
HAL Id: hal-04861543
https://hal.science/hal-04861543v1

Submitted on 7 Jan 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient arc-flow formulations for makespan
minimisation on parallel machines with a common server

Alessandro Druetto, Andrea Grosso, Jully Jeunet, Fabio Salassa

To cite this version:
Alessandro Druetto, Andrea Grosso, Jully Jeunet, Fabio Salassa. Efficient arc-flow formulations for
makespan minimisation on parallel machines with a common server. Computers and Operations
Research, 2025, 174, pp.106911. �10.1016/j.cor.2024.106911�. �hal-04861543�

https://hal.science/hal-04861543v1
https://hal.archives-ouvertes.fr

Efficient arc-flow formulations for makespan

minimisation on parallel machines with a common

server

Alessandro Druetto1, Andrea Grosso1, Jully Jeunet2∗, Fabio Salassa3

1Dipartimento di Informatica, Università di Torino, Corso Svizzera 185, Torino 10149, Italy

2CNRS, Université Paris Dauphine, PSL Research University, CNRS UMR[7243], Lamsade, place du
Maréchal de Lattre de Tassigny, 75775 Paris Cedex 16, France

3Dipartimento di Ingegneria Gestionale e della Produzione (DIGEP), Politecnico di Torino, Corso Duca
degli Abruzzi 24, Torino 10129, Italy

Abstract

We consider the problem of scheduling non preemptively a set of jobs on parallel identical machines
with prior setup operations on a single shared server, where the objective is to minimise the makespan.
We develop an arc-flow formulation to the problem with two multigraphs, one for the machines and
one for the server, with a same set of nodes representing points in time, and arcs associated with
job execution, and with machines or server idleness. The resulting formulation, called Flow-Flow
formulation (FFF), and its tuned version (FFT) are compared with the best existing model in the
literature, a time-indexed variable formulation (F2), on benchmark instances with up to 200 jobs and
10 machines. Computational results showed that our Flow-Flow models outperformed F2 especially
for instances with more than 50 jobs and optimally solved a majority of problems with 150 and 200
jobs for which F2 found only very few optimal solutions.

Keywords: Scheduling; arc-flow formulation; common server; parallel machines; makespan minimisation

1 Introduction

In many manufacturing systems, a common server such as a human operator, a robot or a tool needs to
be shared by a number of parallel machines to implement setups or loads. Scheduling problems with a
single server occur frequently in automated material handling systems; in flexible manufacturing systems
where an automated guided vehicle is used to load jobs on machines (Hall et al., 2000); in the printing
industry where a team of workers must clean and reset presses each time a new order is received (Huang et
al., 2010) or similarly in knitted fabrics with knitting machines needing to be emptied and their needles,
repositioned (Kerkhove and Vanhoucke, 2014). Sharing the server resource results in machine idle time
that can be reduced or eliminated by developing a good schedule.

The focus of this paper is on the identical parallel machine scheduling problem with sequence inde-
pendent setup times and a single shared server where the objective is to minimise the makespan. The
problem denoted as P, S1|sj , pj |Cmax is to schedule a set of jobs N = {1, 2, . . . , n} on an arbitrary number
m of identical parallel machines (m ≥ 2), where each job j ∈ N must be processed non preemptively on
one of the machines for pj units of time. Prior to processing, sj units of time must be spent for setup
operations on a single shared server. Since the server is shared among all machines, no more than one
setup operation can take place at each point in time.

Seminal contributions to the problem mostly consider two machines with equal processing or setup
times, and provide complexity analyses and solution methods (Koulamas, 1996; Kravchenko and Werner,
1997, 2001; Glass et al., 2000; Hall et al., 2000 among others). For an extended and clear survey that

∗Corresponding author. E-mail addresses: alessandro.druetto@unito.it, andrea.grosso@unito.it,
jully.jeunet@dauphine.fr, fabio.salassa@polito.it.

1

uses the standard three-field notation described by Graham et al. (1979), the reader may refer to Bektur
and Sarac (2019).

The problem with an arbitrary number of machines m ≥ 2 and general job sets was first optimally
addressed by Kim and Lee (2012) who provided two Mixed Integer Programming (MIP) formulations.
The first one uses the sequence of setups of the server whereas the second one relies on the server waiting
time. Experiments from Koulamas (1996) were adapted to create server waiting time when there is
more than 2 machines. Instances with n = 10 jobs and 2 to 4 machines were exactly solved in less
than one minute. For larger problems up to 40 jobs and 6 machines, 40 to 70% of optimal solutions on
average were found within the limited runtime of 3600 s. Elidrissi et al. (2018b) addressed the same
scheduling problem for which they proposed two MIP formulations based on completion time variables
and time-indexed variables with better performance than the MIP formulations of Kim and Lee (2012).
The authors then enhanced these formulations with strengthening constraints (Elidrissi et al., 2021).
In addition, they developed three other MIP formulations using respectively network variables, linear
ordering variables and completion time variables. The performance of these models was compared with
the two MIP formulations of Kim and Lee (2012) on a set of instances generated in a similar way. Results
showed that only the time-indexed variable formulation (TIV I) was able to find optimal solutions to
some of the instances with more than 10 jobs and up to 100 jobs. Quite recently, Silva et al. (2023)
proposed several time indexed formulations among which F2 performed substantially better than TIV I
on an extended set of instances up to 100 jobs.

Metaheuristic solution approaches to the problem are available in Kim and Lee (2012) who developed
a Simulated Annealing (SA) algorithm combined with tabu search, and in Elidrissi et al. (2020) who
proposed a Variable Neighbourhood Search (VNS) algorithm. Elidrissi et al. (2018a) generalised the
heuristics of Abdekhodaee and Wirth (2002) and that of Hasani et al. (2016) to the case of an arbitrary
number of machines, thus providing two greedy heuristics aimed at minimising machine idle time and
server waiting time.

Besides, several variants of the parallel machine scheduling problem with common servers have been
considered in the literature, depending upon the objective to minimise, the type of setup times, the
assumption about preemption or the number of servers. Changing only one assumption of the problem
considered in this paper, we highlight the following contributions.

Liu et al. (2019) developed a branch-and-bound algorithm to minimise the weighted job completion
time which was able to optimally solve instances with no more than 20 jobs and 3 machines. Abu-Shams
et al. (2022) proposed a heuristic-based Genetic Algorithm (GA) to minimise tardiness so as to deal with
large-sized problems up to 2000 jobs and 10 machines.

Sequence-dependent setup times are considered in Hamzadayi and Yildiz (2017) who presented a
mixed integer linear programming (MILP) model for small-sized instances (no more than 20 jobs and 5
machines) as well as a SA and a GA for larger problems (up to 100 jobs and 10 machines). For the same
problem, Silva et al. (2021) proposed an arc-time-indexed formulation which outperformed the MILP
model of Hamzadayi and Yildiz (2017) on a set of instances with up to 21 jobs and 7 machines. For
larger instances, neither of the two models was able to find optimal solutions.

Cheng et al. (2017) presented complexity analyses to the problem with preemption whereas Elidrissi
et al. (2022) provided a MIP model to deal with 2 servers and small problems (10 jobs, 5 machines) as
well as a VNS for large instances (250 jobs, 5 machines), but for regular jobs only (regular jobs are such
that pi ≤ pj + sj , ∀(i, j)).

We propose an arc-flow formulation for problem P, S1|sj , pj |Cmax with two multigraphs, one for the
machines and one for the server, with a same set of nodes representing points in time, and arcs associated
with job execution, and with machines or server idleness. The resulting formulation, called Flow-Flow
formulation (FFF) and its tuned version (FFT) are capable to outperform the time-indexed formulation
(F2) of Silva et al. (2023), in terms of computation time and number of optimal solutions, especially on
instances with more than 100 jobs.

The remainder of this paper is organised as follows. Our Flow-Flow formulation is presented in Section
2. Results of the computational experiments are discussed in Section 3. Finally, concluding remarks and
directions for future research are provided in Section 4.

2

2 Flow-Flow formulations and existing mathematical model F2

We first provide in Section 2.1 the bounds on the optimal makespan since the same upper bound is used in
both F2 and our formulations. The proposed Flow-Flow formulation is presented in Section 2.2. Finally,
in Section 2.3, we compare our formulation to the model of Silva et al. (2023), F2, and we show that the
continuous relaxation of our formulation provides a better lower bound than a trivial bound.

