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Abstract
This paper examines how climate change and adaptation through irrigation have
affected corn yield growth within the US Corn Belt since the 1960s. We combine
corn yield and irrigation data from the USDA National Agricultural Statistics
Service with ERA5-Land gridded temperature data. We adopt an augmented
long-difference framework to i) assess the impact of extreme temperature trends
from 1960 to 2023 on corn yield growth in Corn Belt counties since the 1960s and
ii) estimate the potential of irrigation to mitigate this impact. Our findings reveal
significant upward trends in extreme degree days (EDD) above 29◦C across more
than half of Corn Belt counties. We highlight that the varying magnitudes of
these trends, alongside differential adoption rates of irrigation between counties,
have played a crucial role in explaining the disparities in long-term corn yield
trends within the region. Specifically, we show that irrigation offsets about 80%
of the adverse impact of EDD on corn yields. Based on a counterfactual analysis,
we find that current corn yields are about 6.5% lower, on average, than they
would be in a non-climate change scenario.

Keywords: Climate Change, Yields, Irrigation, Corn Belt

JEL Classification: Q15 , Q54

This paper has been presented in June 2024 at the 2024 AFSE Annual Congress in Bordeaux, France. The
author is grateful to the participants of that congress for their useful comments.

1



1 Introduction
According to a survey conducted by the Center for Commercial Agriculture of Purdue
University in 2019, 78% of farmers in the United States (US) were not too worried
about climate change. Moreover, 77% declared they had made no changes in their
farm in response to climate change. Meanwhile, a growing number of studies highlight
and predict substantial impacts of climate change on US agriculture. Agricultural
productivity is projected to decrease in the US over the course of the 21st century
(Liang et al. 2017). In particular, many studies using statistical or process-based crop
models project important yield reductions for corn in the future (Schlenker and Roberts
2009; DeLucia et al. 2019; Liu and Basso 2020). Climate change is also expected to
raise crop prices substantially, by lowering crop supplies in the context of inelastic
demands (Baker et al. 2018; Crane-Droesch et al. 2019). For instance, Baker et al.
(2018) estimate an increase of about 25% for the price of corn by 2050. Burchfield
(2022) even projects that most of the Corn Belt region of the US Midwest will become
unsuitable for corn cultivation by the end of the century.

Considering the above results, the absence of serious concern among US farmers might
seem paradoxical. However, several reasons might explain this gap. Firstly, since the
mid-twentieth century, the central-eastern US has experienced unexpectedly weak
warming trends, especially during summer (Wilson et al. 2023). This well-known
“warming hole” has been linked to natural climate variability as well as human factors,
such as agricultural practices (e.g. irrigation) and aerosol emissions (Banerjee, Polvani,
and Fyfe 2017; Mueller et al. 2016; Nocco, Smail, and Kucharik 2019). Most of the
country’s agricultural activities are in the central-eastern US and summer is the
most important season for agriculture there. Therefore, the warming hole might have
made climate change less discernible in this region. Since this phenomenon has been
accompanied by upward trends in rainfall, some researchers even find evidence that it
has been beneficial to corn yields so far (Butler, Mueller, and Huybers 2018; Partridge
et al. 2019). Secondly, widespread climate shocks on crops trigger price increases, which
sometimes benefit farmers (Bolster et al. 2023). Finally, long-established programs
managed by the Federal Government aim at insuring farmers against income losses
(Crane-Droesch et al. 2019).

Even if climate change has not been a source of concern for most US farmers up to now,
it has still affected people’s welfare through its impacts on agriculture. Commodity
price increases hurt consumers’ well-being or food safety (Bolster et al. 2023). Moreover,
the average $12 billion in crop losses insured annually by the Federal Government are
supported by US taxpayers. Diffenbaugh, Davenport, and Burke (2021) estimate that
temperature trends in the US have caused 19% of the crop losses insured between
1991 and 2017. Furthermore, by compensating for the costs of climate change, federal
“safety net” programs might dissuade farmers from adopting strategies to cope with it.
To prevent these impacts, it is therefore essential that the US government promote
suitable adaptive strategies to farmers.

