2eiaiβ−n, βn/2 ≤ ai ≤ βn − 1
Write yi = (−1)wi2fibiβ

−n, βn/2 ≤ bi ≤ βn − 1
// Bounding exponent (plus sign bit)

e ← max1≤i≤N (ei + fi) + ⌈log2(N + 1)⌉+ 1
// (n+ 1)-word accumulator

s ← 0
for i← 1 to N do

δ ← e− (ei + fi)
d ← ⌊δ/B⌋
if d = 0 then // 1 ≤ δ < B

// t has n+ 1 words

t ← ⌊H ′′
n(ai, bi)/(β

n−12δ)⌋
else if 1 ≤ d ≤ n then

// a′, b′, t have (n+ 1)− d words

(a′, b′) ← (⌊ai/βd−1⌋, ⌊bi/βd−1⌋)
t ←
⌊H ′

(n+1)−d(a
′, b′)/(β(n+1)−d2δ mod B)⌋

else
t ← 0

end
// Two’s complement addition

s ← s+ (−1)vi+wit mod βn+1

end
// Interpret s as signed,

s ∈ (−βn+1/2, βn+1/2)

return s2eβ−n−1

end

Fig. 7. Algorithm for dot product of floating-point numbers with n-word
precision.

approximate product introduces an error of at most (2n− 3)µ
prior the shift by δ ≥ 1; with the shift, the error is at most
(2n− 3)µ/2 + µ ≤ nµ.

In the second branch, truncating ai and bi contributes at
most 2µ to the total error. By Theorem 1, the subsequent
product H ′ contributes error at most (n − 1)µ, and the
truncation in the right shift contributes at most µ. Thus the
error is at most (2 + (n− 1) + 1)µ = (n+ 2)µ.

In the third branch, the omitted product is smaller than µ.
The error bound is largest in the second branch; multiplying

by the number of terms N gives the result.

In the end, we will typically want to round the final result to
a normalized floating-point number with bit precision p ≤ nB.
For random input vectors with no significant cancellation, the
algorithm in Fig. 7 gives a result with nearly full accuracy as
long as N2n ≪ β. Indeed, if |

∑
i xiyi| ≳ max1≤i≤N |xiyi|,

so that |s| ≳ βn+1/N , Theorem 7 shows that the relative
error in s is ≲ N2nβ−n−1. and we can hence determine the



correct rounding of the dot product with failure probability
∼ (N2n)/β. For example, this is of order 10−9 if β = 264,
N = 10000, n = 1000.

Theorem 7 remains valid if we substitute more accurate
implementations of the high products, as long as we always
compute lower bounds for the full product (this assumption is
necessary to guarantee that we do not overflow the accumula-
tor). In particular, we can use H ′′ instead of H ′ in the second
branch, and we can replace H ′′ by a Mulders product H̃ ′′.

D. Implementation results for matrix multiplication

Table VI shows timings (real time on a Zen 3 CPU, with
frequency boost enabled) for single-threaded floating-point
matrix multiplication done using N2 dot products, i.e. without
using any other fast matrix multiplication techniques. We
compare the following implementations of dot products:

• QD: a simple add-multiply loop using the C++ interface
of the QD library.

• MPFR: a loop calling mpfr_mul and mpfr_add.
• ARF (GMP): the original dot product code of [12],
arf_approx_dot, using mpn_mul for full multipli-
cations.

• ARF (New): arf_approx_dot when using our
full multiplication code (flint_mpn_mul) instead of
mpn_mul.

• NFLOAT: the function _nfloat_vec_dot implement-
ing the algorithm in Fig. 7, using our high multiplication
code (flint_mpn_mulhigh_n).

We observe that simply replacing the GMP multiplication
in arf_approx_dot with our faster basecases gives a
nontrivial (≈ 1.5×) speedup at a few words of precision. The
streamlined algorithm for NFLOAT benefits from our basecase
high multiplication and achieves a ≈ 2× speedup. We leave
for future work incorporating basecase high multiplications in
the more general algorithm of [12].

At high precision, both the ARF and NFLOAT algorithms
perform much better with exponentially scaled entries than
with uniform entries, since many terms can be computed with
reduced precision. This highlights that it is useful to have an
efficient high multiplication not only for the target number
of words n, but for every size n′ ≤ n. In low precision, the
performance is somewhat worse with non-uniform entries due
to increased branching.
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