2.1 Upper and lower bounds on the makespan

Upper bound. To derive an upper bound on the optimal makespan, Elidrissi et al. (2021) used the two
greedy heuristics HS1, HS2 they developed in Elidrissi et al. (2018a). Heuristic HS1 aims at minimising
machines idle time whereas HS2 seeks to minimise the server idle time. Both heuristics are based on
ordering jobs according to six priority rules, namely shortest processing time (SPT); longest processing
time (LPT); shortest setup time (SST); longest setup time (LST); shortest completion time (SCT) and
longest completion time (LCT). A numerical illustration is provided in the Appendix.

As many jobs can have identical processing or setup times, we introduce a tie breaking rule that
consists of arranging jobs with same criterion value according to a second criterion consistent with the
first one. For instance, if rule LPT is used, jobs with same processing times are secondarily ordered
according to LST. Analogously, with SPT we apply SPT+SST. Finally for SCT, we use SCT+SPT.
Again, the reader can refer to the illustration in the appendix.

The upper bound UB on the optimal makespan simply consists of the minimum of the makespan values
obtained from heuristics HS1 and HS2. The horizon length T is set equal to this upper bound both in
our Flow-Flow models and F2. Formally we have

T = UB = min
(
CHS1

max, C
HS2
max

)
. (1)

Lower bounds. A trivial lower bound LBPMTN on the optimal makespan Copt
max is given by

LBPMTN =
1

m

n∑
j=1

(sj + pj). (2)

As a better lower bound than LBPMTN, we use that of Elidrissi et al. (2021) who state that (i) if there
is no server waiting time in the optimal schedule, then Copt

max is equal to the sum of setup times and the
shortest processing time; (ii) if there is no machine idle time, then Copt

max is equal to the average over the
number of machines of the sum of all jobs execution times, and the weighted sum of the (m − 1)th first
jobs setup times ranked in increasing order {σ(j)}j=1..n. Formally this lower bound, LBImproved, is given
by

LBImproved = max

 ∑
j=1..n

sj + min
1≤j≤n

pj , LBPMTN +

∑m−1
j=1 (m− j)sσ(j)

m

 . (3)

This improved lower bound is used in the tuned version of our Flow-Flow formulation as explained
further in Section 3.2. The trivial lower bound in Eq. (2) is considered when we compare in Section 2.3
the existing model F2 to our formulation.

2.2 Flow-Flow Formulation (FFF)

Arc-flow formulations allow for the use of a pseudo-polynomial number of variables and constraints, and
have been recently applied to classical optimisation problems such as the cutting-stock problem (Mar-
tinovic et al., 2018), the bin-packing problem (Brandao et al., 2016) or the berth allocation problem
(Kramer et al., 2019b). In the area of scheduling and most closely related to our problem, Mrad and
Souayah (2018) proposed an arc-flow formulation for makespan minimisation on identical parallel ma-
chines and showed its efficiency to solve most of the hard instances from the literature. Gharbi and
Bamatraf (2022) provided an improved arc-flow model for the same problem, with enhanced bounds.
Results on benchmark instances with up to 200 jobs and 100 machines showed the superiority of their

3

model over that of Mrad and Souayah (2018). Kramer et al. (2019a) also considered the scheduling
problem on identical parallel machines but with the aim of minimising the total weighted completion
time. They developed enhanced arc-flow formulations able to solve exactly large-sized instances up to
400 jobs. This work was then extended in Kramer et al. (2020) to jobs with release dates.

For the problem with a common server under sequence dependent setup times, Silva et al. (2021) have
proposed a quite sophisticated arc-time-indexed model with O(n2T) variables, allowing to solve exactly
instances with up to 21 jobs and 7 machines. Under independent setup times, as in our case, an arc-flow
formulation was recently developed by Silva et al. (2023) but suffers from bottleneck constraints. By
contrast, our formulation has a reduced number of O(nT) variables, eliminates the bottleneck constraints,
and replaces them with a much stronger formulation involving a min-sum objective.

In this Section, we first provide the multigraph representation of the problem and we introduce the
notations. The problem modelling is then illustrated with a scheduling example. Next, we present the
mathematical formulation and the procedure to handle identical jobs.

2.2.1 Multigraph representation and notations

Our arc-flow formulation uses two multigraphs GK∈{M,S}(V,AK) in order to model the scheduling of the
m-machines collection, M , and the single server S, respectively. Our Flow-Flow formulation (FFF in the
following), therefore contains an arc-flow formulation for both machines and server. The two graphs have
the same set of nodes V , each node representing a unit time slot

V = {0, 1, 2, . . . , T},

where T is the time horizon over which the set of jobs N = {1, 2, . . . , n} must be scheduled. As in F2,
we set T equal to the value of the upper bound on the makespan in Eq. (1).

The set AK of arcs of multigraph K ∈ {M,S} is defined as

AK = {ajt=(t, t+bj ; j) : j∈N, t=0..T−sj−pj} ∪ {at=(t, t+1): t=0..T−1},
with bj =

{
sj + pj , if K = M,
sj , if K = S.

An arc ajt represents the possible execution of job j in time interval (t, t+ bj) so it links node t (start
time) to node t + bj (end time) both on the machines graph GM and on the server graph GS . An arc
at expresses the idleness of the server or machines in time interval (t, t+ 1). In addition, we let δ−[GK ,t] ,

δ+[GK ,t] be respectively the set of ingoing and outgoing arcs ajt in/from node t in graph GK , K ∈ {M,S}.
We let xjt be a binary variable that takes a value of 1 if job j starts at time t and 0 otherwise. If

xjt = 1, this unit flow is placed on arc ajt that links node t to node t + sj in graph GS and node t to
node t+ sj + pj in graph GM . Job j thus starts at time t both on the server and on a machine since the
non preemption assumption leads to reserve a machine for processing the job as soon as its setup starts
on the server. Thus, the machine is not considered as idle on t if the setup on the server starts on t.

We let yMt , ySt be the integer variables expressing the number of idle machines and server respectively.
Variable ySt is obviously binary since we consider a single server. The flow value yMt (resp. ySt) is placed
on arc at in graph GM (resp. GS) that connects node t to node t+ 1.

Finally we introduce a binary variable zt that takes a value of 1 if the last scheduled job ends at time
t and 0 otherwise. If zt = 1 the makespan is therefore equal to t.

Table 1 summarises the notations and definitions.

4

Indices

j Job

t, τ Time

K ∈ {M,S} Type of multigraph (M for the machines, S for the server)

Parameters

T Time horizon (set to the upper bound on the makespan in Eq. (1))

N = {1, 2, . . . , n} Set of jobs to be scheduled

sj Setup time of job j (on the server)

pj Processing time of job j (on a machine)

m Number of machines

Definitions

GK(V,AK) Multigraph for K ∈ {M,S}
V = {0, 1, 2, . . . , T} Set of nodes shared by both multigraphs

ajt=(j; t, t+bj) Execution arc of job j from t to t+ bj ; bj = sj in GS , bj = sj + pj in GM ,

j∈N, t=0..T−sj−pj .

at=(t, t+1) Idleness arc from t to t+ 1, t=0..T−1

AK = {ajt} ∪ {at} set of arcs in the multigraph K ∈ {M,S}
δ−[GK ,t] set of ingoing execution arcs ajt in node t in GK , K ∈ {M,S}
δ+[GK ,t] set of outgoing execution arcs ajt from node t in GK , K ∈ {M,S}

Variables

xjt Binary equal to 1 if job j starts at time t and 0 otherwise,

∀j ∈ N, ∀t = 0..T − sj − pj .

yK
t Number of idle machines (if K = M) or server (if K = S) at time t, ∀t = 0..T

zt Binary equal to 1 if the last scheduled job ends at time t, ∀t = 1..T

Table 1: Notations and definitions

2.2.2 Illustration of the problem modelling

To illustrate the problem modelling, let us consider n = 5 jobs with {s1, . . . , s5} = {2, 3, 3, 2, 2} and
{p1, . . . , p5} = {3, 5, 4, 5, 3}. The jobs are to be scheduled on a time horizon T = 18 with one server
and m = 3 machines. Figure 1 displays on a same time scale the Gantt chart (upper part) of a feasible
solution to the problem with Cmax = 17 and the associated flows on multigraphs GM and GS (lower
part). The flows are generated at node 0 for both graphs. For instance, job 1 starts at time 0 (x1,0 = 1)
so an execution arc with a unit flow is placed on GS from node 0 to node 0+s1 = 2 and the corresponding
nodes {0, 1, 2} are connected with zero-flow (hence not drawn) idleness arcs since the single server is busy.
On graph GM an execution arc connects node 0 to node 0 + s1 + p1 = 5 even if the processing of the
jobs starts on M1 only at time 2, as the machine is reserved as soon as the setup starts on the server.
Thus, between time 0 and 5, M1 is not idle; only machines M2 and M3 are idle between time 0 and 2,
so idleness arcs with a flow of 2 units connect nodes {0, 1, 2}. At t = 2 job 2 starts its setup on the
server, so M2 is reserved and the idleness arc from node 2 to node 3 now carries a unit flow as only M3

is idle. Let us note that in time interval (8, 10) all the machines are busy, so the corresponding nodes are
connected with zero-flow idleness arcs. All in all, 3 units of flow are routed on GM , and 1 unit on GS .
The sink node is 17 as we have z17 = 1 so arcs are not drawn between nodes 17 and 18. The flow does
not give explicitly an assignment jobs-machines, but it can be decomposed into 3 paths that correspond
to machine schedules.