Against this background, this paper enhances the understanding of US agricultural
policy challenges in two ways. First, unlike previous studies, we find that climate
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change has already been detrimental to yields in the Corn Belt. More precisely, our
results suggest that, in the absence of climate change since 1960, average corn yields
would have been about 6.5% higher in recent years. The discrepancy with regards
to previous studies lies partly in our finer measure of extreme temperatures, based
on hourly ERA5-land data, which better captures the occurrences of temperatures
harmful to corn. Indeed, our measures of extreme temperatures present significant
upward trends in more than half of Corn Belt counties since 1960, contrary to what is
shown in studies using rougher measures (Butler, Mueller, and Huybers 2018; Partridge
et al. 2019). Our findings thus highlight the necessity for US farmers to urgently adopt
adaptive strategies in response to climate change.

Second, we seek to provide information for comparing the benefits and costs of different
adaptation strategies so that the most efficient can be promoted to US farmers.
Accordingly, we assess the efficiency of irrigation in mitigating the harmful impact of
extreme temperatures on corn yields. Schlenker and Roberts (2009) and Butler and
Huybers (2013) provide evidence that irrigation can reduce the sensitivity of corn to
extreme temperatures. However, their pieces of evidence are limited since irrigation
is not the focus of their analyses. Therefore, we aim at providing a more accurate
assessment of this beneficial influence of irrigation.

To that end, we adopt an augmented version of the long-difference approach developed
by Burke and Emerick (2016). These authors calculate multi-decadal-long differences
in several climate variables and corn yields at the county level. Then, they conduct
a cross-sectional analysis to investigate whether counties experiencing greater long-
term increases in extreme temperatures have correspondingly lower increases in corn
yields. As expected, their findings indicate a negative relationship between extreme
temperature increases and corn yields. Since the magnitude of the relationship does
not differ significantly from what they find based on annual time-series variability, the
authors emphasize a lack of adaptation to global warming in US corn agriculture.

We augment the above approach by introducing an interaction term that incorporates
the evolution of corn irrigation at the county level into our specification of the rela-
tionship between long-run changes in extreme temperatures and yields. We justify the
addition of this interaction term by a simple theoretical framework. This improvement
is made possible by constructing an original dataset of the evolution of corn irrigation
since the 1960s at the county level. We also improve the approach by calculating our
long-differences from regressions on time trends, rather than relying on the difference
between five-year averages around endpoints. This yields more consistent long-term
changes by exploiting all the time-series information available. Additionally, it allows
us to examine the significance of the trends. Based on this improved long-difference
approach, we find that irrigation has mitigated the adverse impact of extreme tem-
peratures changes on corn yields. Hence, the conclusion drawn by Burke and Emerick
(2016) regarding the lack of significant adaptation to climate change in the US Corn
Belt must be qualified in light of our findings.

We focus our attention on one crop, namely corn, because it enables us to produce
more relevant estimates. Moreover, corn is the crop for which the most spatially and
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temporally extended historical data on yields and irrigation are available in the US.
This provides us with important statistical power for analyzing the long-term effects
of climate change on yields. Besides, corn accounted for 35.5% of US crop production
in 2021, and the US plays a crucial part in global corn production. According to the
USDA World Agricultural Supply and Demand Estimates (WASDE) of January 2024,
over 30% of global corn production and exports originated from the US in 2021. Hence,
the interplay between climate change and agricultural productivity in key regions like
the Corn Belt carries significant implications not only for regional dynamics but also
for global food security.

The remainder of the paper is organised as follows. Section 2 provides a detailed
explanation of our empirical strategy. Section 3 describes the data used in our analysis.
Section 4 presents our results. Finally, in Section 5, we summarize our findings and
provide concluding remarks.

2 Empirical Strategy
We carry out an empirical analysis composed of three steps. Firstly, we investigate
whether long-run trends in extreme temperatures have occurred among Corn Belt
counties since 1960. Secondly, we examine whether the heterogeneity in the magnitude
of these trends along with the differential irrigation adoption rates between counties can
explain the disparities in long-run trends in corn yields within the Corn Belt. Finally,
we look further into the implications of our estimates based on two counterfactual
analyses.