5

S

M1

M2

M3

1 2 3 4 5

1

2

3

4

5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
• • • • • • • • • • • • • • • • • • •GS

x1,0 = 1

x2,2 = 1

x3,5 = 1

x4,8 = 1

x5,12 = 1
yS10, y

S
11 = 1 yS14, . . . , y

S
16 = 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
• • • • • • • • • • • • • • • • • • •GM

x1,0 = 1

x2,2 = 1

x3,5 = 1

x4,8 = 1

x5,12 = 1

yM0 , yM1 = 2 yM2 , . . . , yM7 = 1 yM10 , . . . , y
M
14 = 1 yM15 , y

M
16 = 2

Figure 1: A scheduling example and corresponding flows on GM and GS .

2.2.3 Mathematical formulation (FFF) and identical jobs handling

In order to facilitate the reading of our formulation, we index all equations with time t and we indicate
in parenthesis the values of t for which the corresponding constraints hold. Our arc-flow model (FFF) is
written as follows

min

T∑
t=1

tzt (4)

s.t.

T−sj−pj∑
t=0

xjt = 1 (j ∈ N) (5)∑
ajt∈δ+

[GM,t]

xjt + yMt = m (t = 0) (6)

∑
ajt∈δ+

[GM,t]

xjt −
∑

ajτ∈δ−
[GM,t]

xjτ + yMt −yMt−1 = −mzt (t = 1..T − 1) (7)

−
∑

ajτ∈δ−
[GM,t]

xjτ −yMt−1 = −mzt (t = T) (8)

∑
ajt∈δ+

[Gs,t]

xjt + ySt = 1 (t = 0) (9)

∑
ajt∈δ+

[Gs,t]

xjt −
∑

ajτ∈δ−
[Gs,t]

xjτ + ySt −ySt−1 = −zt (t = 1..T − 1) (10)

−
∑

ajτ∈δ−
[Gs,t]

xjτ −ySt−1 = −zt (t = T) (11)

xjt ∈ {0, 1} (j∈N, t=0..T−sj−pj) (12)

yMt ≥ 0, ySt ∈ {0, 1} (t = 0..T − 1) (13)

zt ∈ {0, 1} (t = 1..T) (14)

Constraints (5) require that a starting time is assigned to each job j ∈ N . Constraints (6)–(8) related
to the machines make variables xjt, y

M
t a set of flow variables, requiring m units of flow to be routed

6

on graph GM from source node 0 to some sink node t ∈ {1, . . . , T} for which zt = 1. Let us note that

summing up constraints (6)–(8) we get m(1−∑T
t=1 zt) = 0, so at most one zt can take a value of 1.

Constraints (9)–(11) make variables xjt, y
S
t a set of flow variables, requiring one unit of flow to be

routed on graphGS from node 0 to some node t ∈ {1, . . . , T} for which zt = 1. These constraints guarantee

that no more than one job can be processed on the server simultaneously. Given that
∑T

t=1 zt = 1 must
hold in all feasible solutions, the objective function (4) correctly represents the makespan.

In sets of jobs to be scheduled, it is not uncommon that quite large families of identical jobs — with
identical setup and processing times — emerge. In such cases, a powerful optimisation procedure consists
in keeping a single copy of identical jobs and schedule it a number of times equal to the number of copies.
Formally, letting nj be the number of jobs identical to j in set N , we keep only one copy of such a job
j, and schedule it nj times. We thus eliminate all duplicated jobs from N , so that no two jobs in N are
identical; we compute the multiplicity nj of each job j and replace constraints (5) with

T−sj−pj∑
t=0

xjt = nj .

This procedure presents similarities with the identical job grouping adopted in Kramer et al. (2019a).
In many instances the procedure can substantially reduce the number of variables involved in the model.
Due to its simplicity we always apply it to the FFF model.

2.3 Comparison with the timed-indexed formulation of Silva et al. (F2)

The time-indexed formulation of Silva et al. (2023), F2, makes use of the same binary variables xjt, and
an auxiliary variable Cmax so as to implement a min-max formulation. In our graph-based notation, the
formulation writes out as follows.

min Cmax (15)

s.t.

T−pj∑
t=0

(t+ sj + pj)xjt ≤Cmax ∀j ∈ N (16)

T−sj−pj∑
t=0

xjt = 1 ∀j ∈ N (17)∑
ajt∈δ+

[GM,0]

xj0 + yM0 = m (18)

∑
ajt∈δ+

[GM,t]

xjt −
∑

ajτ∈δ−
[GM,t]

xjτ + yMt −yMt−1 = 0 ∀t= 1..T − 1 (19)

−
∑

ajτ∈δ−
[GM,T]

xjτ −yMT−1 = −m (20)

∑
ajt∈δ+

[GS,0]

xj0 + yS0 = 1 (21)

∑
ajt∈δ+

[Gs,t]

xjt −
∑

ajτ∈δ−
[Gs,t]

xjτ + ySt −ySt−1 = 0 ∀t= 1..T − 1 (22)

−
∑

ajτ∈δ−
[GS,T]

xjτ −yST−1 = −1 (23)

xjt ∈ {0, 1} ∀j ∈ N, (24)

∀t=0..T−sj−pj (25)

yMt ≥ 0, ySt ∈ {0, 1} ∀t= 0..T − 1 (26)

(27)

Cmax ≥ 0 (28)

7

Constraints (16) force Cmax to be equal to the completion time of the last scheduled job. In the
F2 model expressed by Eq. (15)–(28), the horizon T is set to the upper bound value on the optimal
makespan provided by the heuristics of Elidrissi et al. (2018), as defined in Eq. (1).

Between the two models, FFF and F2, we can highlight close relations and important differences.
First of all, the procedure to handle identical jobs as described in Section 2.2.3 can be applied to FFF,
but not to F2 in its present form.

A key feature of our FFF model is the introduction of zt variables for handling the makespan objective.
By contrast, the bottleneck constraints (16) in F2 severely affect the quality of the continuous relaxation
of the model, as it frequently yields a lower bound below the trivial bound LBPMTN in Eq. (2). Empirically,
for almost all instances tested in our numerical experiments, the continuous relaxation of F2 produced
lower bounds much smaller than the corresponding trivial bounds (see Section 3).

On the other hand, our Flow-Flow model FFF in Eq. (4)–(14) does not suffer from such an issue.
Indeed, it exhibits the following property.

Property 1. The optimal value of the continuous relaxation of the Flow-Flow model (FFF) is never less
than LBPMTN.

Proof. We consider any feasible solution of the continuous relaxation and we prove that its objective
function value cannot be less than the trivial lower bound. In order to ease the notation, we let It =∑

ajτ∈δ−
[GM,t]

xjt and Ot =
∑

ajt∈δ+
[GM,t]

xjt, with I0 = 0 and OT = 0, so that constraints (6)–(8) can be

rewritten, changing sign, as

−m =It −Ot − yMt (t = 0)

mzt =It −Ot +yMt−1 − yMt (t = 1..T − 1)

mzt =It −Ot +yMt−1 (t = T).

We multiply each constraint by the corresponding t, sum them up and divide by m

T∑
t=1

tzt =
1

m

T∑
t=0

t[It −Ot] +
1

m

[
T−1∑
t=1

(tyMt−1 − tyMt) + TyMT−1

]
.

We note the following.

i
∑T

t=1 tzt is precisely the objective function.

ii The sum
∑T

t=0 t[It − Ot] is a weighted sum of all arc-flow variables xjt of arcs ajt. Hence, every
xjt will appear in the sum exactly twice: the first time in Ot, for the tail of arc ajt, multiplied by
−t, and the second time in It+sj+pj

, for the head of the arc, multiplied by (t+ sj + pj). Hence the
contribution of xjt to the sum is (sj + pj)xjt. Thus

T∑
t=0

t[It −Ot] =

n∑
j=1

T−sj−pj∑
t=0

(sj + pj)xjt

and by constraint (5)

T∑
t=0

t[It −Ot] =

n∑
j=1

(sj + pj)

T−sj−pj∑
t=0

xjt

 =

n∑
j=1

(sj + pj).

iii For the sum involving the yt variables,

T−1∑
t=1

(tyMt−1 − tyMt) =

T−1∑
t=1

tyMt−1 −
T−1∑
t=1

tyMt =

=

T−2∑
t=0

(t+ 1)yMt −
T−1∑
t=1

tyMt =

=yM0 +

T−2∑
t=1

yMt − (T − 1)yMT−1

8

hence

1

m

[
T−1∑
t=1

(tyMt−1 − tyMt) + TyMT−1

]
=

1

m

T−1∑
t=0

yMt

By the above considerations, we get

T∑
t=1

tzt =
1

m

n∑
j=1

(sj + pj) +
1

m

T−1∑
t=0

yMt ,

showing that the objective function is made of the trivial lower bound LBPMTN in Eq. (2) plus a nonneg-
ative contribution from the idle variables yMt , thus proving the claim.

This property establishes a minimum performance for our Flow-Flow Formulation but there is no proof
of dominance of the lower bound from its continuous relaxation, LBFFF, over that of F2, LBF2. There may
indeed be cases where LBF2 exceeds LBPMTN and LBFFF as illustrated in the following numerical example
with n = 5 jobs; m = 2 machines; processing times {p1, p2, p3, p4, p5} = {10, 15, 20, 25, 30}; setup times
{s1, s2, s3, s4, s5} = {60, 65, 70, 75, 80}. We obtain LBPMTN = 225; LBFFF = 355 < LBF2 = 360. However,
in practice, we expect processing times to be usually higher than set-up times.

3 Computational experiments

We first provide the benchmark instances. Next, we present the Tuned version of our Flow Flow Formu-
lation, namely FFT. Results are then discussed, starting with problems up to n = 100 jobs and ending
with the largest instances (n = 150, 200 jobs).

The exact models TIVI I, F2, FFF and FFT were coded in C++ and linked with the CPLEX Callable
Library (C API) version 22.1. Computational experiments were executed in Ubuntu Linux 22.04 under
WSL2, on an Intel(R) Core(TM) i7-10700 CPU with 2.90GHz and 16GB of RAM machine, running
Windows 11.

Additionally, we provide results in the Appendix comparing ATIF (Silva et al., 2021) with F2, FFF,
and FFT. This comparison shows that ATIF was unable to solve to optimality problems with more than
20 jobs, demonstrating its limitations relative to our flow flow formulation for sequence-independent setup
times.

3.1 Benchmark instances

The first set of instances we used are those of Elidrissi et al. (2021) who considered regular job sets
together with general ones. However we only included in our experiments general job sets since, as pointed
by Kim and Lee (2012), regularity of all jobs to be scheduled rarely happens in practice. Following Kim
and Lee (2012), Elidrissi et al. (2021) generated their instances using four parameters (n,m,α, ρ), with
n between 10 and 100 jobs and m varying from 3 to 5 machines. Parameter α determines the interval
from which processing times are uniformly drawn as integer values

pj ∼ U [(1− α)E(pj), (1 + α)E(pj)] , E(pj) = 25, α = {0.1, 0.3, 0.5} . (29)

Obviously, the smaller α the higher the number of jobs with identical processing times.
Parameter ρ together with m determines the server load ρ/m. In order to create idle times for the

server, setup times must be lower than processing times. This requirement is satisfied using E(sj) =
(ρ/m) · E(pj) with ρ ≤ 1. Setup times are therefore drawn as follows

sj ∼ U [(1− α)(ρ/m)E(pj), (1 + α)(ρ/m)E(pj)] , ρ = {0.5, 0.7, 1} . (30)

Again, a low α value leads to a high number of jobs with identical setup times.

As observed by Silva et al. (2023), the set of 230 instances of Elidrissi et al. (2021) was relatively easy
to solve. Consequently Silva et al. (2023) used the method of Kim and Lee (2012) to generate additional

9

problems with n = {10, 20, 30, 50, 75, 100}; m = {2, 4, 6, 10}; α = {0.1, 0.3, 0.5} and ρ = 1. They made 5
replications for each combination of parameters with m < n, resulting in a total of 345 problems.

We considered large-sized instances with n = 150, 200, and similar to Silva et al. (2023), we made 5
replications for each combination of parameters, with m = {4, 6, 10} ; α = {0.1, 0.3, 0.5} and ρ = 1. In
this way, we generated 90 additional problems with n > 100. All the 665 tested problems are available
at https://datacloud.di.unito.it/index.php/s/An5G9dpiWpqfzkL.

3.2 Tuned version of the Flow-Flow model (FFT)

The Flow-Flow Tuned model (FFT) is also defined by Eq. (4)–(14) as FFF, but includes several features
that we list below.

Formulation strengthening. To strengthen the formulation, we use the lower bound LBImproved of
Elidrissi et al. (2021) in Eq. (3) by setting to zero variables zt in Eq. (13) for all t < LBImproved. In this
way, we guarantee that the lower bound of our MILP model, LBFFT, is not worse than LBImproved.

Branching priority and direction. Branching priority is enforced for variables xjt during the
branch-and-cut phase, with decreasing priority over the increase of t. The branching direction is set to
up, so the up branch (xjt = 1) is taken first at each node, since the aim is to set as soon as possible
to 1 the variables close to the start of the sequence. In doing so, we obtain a kind of ‘schedule from
the beginning’ way of branching, which usually makes sense in scheduling, instead of operating on some
(almost) randomly selected fractional xjt as is the case with a default setting.

CPLEX parameters configuration. While investigating the impact of tuned software parameters
on the performance, some contributions evidenced that improved parameter configurations may lead to
substantial speedup for solving many combinatorial problems (Baz et al., 2007; Hutter et al., 2009 or
Fawcett and Hoos, 2016). Pilot runs of our model on test instances led to the configuration of the CPLEX
MIP solver for FFT as displayed in Table 2 whereas default parameter values were used for FFF. Table
2 provides the rationale for choosing some specific parameters values. Apart from the branching priority
on the variables, the chosen CPLEX parameters values reflect an aggressive setting in searching for good
feasible solutions.

10

Parameter name Value Description/Motivation

MIP dynamic search switch 1 Traditional branch-and-cut, no Dynamic Search for the
branching phase. The choice is motivated by the fact that
the Dynamic Search internals are largely undisclosed, so we
went for a more reproducible behaviour of the solver.

Feasibility pump switch 2 Focus on finding solutions with better objective values, in-
stead of potentially worse feasible ones (for further details
on the method, see Fischetti et al., 2005).

RINS heuristic frequency 3 Application every 3 nodes of the Relaxation Induced Neigh-
bourhood Search heuristic, an expensive heuristic useful to
find high quality integer solutions (this heuristic is presented
in Danna et al., 2005).

MIP probing level 2 Enforcement of an aggressive probing on variables before the
branching phase.

MIP priority order switch 1 Required for the aforementioned branching priority rule, oth-
erwise it would be ignored.

MIP repeat presolve switch 3 Repetition of the presolve to allow new cuts and new root
cuts.

MIP dive strategy 3 The MIP traversal strategy occasionally performs probing
dives, where it looks ahead before deciding which node to
choose. With a value of 3, the solver is enabled to spend
more time exploring potential solutions that are similar to
the current one.

Table 2: CPLEX configuration for FFT

3.3 Results

3.3.1 Easy instances and small instances up to 50 jobs

Table 3 presents the number of optimal solutions (# Opt) and the associated average CPU time in
seconds for each exact model on the instances of Elidrissi et al. (2021). Results are aggregated over the
number of jobs and machines. The four exact approaches FFT, FFF, F2 and TIV I were able to find the
optimal solutions to all problems with n ≤ 50 but with a similar and quite fast execution time only for
n = 10 jobs. For n = 50, FFT and FFF strikingly outperformed F2 and TIV I. For the most difficult
problem (n,m) = (50, 3), FFF was 5 times faster on average than F2; and FFT, 35 times quicker. For
n = 100, only FFF and FFT were able to find all optimal solutions, again with a quite small execution
time compared with F2. TIV I could find only 4 optimal solutions over 10, with the highest average
CPU time. Due to its poor performance for n = 100, TIV I was run on Silva’s instances up to n = 50
jobs.