2.1 Corn Belt delimitation
Since we focus on the Corn Belt, we must delimitate this region before carrying out
the analysis mentioned above. The objective of this delimitation is to obtain a sample
which includes only counties with significant areas of corn cultivation. To that end, we
follow the approach of Green et al. (2018), which delimitate the Corn Belt from the
calculation of county-level areal fractions of corn cultivation. Their calculations are
based on USDA National Agricultural Statistics Service (NASS) Crop Data Layers
(CDL) which provide satellite-based crop detection at a 30-meter resolution over
the contiguous US. In their study, they propose three delineations depending on the
threshold used for the calculated areal fraction of corn. Their narrower delimitation
only includes counties where corn covers over 20% of the area, resulting in a mostly
contiguous Corn Belt spanning approximately 650, 000km2. Their most extended
delimitation corresponds to a 5% threshold and covers an area of about 1, 600, 000km2.
We retain the latter threshold in our baseline analysis. We thus include in our sample
any county with an areal fraction of corn higher than 5% in any year of CDL data
since 2008 or Agricultural Census data since 1997 (see Section 3.1 for details). We
select the lowest threshold of 5% because the cross-sectional nature of our approach
required that we did not restrict the number of counties in our sample too much.
Unlike Green et al. (2018), we also consider Agricultural Census data on harvested
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corn (for grain) area. This allows us to extend our analysis back to 1997 and include
counties historically part of the Corn Belt but no longer classified as such.

Based on the 5% threshold, our delimitation of the Corn Belt includes 1,171 counties.1
We illustrate this delineation in Figure 1 below.2 Six counties were not included in
some analyses described below for reasons related to data availability. This is discussed
in Section 3.

Figure 1: Corn Belt delineation

Corn Belt (>10%) Corn Belt Excluded Non−Corn Belt

Notes: This map illustrates our Corn Belt delineation based on the pro-
portion of corn area over the total land area of every county. Our baseline
delineation combines both the "Corn Belt" and "Corn Belt (>10%)" cate-
gories and includes any county with at least 5% of corn areal fraction for
any year of CDL or Agricultural Census data. The "excluded" category cor-
responds to counties meeting this criterion but considered too remote to
belong to the Corn Belt.

1Note that our delimitation includes 1,171 counties after having removed a few counties located in Idaho
and California. We considered the inclusion of these geographical outliers into the Corn Belt delineation to
be irrelevant.

2Figure 1 also depicts a narrower delineation of the Corn Belt adopted in a robustness check and based
on an alternative 10% threshold (see Section C.2 of the Appendix)
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2.2 First step: evaluation of long-run changes in extreme
temperatures

The first step consists in investigating whether significant long-run trends in extreme
temperatures have occurred since 1960 among Corn Belt counties. The extreme-
temperature measure we focus on is extreme degree days above 29◦C (EDD). This
variable captures both the intensity and frequency of the occurrences of temperatures
above 29◦C. It quantifies the duration, in days, for which temperatures have exceeded
29◦C, with each hour weighted according to the magnitude of the excess. For example,
one hour at 35◦C represents 6/24 = 0.25 EDD (6◦C × 1/24day), which is identical to
six hours at 30◦C (1◦C × 6/24day). One hour with a temperature lower than 29◦C
corresponds to 0 EDD.

We sum the EDD values of all hours of each corn growing season (April to September)
from 1960 to 2023 for every county in our Corn Belt to obtain annual county-level
EDD values. Details about the data and method used for calculating these annual
EDD at the county-level are provided in Section 3.2. This measure was chosen because
temperatures above 29◦C have been shown to be very harmful for corn productivity
and to explain a substantial share of corn yield variations (D’Agostino and Schlenker
2016). Lobell et al. (2013) use a process-based crop model to show that EDD harm
corn yields mainly through raising vapour pressure deficit, which in turn lowers the
transpiration efficiency of plants, thereby exposing them to water stress. Furthermore,
as our analysis only exploits the cross-sectional heterogeneity in temperature trends in
order to explain the differences in yield trends, we need a temperature measure with
a consistent and homogeneous effect on corn yields across counties. Indeed, we show
that the effect of EDD on corn yields, estimated in the time-series dimension for each
county separately, is significant in virtually all counties and always has a negative sign
when significant. The results of this secondary time-series analysis are presented in
Section B of the Appendix.