11

FFT FFF F2 TIV I

n m # Inst. # Opt CPU # Opt CPU # Opt CPU # Opt CPU

10 3 60 60 0.29 60 0.30 60 0.31 60 0.32

4 60 60 0.10 60 0.15 60 0.14 60 0.14

20 3 60 60 2.17 60 14.96 60 11.50 60 23.13

50 3 20 20 16.55 20 115.34 20 586.54 20 1541.61

7 20 20 2.69 20 20.91 20 62.05 20 164.01

100 5 10 10 1.41 10 3.86 9 542.33 4 1329.74

Table 3: Results on Elidrissi’s instances

Table 4 displays the results of the 4 models over Silva’s instances with up to n = 50 jobs. The
number of optimal solutions and the corresponding average CPU time are provided for each combination
of parameters values (n,m,α). The row labelled ’Overall’ aggregates the performance indicators for each
combination of jobs and machines (n,m). All exact approaches were able to find the optimal solutions
for all instances with n = 10, 20 jobs. Once again, FFT and FFF were the fastest approaches, while TIV
I was the slowest. For n = 30, only TIV I failed to find 2 optimal solutions over 60 with an average
execution time that is more than twice that of F2. FFT is 8 times faster than F2 and FFF, more than
3 times quicker than F2 . Under n = 50, FFT found all optimal solutions, closely followed by FFF that
missed only 3 of them over 60. The differences in the execution times are once again remarkable, with
FFT and FFF being respectively 5 times and 3 times faster than F2. With n = 50 jobs, F2 found 53
optimal solution over 60 while TIV I reached 38 of them.

12

FFT FFF F2 TIV I

n m α # Inst. # Opt CPU # Opt CPU # Opt CPU # Opt CPU

10 2 0.1 5 5 0.83 5 0.67 5 0.68 5 0.57

0.3 5 5 1.17 5 1.12 5 1.01 5 0.98

0.5 5 5 1.58 5 1.57 5 1.69 5 1.42

4 0.1 5 5 0.08 5 0.10 5 0.12 5 0.12

0.3 5 5 0.17 5 0.22 5 0.18 5 0.24

0.5 5 5 0.17 5 0.28 5 0.23 5 0.34

6 0.1 5 5 0.04 5 0.07 5 0.07 5 0.07

0.3 5 5 0.08 5 0.09 5 0.09 5 0.11

0.5 5 5 0.07 5 0.09 5 0.09 5 0.09

Overall 45 45 0.47 45 0.47 45 0.46 45 0.44

20 2 0.1 5 5 2.77 5 4.41 5 8.27 5 27.75

0.3 5 5 6.63 5 11.06 5 23.57 5 52.51

0.5 5 5 8.60 5 22.82 5 34.01 5 118.78

4 0.1 5 5 0.68 5 0.89 5 1.40 5 5.03

0.3 5 5 1.60 5 4.27 5 7.93 5 9.82

0.5 5 5 3.22 5 6.22 5 10.06 5 18.45

6 0.1 5 5 0.30 5 0.62 5 1.22 5 1.77

0.3 5 5 2.15 5 1.81 5 2.02 5 6.99

0.5 5 5 2.35 5 3.59 5 6.19 5 6.85

10 0.1 5 5 0.07 5 0.18 5 0.30 5 0.32

0.3 5 5 0.13 5 0.31 5 0.50 5 0.47

0.5 5 5 0.18 5 0.43 5 0.52 5 0.40

Overall 60 60 2.39 60 4.72 60 8 60 20.76

30 2 0.1 5 5 11.66 5 21.19 5 112.82 5 413.46

0.3 5 5 63.49 5 95.22 5 255.99 5 740.92

0.5 5 5 115.32 5 230.28 5 852.92 3 2761.62

4 0.1 5 5 1.39 5 2.84 5 8.93 5 31.75

0.3 5 5 7.36 5 39.78 5 121.08 5 384.45

0.5 5 5 15.13 5 95.70 5 266.73 5 758.49

6 0.1 5 5 1.08 5 2.48 5 6.29 5 22.80

0.3 5 5 3.09 5 12.89 5 35.32 5 56.07

0.5 5 5 13.06 5 32.44 5 278.61 5 361.84

10 0.1 5 5 0.32 5 0.67 5 1.95 5 2.36

0.3 5 5 1.25 5 2.07 5 2.90 5 3.61

0.5 5 5 2.57 5 4.13 5 8.19 5 15.77

Overall 60 60 19.64 60 44.97 60 162.64 58 383.49

50 2 0.1 5 5 120.75 5 173.44 5 1150.54 2 1008.90

0.3 5 5 416.77 5 1475.02 3 1650.70 0 -

0.5 5 5 617.47 2 2281.86 0 - 0 -

4 0.1 5 5 4.86 5 13.78 5 166.86 5 924.55

0.3 5 5 47.02 5 449.22 5 1494.31 1 3488.81

0.5 5 5 89.00 5 620.66 5 1629.86 0 -

6 0.1 5 5 5.88 5 9.07 5 149.83 5 608.51

0.3 5 5 13.63 5 75.94 5 255.49 5 769.08

0.5 5 5 28.94 5 188.5 5 440.22 5 1075.99

10 0.1 5 5 2.42 5 4.53 5 70.08 5 187.11

0.3 5 5 5.44 5 22.41 5 78.25 5 192.31

0.5 5 5 9.43 5 53.31 5 233.85 5 328.47

Overall 60 60 113.47 57 350.76 53 628.27 38 682.54

Table 4: Results on Silva’s instances, n ≤ 50

13

3.3.2 Medium-sized instances

Table 5 displays the results of FFT, FFF and F2 on Silva’s instances for n = 75, 100. FFT provided
all optimal solutions but 2 out of 60 instances with 75 jobs, whereas F2 was able to find less than half
of them, with an average execution time about 3 times higher. With n = 100, the performance of F2
dramatically decreased, reaching optimality in only 6 cases out of 60, compared to 51 optimal solutions
for FFT and 44 for FFF.

FFT FFF F2

n m α # Inst. # Opt CPU # Opt CPU # Opt CPU

75 2 0.1 5 5 455.65 5 1459.59 0 -

0.3 5 5 1770.33 0 - 0 -

0.5 5 3 2048.22 0 - 0 -

4 0.1 5 5 18.19 5 47.20 3 884.84

0.3 5 5 232.87 4 2050.93 0 -

0.5 5 5 604.42 1 3163.65 0 -

6 0.1 5 5 15.05 5 40.57 3 2115.90

0.3 5 5 86.67 5 347.14 4 2566.85

0.5 5 5 203.37 5 1013.85 1 2468.04

10 0.1 5 5 10.59 5 12.69 5 267.98

0.3 5 5 17.90 5 78.05 5 564.06

0.5 5 5 97.44 4 527.25 2 713.04

Overall 60 58 408.74 44 647.09 23 1188.00

100 2 0.1 5 5 1139.85 5 2406.22 0 -

0.3 5 1 3477.94 0 - 0 -

0.5 5 0 - 0 - 0 -

4 0.1 5 5 33.64 5 140.56 1 1307.86

0.3 5 5 1220.42 0 - 0 -

0.5 5 5 2530.57 0 - 0 -

6 0.1 5 5 33.17 5 88.66 1 1752.52

0.3 5 5 290.13 5 1364.40 0 -

0.5 5 5 811.19 1 2581.00 0 -

10 0.1 5 5 6.40 5 26.35 3 2180.30

0.3 5 5 43.73 5 215.93 1 3548.61

0.5 5 5 210.33 5 1350.69 0 -

Overall 60 51 687.75 36 848.47 6 2191.65

Table 5: Results on Silva’s instances, n = 75, 100

Our results in Tables 4 and 5 show that the performance of the models improve with the number of
machines, as pointed out by Silva et al. (2023). With more machines, the horizon T decreases which
implies a reduction in the number of variables. To illustrate, Figure 2 shows the evolution with the
number m of machines, of the number of variables for the case (n,m,α) = (50,m, 0.1), for which FFF,
FFT and F2 reached the optimal solutions over the 5 draws of each combination. Obviously FFF and
FFT have the same number of variables, which are notably lower than that of F2. The second graph in
Figure 2 is a box plot of the execution times in seconds across the draws for each value of m. It clearly
illustrates the performance improvement as m increases since with it, there is a decrease in the number
of variables. It also evidences the much lower execution times of FFF and FFT compared to F2. The
last graph in Figure 2 is a zoom of the CPU times of FFF and FFT and illustrates the superiority of
FFT over FFF.

14

Figure 2: Evolution with the number of machines of the variables and execution times of FFT, FFF, F2
for n = 50 and α = 0.1

The good performance of the Flow-Flow formulations can also be explained by the high quality of their
lower bounds provided by their continuous relaxation. The average deviation of optimal solutions from
these lower bounds is 0.73% and 2.59% for FFT and FFF, respectively, across all 345 instances of Silva et
al. (2023). The deviation is even zero for FFT in 170 instances out of 345, indicating that the continuous
relaxation already provides the optimal value of the makespan. In contrast, the average deviation for F2
amounts to 64.31% across all instances. Figure 3 plots the values of the continuous relaxation of FFF and
F2 as well as the optimal makespan, for the instances with (n,m,α) = (50,m, 0.5). As can be seen in
Figure 3, the continuous relaxation of FFF remains quite close to the optimal makespan whereas that of
F2 stays far below, with improvements however as m increases. For F2 , the average deviation over the
90 instances with m = 2 is equal to 79.35% but drops to 54.81% on average over the 75 instances with
m = 10 machines. It seems that both F2 and TIV I suffer from the same min-max formulation, leading
to poor lower bounds from their continuous relaxation. Over the 225 problems with n ≤ 50 on which we
also run TIV I, we got respectively an average deviation of optimal solutions to the lower bounds equal
to 60.24% for TIV I and 62.28% for F2. However for the same problems, FFF and FFT still produced
extremely tight bounds, with an average deviation of 3.24% and 0.94% respectively.

Referring to the quality of lower bounds obtained from the continuous relaxation, it is worth mention-
ing that over all the 345 instances, all bounds of FFF were greater than LBPMTN versus only 11 of them
from F2. The bounds from the continuous relaxation of F2 were 36.3% lower than LBPMTN on average
while on the contrary those of FFF were 4% greater than LBPMTN. This result substantiates the proof
provided in Section 2.3.

Figure 3: Optimal makespan and continuous relaxation of FFF and F2 for n = 50 and α = 0.5

15

3.3.3 Large instances with 150 and 200 jobs

Table 6 displays the results for the instances with n = 150, 200 jobs, applying again the 3 exact approaches.
FFT and FFF were respectively able to optimally solve 60 and 43 problems out of a total of 90, whereas
F2 only reached 5 optimal solutions. These 5 problems actually correspond to 5 draws of a single
combination of parameters (n = 150, m = 10, α = 0.1) for which the average execution time of F2 is
about 90 times higher than that of FFF, and 290 times higher than that of FFT. As displayed in Table
6, the Flow-Flow formulations have an execution time of about 10 minutes on average.

FFT FFF F2

n m α # Inst. # Opt CPU # Opt CPU # Opt CPU

150 4 0.1 5 5 62.72 5 249.69 0 -

0.3 5 0 - 0 - 0 -

0.5 5 0 - 0 - 0 -

6 0.1 5 5 33.47 5 145 0 -

0.3 5 5 1424.84 0 - 0 -

0.5 5 2 2299.4 0 - 0 -

10 0.1 5 5 3.19 5 10.13 5 935.88

0.3 5 5 216.33 5 743.14 0 -

0.5 5 5 425.16 5 2107.66 0 -

Overall 45 32 482.11 25 651.12 5 935.88

200 4 0.1 5 5 208.62 5 569.59 0 -

0.3 5 0 - 0 - 0 -

0.5 5 0 - 0 - 0 -

6 0.1 5 5 76.8 5 395.67 0 -

0.3 5 3 1852.73 0 - 0 -

0.5 5 0 - 0 - 0 -

10 0.1 5 5 7.5 5 19.28 0 -

0.3 5 5 524.66 3 2482.63 0 -

0.5 5 5 1041.67 0 - 0 -

Overall 45 28 530.52 18 687.26 0 -

Table 6: Results on large-sized instances, n = 150, 200

Approximation results. Considering the large-sized instances with n = 150, 200 jobs, not all of them
can be solved to optimality by exact approaches. Nevertheless, a relative optimality gap can be computed,
using the best absolute gap reported by the solver when it reaches the time limit and the best known
integer solution found by all known methods.

16

Opt Gap (%)

n m α # Inst. FFT FFF F2

150 4 0.1 5 0.00 0.00 49.04

0.3 5 1.61 1.63 49.22

0.5 5 3.29 3.35 50.12

6 0.1 5 0.00 0.00 39.04

0.3 5 0.00 2.39 40.17

0.5 5 2.26 5.68 45.16

10 0.1 5 0.00 0.00 0.00

0.3 5 0.00 0.00 37.77

0.5 5 0.00 0.00 36.14

Overall 45 0.80 1.45 38.52

200 4 0.1 5 0.00 0.00 49.22

0.3 5 1.46 1.50 49.55

0.5 5 3.19 3.22 50.45

6 0.1 5 0.00 0.00 49.02

0.3 5 0.21 1.78 49.84

0.5 5 5.08 5.15 50.81

10 0.1 5 0.00 0.00 40.84

0.3 5 0.00 0.35 50.88

0.5 5 0.00 3.98 45.27

Overall 45 1.10 1.77 48.43

Table 7: Relative optimality gaps on large-sized instances, n = 150, 200

Table 7 reports the average relative optimality gaps for the three models FFT, FFF and F2 over
large-sized instances. A value of 0.00% in a model column means that all the 5 instances drawn from that
combination of parameters (n,m,α) can be solved to optimality by the relevant model. It can be seen
that relative optimality gaps obtained by FFT and FFF are significantly tighter than the ones provided
by F2. Motivation for this behaviour is twofold: on one side, FFT and FFF find good integer solutions
faster than F2; on the other side, the continuous relaxations of FFT and FFF are extremely tight (see
Section 3.3.2 and Figure 3) providing better lower bounds and, consequently, better gaps than F2.

4 Conclusion

In this paper, we have proposed an arc-flow formulation to solve the scheduling problem of a set of
jobs that must be processed non preemptively on identical parallel machines and requiring prior setup
operations on a common server, with the aim of minimising the makespan. Our model relies on an arc-
flow formulation for both machines and server with shared variables related to the start time of the jobs
and uses an efficient procedure for handling identical jobs. The resulting Flow-Flow formulations (FFF,
FFT) therefore works with a fairly limited number of variables. Furthermore, the continuous relaxation
of the Flow-Flow formulations produces high quality lower bounds that expedite the convergence towards
optimal solutions. By contrast, the best formulation in past research, F2, quite often generates lower
bounds below a trivial hence poor lower bound to the problem. Computational experiments showed that
starting from n = 75 jobs, the performance of F2 clearly degraded, with 29 optimal solution out of the
120 instances from Silva et al. (2023) with n = 75, 100, compared to 109 optimal solutions for FFT
(and 80 for FFF), and a 3 times faster execution time for FFT. Extended experiments with n = 150, 200
jobs again highlighted the good performance of our models as FFT and FFF were respectively able to
optimally solve 60 and 43 problems out of 90 whereas F2 only solved 5 instances to optimality. Our
experimental framework revealed difficult instances to solve (n > 100 and α = 0.5) suggesting that
additional effort could be spent to enhance our solution method, with column generation as a promising
avenue.

Besides, our Flow-Flow formulation could be adapted to several variants of the problem that appear
in real settings such as configurations with two identical servers or a single server performing pre and
post operations.

17

Appendix

In this appendix we illustrate the computations occurring in our implementation of the HS1 and HS2
heuristics by Elidrissi et al. (2018a). They are used in order to compute the time horizon

T = min{CHS1
max, C

HS2
max}.

We also illustrate the computation of the trivial preemptive lower bound LBPMNT and the improved
LBImproved.