Our approach to investigate the presence of a significant long-term trend in EDD for a
given county consists in regressing the EDD time-series for this county on deterministic
specifications of time from 1960 to 2023 and examining if the regressions are significant.
We consider two specifications: one which is simply linear in time and one which is
quadratic. Both regressions are estimated, by Ordinary Least Squares (OLS), for each
county. If one of the regressions proves to be significant according to a robust Fisher
test (at the 10% level) while the other does not, we retain the significant one. If both
regressions are significant or insignificant, we retain the quadratic time trend if and
only if the coefficient associated with the quadratic term is significant (also at the
10% level). Then, in order to quantify the total magnitude of the time trend for every
county, we calculate the fitted values for years 1960 and 2023 (the first and last years
of data, respectively) based on the selected specification. These values are denoted
EDD1960 and EDD2023 respectively. We then subtract the former from the latter. For
every county, we thus obtain the total long-run change in EDD from 1960 to 2023,
and we can examine the significance of the underlying time trend. The results of this
approach are presented in Section 4.1. We check the robustness of our results to the
method for selecting the specification of the time trend in Section C.1 of the Appendix.
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2.3 Second step: long-term relationship between yields, climate
and irrigation

After having estimated the long-run change in EDD for each county as described above,
we apply the same methodology to estimate long-run changes in corn yields since
1960.3 Therefore, for every county in our delimited Corn Belt, we have the long-run
evolution of EDD since 1960 along with the corresponding long-run evolution of corn
yields. This allows us to cross-sectionally analyse the impact of long-run trends in
EDD on trends in corn yields.

Relying on previous results regarding the relationship between EDD and corn yields,
we expect that counties having experienced faster long-run increases in EDD will
exhibit slower increases in yields. However, in the long run, adaptation could take place
and mitigate the impact of EDD on yields. In such a case, the coefficient of a simple
regression of long-run changes yields on long-run changes in EDD would incorporate
such mitigation effect. Nevertheless, such a coefficient might be biased if the adaptation
strategy is correlated to climate change but can boost yields independently of it.
Irrigation is one adaptation strategy that might correspond to such a case. Schlenker
and Roberts (2009) and Butler and Huybers (2013) provide evidence that irrigation
mitigates the harmful impact of extreme temperatures on corn yields. Hence, if a
county experiences a stronger increase in EDD than another, but invests considerably
in irrigation infrastructure, this investment should narrow the gap in yield growth
between the two counties (by mitigating the impact of climate change). But, at the
same time, it is possible that the former county initially has a warm climate with high
EDD normals. Then, investments in irrigation infrastructure would raise yields even
in the absence of any long-term change in EDD, by adapting crops to the initially
adverse climate. Therefore, the county experiencing the stronger long-run increase
in EDD might also experience a faster increase in yields because irrigation has not
only mitigated the impact of climate change but has also increased the initial level
of yields. Put another way, since long-run changes in EDD are correlated with initial
EDD levels, which in turn influence investments in irrigation and their beneficial effect
on yield growth, a simple regression of long-run changes in yields on changes in EDD
suffers from an omitted variable bias.

We now illustrate this point with a short and simple theoretical framework. This
framework also provides justification for the econometric specification of this second
step of our empirical approach.

Let’s denote Rt, the average yield in a given county in period t. We begin with
expressing Rt as the area-weighted average of irrigated yields, RIt, and non-irrigated
yields, RNt:

Rt = θtRIt + (1 − θt)RNt (1)

where θt represents the fraction of corn area irrigated in that county in period t.

3Results for this approach applied to corn yields are presented in Section D of the Appendix. We use
annual corn yields at the county level from 1960 to 2023, obtained from USDA NASS survey data. Details
about these data are provided in Section 3.1.
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We can easily rearrange the previous equation in the following way:

Rt = θt(RIt − RNt) + RNt (2)

Now, for sake of simplicity, we suppose that RIt and RNt linearly depend on EDD in
period t:4

RNt = βN EDDt (3)

RIt = βIEDDt (4)

We expect βN to be negative (i.e. an increase in EDD deteriorates non-irrigated yields).
The sign of βI (the sensitivity of irrigated yields to EDD) is more uncertain, but we
expect it to be higher (i.e. less negative) than βN .