We use an example with n = 10 jobs, m = 3 machines and job data as in Table 8, whose optimal
value is known to be 103.

j 1 2 3 4 5 6 7 8 9 10

pj 34 12 33 12 20 26 23 31 21 33

sj 6 3 5 5 5 6 8 7 2 8

10∑
j=1

pj = 245

10∑
j=1

sj = 55

Table 8: 10-job example

Both heuristics consider a number of job orderings, according to different priority rules summarised
in Table 9. The dispatching heuristic (HS1/HS2) is run once for each priority rule and the best result
is picked as proposed solution. We illustrate the workings of HS1/HS2 using only LPT, for the sake of
simplicity. For a detailed pseudocode of the two heuristics we refer to Elidrissi et al. (2018a). Here we
illustrate the logic behind the algorithms.

Ordering Meaning Break ties by

SPT Shortest Processing Time: ascending order on pj SST

LPT Longest Processing Time: descending order on pj LST

SST Shortest Setup Time: ascending order on sj SPT

LST Longest Processing Time: descending order of sj LPT

SCT Shortest Completion Time: ascending order of sj + pj SPT

LCT Longest Completion Time: descending order of sj + pj LPT

Table 9: Priority rules

HS1

HS1 builds a solution in two steps, aimed at minimising the idle time on the working machines. Let L be
the LPT-ordered set of jobs. First of all the first m− 1 jobs with the smallest setup times are extracted
from L and scheduled on machines 1, . . . ,m− 1. From now on, the next job j to be scheduled is selected
according to the following criteria.

· Job j will be scheduled on the earliest available machine k; let C(Mk) be the time at which such a
machine becomes available.

· Job j cannot start before the server has completed the last setup; letting C(S) be the time at which
the server becomes available, job j cannot start before time ta = max{C(S), C(Mk)}.

· The most favourable situation arises when the setup for job j occurs between time ta and the
completion time C(Mk′) of the second-earliest available machine k′

The job j to be scheduled is selected — if possible — as the first available job in L satisfying

sj ≤ C(Mk′)− ta.

If no such job exists in L, the first job in L is anyway selected as the next job j.
The example in Table 8 is solved as follows. The m − 1 = 2 jobs with the smallest setup times are

jobs j = 9, 2 that are scheduled on machines M1, M2. The LPT sequence for the remaining jobs is

L = (1, 10, 3, 8, 6, 7, 5, 4).

18

Iteration 1. The earliest available machine is M3 at time C(M3) = 0, but the server will not be available until
time C(S) = 5, hence ta = 5. The second-earliest available machine is M2 with C(M2) = 17; thus
job 1 is selected, since s1 = 6 ≤ C(M2)− ta, and scheduled on M3 at time 5.

Iteration 2. The earliest available machine is M2 at time C(M2) = 17. The server is already available, since it
has completed the last setup at C(S) = 11. Hence ta = 17. The second-earliest available machine
is M1 at C(M1) = 23; thus job 3 is selected, since s3 = 5 ≤ C(M1) − ta. Note that job 10 is not
selected at this step because s10 = 8, violating the latter condition.

Along the same lines, with the same criteria, jobs 10, 8, 6, 7 are scheduled in iterations 3, 4, 5, and 6.

Iteration 7 The earliest available machine is M3 with C(M3) = 83, and the server is already available (since
time t = 72). Hence ta = 83. The second earliest available machine is M2 at C(M2) = 87. No job
among those remaining in L (specifically jobs 5, 4) has a setup time satisfying sj ≤ C(M2) − ta.
Hence job 5 is scheduled next on M3 at t = 83.

The last job (job 4) is finally scheduled on machine M2. The overall makespan is 108. The reader is
referred to the Gantt chart in Figure 4.

S

M1

M2

M3

9 10 72 3 6 41 8 5

9 10 7

2 3 6 4

1 8 5

0 108

Figure 4: Schedule computed by HS1

HS2

HS2 builds a solution in three steps, aimed at minimising the idle time on the common server. Let L be
the LPT-ordered set of jobs. First of all, the job with minimum pj is taken and set aside, to be scheduled
last. Then the first m− 1 jobs in L are extracted and scheduled on machines 1, . . . ,m− 1. From now on,
the next job j to be scheduled is selected accordingly with the following criteria.

· Job j will be scheduled on the earliest available machine k; let C(Mk) be the time at which such
machine becomes available.

· Job j cannot start before the server has completed the last setup; let C(S) be the time at which
the server becomes available, so j cannot start before ta = max{C(S), C(Mk)}.

· The most favourable situation arises when the setup for job j is longer than the interval between
time ta and the completion time C(Mk′) of machine k′ which is the the second-earliest available
machine

The job j to be scheduled is selected — if possible — as the first available job in L satisfying

sj ≥ C(Mk′)− ta.

If no such job exists in L, the first job in L is anyway selected as the next job j.
The example in Table 8 is solved as follows. Job 2 with minimum processing time is set aside for

being scheduled last. The LPT sequence for the remaining jobs is

L = (1, 10, 3, 8, 6, 7, 9, 5, 4).

The first two jobs in L (specifically 1 and 10) are scheduled on machines M1, M2.

Iteration 1. The earliest available machine is M3 at time C(M3) = 0, but the server will not be available until
time C(S) = 14, hence ta = 14. The second-earliest available machine is M1 with C(M1) = 40; no
job with sj ≥ C(M1)− ta is available in L, so job 3 is selected, being the next unscheduled job in
L. It is scheduled at time t = 14 on M3.

19

Iteration 2 The earliest available machine is M1 at time C(M1) = 40; the server is already available since time
C(S) = 19, hence ta = 40. The second-earliest available machine is M2 with C(M2) = 47. Now
job 8 from L satisfies s8 = 7 ≥ C(M2)− ta. Thus job 8 is scheduled on M1 at time t = 40.

With similar criteria, jobs 6, 7, 9, 5, 4 are selected in the successive iterations. Finally, job 2 is scheduled
on M1 at t = 101. The resulting makespan is 116. The reader is referred to the Gantt chart in Figure 5.

S

M1

M2

M3

1 8 9 210 6 53 7 4

1 8 9 2

10 6 5

3 7 4

0 116

Figure 5: Schedule computed by HS2

Lower bounds

The preemptive lower bound is computed by equation (2):

LBPMTN =
1

m

 n∑
j=1

sj +

n∑
j=1

pj

 =
1

3
(55 + 245) = 100.

For LBImproved we use the SST sequence

σ = (9, 2, 4, 5, 3, 6, 1, 8, 7, 10),

and compute the two components∑
j

sj +min
j

pj = 55 + 12 = 67

LBPMTN +

∑m−1
j=1 (m− j)sσ(j)

m
= 100 +

2 · 2 + 1 · 3
3

= 100 +
7

3
≈ 102.33.

The first component of the bound takes into account an infinite-capacity relaxation of the working
machines that allows continuous operations on the server; the second component takes into account
a preemptive relaxation on the working machines plus a contribution from the minimum possible idle
time required in the first operation on each machine. Hence the value for the bound is

LBImproved = max{67, 102.33} = 102.33.

Note that in this example, the continuous relaxation of F2 gives a value of 69.93, the relaxation of
FFF gives a value of 102.28, which is much stronger than LBPMTN and F2, practically comparable to
LBImproved.

Comparing the performance of ATIF with F2 and FFT

Table 10 provides a comparison of our model FFT with F2 and ATIF on the same instances as those
in Silva et al. (2023), up to 30 jobs, since ATIF was unable to provide any solutions for instances with
more than 20 jobs. Moreover, ATIF struggled to solve most of the problems with 20 jobs, and for the
few problems it could solve, the CPU time was significantly higher than that of FFT.

20

ATIF F2 FFT
n m α # Inst. # Opt. Time (s) # Opt. Time (s) # Opt. Time (s)

10 2 0.1 5 5 26.90 5 0.68 5 0.83
0.3 5 5 60.34 5 1.01 5 1.17
0.5 5 5 70.35 5 1.69 5 1.58

4 0.1 5 5 2.98 5 0.12 5 0.08
0.3 5 5 3.55 5 0.18 5 0.17
0.5 5 5 4.62 5 0.23 5 0.17

6 0.1 5 5 0.96 5 0.07 5 0.04
0.3 5 5 0.67 5 0.09 5 0.08
0.5 5 5 0.45 5 0.09 5 0.07

Overall 45 45 18.98 45 0.46 45 0.47

20 2 0.1 5 1 3176.43 5 8.27 5 2.77
0.3 5 0 - 5 23.57 5 6.63
0.5 5 0 - 5 34.01 5 8.60

4 0.1 5 0 - 5 1.40 5 0.68
0.3 5 0 - 5 7.93 5 1.60
0.5 5 0 - 5 10.06 5 3.22

6 0.1 5 1 3494.54 5 1.22 5 0.30
0.3 5 0 - 5 2.02 5 2.15
0.5 5 0 - 5 6.19 5 2.35

10 0.1 5 5 86.21 5 0.30 5 0.07
0.3 5 5 254.71 5 0.50 5 0.13
0.5 5 5 157.46 5 0.52 5 0.18

Overall 60 17 2697.44 60 8.00 60 2.39

30 2 0.1 5 0 - 5 112.82 5 11.66
0.3 5 0 - 5 255.99 5 63.49
0.5 5 0 - 5 852.92 5 115.32

4 0.1 5 0 - 5 8.93 5 1.39
0.3 5 0 - 5 121.08 5 7.36
0.5 5 0 - 5 266.73 5 15.13

6 0.1 5 0 - 5 6.29 5 1.08
0.3 5 0 - 5 35.32 5 3.09
0.5 5 0 - 5 278.61 5 13.06

10 0.1 5 0 - 5 1.95 5 0.32
0.3 5 0 - 5 2.90 5 1.25
0.5 5 0 - 5 8.19 5 2.57

Overall 60 0 - 60 162.64 60 19.64

Table 10: Performance of ATIF, F2, FFT on instances with up to 30 jobs

References

Abdekhodaee, A.H., Wirth, A., 2002. Scheduling parallel machines with a single server: some solvable
cases and heuristics. Computers and Operations Research 29, 295–315.

Abu-Shams, M., Ramadan, S., Al-Dahidi, S., Abdallah, A., 2022. Scheduling large-size identical par-
allel machines with single server using a novel heuristic-guided genetic algorithm (das/ga) approach.
Processes 10, 1–18.

Baz, M., Hunsaker, B., Brooks, J., Gosavi, A., 2007. Automated tuning of optimization software param-
eters. Technical Report 7. University of Pittsburgh Department of Industrial Engineering.

Bektur, G., Saraç, T., 2019. A mathematical model and heuristic algorithms for an unrelated parallel
machine scheduling problem with sequence-dependent setup times, machine eligibility restrictions and
a common server. Computers and Operations Research 103, 46–63.

21

Brandão, F., Pedroso, J.P., 2016. Bin packing and related problems: General arc-flow formulation with
graph compression. Computers and Operations Research 69, 56–67.

Cheng, T., Kravchenko, S.A., Lin, B.M., 2017. Preemptive parallel-machine scheduling with a common
server to minimize makespan. Naval Research Logistics 64, 388–398.

Danna, E., Rothberg, E., Le Pape, C., 2005. Exploring relaxation induced neighborhoods to improve mip
solutions. Mathematical Programming 102, 71–90.

Elidrissi, A., Benbrahim, M., Benmansour, R., Duvivier, D., 2018a. Greedy heuristics for identical
parallel machine scheduling problem with single server to minimize the makespan, in: MATEC Web of
Conferences, International Workshop on Transportation and Supply Chain Engineering (IWTSCE’18).
pp. 1–7.

Elidrissi, A., Benbrahim, M., Benmansour, R., Duvivier, D., Sifaleras, A., Mladenovic, N., 2020. Variable
neighborhood search for identical parallel machine scheduling problem with a single server, in: Variable
Neighborhood Search, 7th International Conference on Variable Neighborhood Search (ICVNS 2019),
Springer International Publishing. pp. 112–125.

Elidrissi, A., Benmansour, R., Benbrahim, M., Duvivier, D., 2018b. Mip formulations for identical parallel
machine scheduling problem with single server, in: 4th International Conference on Optimization and
Applications (ICOA), IEEE. pp. 1–6.

Elidrissi, A., Benmansour, R., Benbrahim, M., Duvivier, D., 2021. Mathematical formulations for the
parallel machine scheduling problem with a single server. International Journal of Production Research
59, 6166–6184.

Elidrissi, A., Benmansour, R., Sifaleras, A., 2022. General variable neighborhood search for the par-
allel machine scheduling problem with two common servers. Optimization Letters in press. URL:
https://doi.org/10.1007/s11590-022-01925-2.

Fawcett, C., Hoos, H.H., 2016. Analysing differences between algorithm configurations through ablation.
Journal of Heuristics 22, 431–458.

Fischetti, M., Glover, F., Lodi, A., 2005. The feasibility pump. Mathematical Programming 104, 91–104.

Gharbi, A., Bamatraf, K., 2022. An improved arc flow model with enhanced bounds for minimizing the
makespan in identical parallel machine scheduling. Processes 10.

Glass, C.A., Shafransky, Y.M., Strusevich, V.A., 2000. Scheduling for parallel dedicated machines with
a single server. Naval Research Logistics 47, 304–328.

Graham, R., Lawler, E., Lenstra, J., Kan, A., 1979. Optimization and approximation in determinis-
tic sequencing and scheduling: a survey, in: Hammer, P., Johnson, E., Korte, B. (Eds.), Discrete
Optimization II. Elsevier. volume 5 of Annals of Discrete Mathematics, pp. 287–326.

Hall, N.G., Potts, C.N., Sriskandarajah, C., 2000. Parallel machine scheduling with a common server.
Discrete Applied Mathematics 102, 223–243.

Hamzadayi, A., Yildiz, G., 2017. Modeling and solving static m identical parallel machines schedul-
ing problem with a common server and sequence dependent setup times. Computers and Industrial
Engineering 106, 287–298.

Hasani, K., Kravchenko, S.A., Werner, F., 2016. Minimizing the makespan for the two-machine scheduling
problem with a single server: Two algorithms for very large instances. Engineering Optimization 48,
173–183.

Huang, S., Cai, L., Zhang, X., 2010. Parallel dedicated machine scheduling problem with sequence-
dependent setups and a single server. Computers and Industrial Engineering 58, 165–174.

Hutter, F., Hoos, H., Leyton-Brown, K., Stützle, T., 2009. Paramils: An automatic algorithm configura-
tion framework. Journal of Artificial Intelligence Research 36, 267–306.

Kerkhove, L.P., Vanhoucke, M., 2014. Scheduling of unrelated parallel machines with limited server
availability on multiple production locations: a case study in knitted fabrics. International Journal of
Production Research 52, 2630–2653.

22

Kim, M.Y., Lee, Y.H., 2012. Mip models and hybrid algorithm for minimizing the makespan of parallel
machines scheduling problem with a single server. Computers and Operations Research 39, 2457–2468.

Koulamas, C., 1996. Scheduling two parallel semiautomatic machines to minimize machine interference.
Computers and Operations Research 23, 945–956.

Kramer, A., Dell’Amico, M., Feillet, D., Iori, M., 2020. Scheduling jobs with release dates on identical
parallel machines by minimizing the total weighted completion time. Computers and Operations
Research 123, 105018.

Kramer, A., Dell’Amico, M., Iori, M., 2019a. Enhanced arc-flow formulations to minimize weighted
completion time on identical parallel machines. European Journal of Operational Research 275, 67–79.

Kramer, A., Lalla-Ruiz, E., Iori, M., Voß, S., 2019b. Novel formulations and modeling enhancements for
the dynamic berth allocation problem. European Journal of Operational Research 278, 170–185.

Kravchenko, S., Werner, F., 1997. Parallel machine scheduling problems with a single server. Mathemat-
ical and Computer Modelling 26, 1–11.

Kravchenko, S.A., Werner, F., 2001. A heuristic algorithm for minimizing mean flow time with unit
setups. Information Processing Letters 79, 291–296.

Liu, G.S., Li, J.J., Yang, H.D., Huang, G.Q., 2019. Approximate and branch-and-bound algorithms for
the parallel machine scheduling problem with a single server. Journal of the Operational Research
Society 70, 1554–1570.

Martinovic, J., Scheithauer, G., Valério de Carvalho, J., 2018. A comparative study of the arcflow model
and the one-cut model for one-dimensional cutting stock problems. European Journal of Operational
Research 266, 458–471.

Mrad, M., Souayah, N., 2018. An arc-flow model for the makespan minimization problem on identical
parallel machines. IEEE Access 6, 5300–5307.

Silva, J.M.P., Subramanian, A., Uchoa, E., 2023. On time-indexed formulations for the parallel machine
scheduling problem with a common server. Engineering Optimization xx, 1–18.

Silva, J.M.P., Teixeira, E., Subramanian, A., 2021. Exact and metaheuristic approaches for identical
parallel machine scheduling with a common server and sequence-dependent setup times. Journal of the
Operational Research Society 72, 444–457.

23