Then, substituting Equations 3 and 4 in Equation 2 yields:

Rt = β̃θtEDDt + βN EDDt (5)

with β̃ defined as the difference between βI and βN (expected to be positive). From
Equation 5 above, denoting RLD the difference between R2023 and R1960, we can write:

RLD = β̃(θ2023EDD2023 − θ1960EDD1960) + βN EDDLD (6)

It is clear from Equation 6 that RLD negatively depends on the change in EDDLD,
namely the change in EDD from 1960 to 2023, through the coefficient βN . However,
it also responds positively to the long-difference of a variable corresponding to the
interaction between EDD and the irrigation fraction, through the coefficient β̃. The
latter coefficient incorporates two important features. First, let’s suppose that the
fraction of corn irrigated, θt, is fixed and denote it simply θ. Then, we have, from
Equation 6:

RLD = (β̃θ + βN )EDDLD (7)

In this case, RLD is determined by the evolution of EDD resulting from climate change.
The interaction between β̃ and θ, corresponds to the magnitude of the mitigation of
climate change impact due to irrigation.

Now, let’s assume that there is no climate change, so that EDD1960 = EDD2023 =
EDD, and that irrigation can vary between both periods again. Then Equation 6
becomes:

4Note that we implicitly suppose that EDDt is the same for irrigated and non-irrigated areas within a
county. This assumption appears to be reasonably non-restrictive, given the strong spatial correlation of
climate and the relatively small area of most counties in our sample..
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RLD = β̃EDDθLD (8)

In Equation 8, it is the evolution of the fraction of corn irrigated, θLD, that causes
RLD, depending on β̃ and the level of EDD. Thus, β̃, in conjunction with EDD,
represents the magnitude of adaptation to climate (not to climate change). When
both θt and EDDt are allowed to vary, both the mitigation-of-climate-change and
the adaptation-to-climate effects are at work. Indeed, we can rearrange Equation 6 to
make both effects visible:

RLD = β̃EDD1960θLD + (β̃θ2023 + βN )EDDLD (9)

The first term of Equation 9 corresponds to the adaptation-to-climate effect, which
operates even in the absence of climate change (i.e. EDDLD = 0) through the
evolution of the fraction of corn acreage irrigated (θLD). The second term represents
the mitigation-of-climate-change effect. It can be at work without any change in the
irrigation infrastructure (θLD = 0). From this equation, we can see that if EDDLD

is correlated with the product of EDD1960 and θLD, a simple regression of RLD on
EDDLD will be biased because the adaptation-to-climate (not climate change) effect
will be incorporated in the coefficient associated to EDDLD. The correlation between
EDDLD and EDD1960θLD equals about 0.23 in our sample, which suggests a potential
importance of accounting for the latter variable in our specification.

Hence, the second step of our empirical approach consists in estimating both coefficients
of Equation 6 based on our cross-section of Corn Belt counties. In this way, we seek to
evaluate the importance of long-run changes in EDD, along with adaptation through
irrigation infrastructure, in explaining the differential long-run trends in corn yields
observed among Corn Belt counties.5 Note that we estimate a modified version of
Equation 6 where all variables (i.e. RLD, EDDLD and (θEDD)LD) are standardized
to account for the fact that our time-series of corn yields are shorter in some counties.
For instance, corn yield data in Texas and New York are only available since 1968 and
1972, respectively. Hence, for any county i, we define RLD,i as the ratio of RLD,i to
(Ti − 1), with Ti being the number of observations in the yield time-series of county i.
We equivalently define EDDLD,i and (θEDD)LD,i. Moreover, an intercept is included
in the specification. Thus, we estimate the following equation:

RLD,i = β̃(θEDD)LD,i + βN EDDLD,i + α + ϵi (10)

The variables in this specification must then be interpreted as annual average changes
instead of total changes during our study period. However, the coefficients (except the
intercept) are theoretically the same as in Equation 6 above.

A challenge arises when attempting to account for the evolution of irrigation infras-
tructure, as no comprehensive historical data at the county-level about the specific
irrigation of corn are available. Indeed, county-level data about the irrigated acreage

5see Section D of the Appendix for details about the latter trends.

9



of corn are only available in the 1960s for Colorado, Kansas, Louisiana, Nebraska,
Oklahoma, South Dakota, and Texas.6

For the remaining States in our sample, no such data are available. However, there is
evidence that corn irrigation was negligible in most counties of these States around
1960. Indeed, in the majority of these States, virtually all counties either do not irrigate
their corn acreage or have minimal irrigation infrastructure even today (see Figure A2
in Section A of the Appendix for our recent measure of irrigation infrastructure). The
exceptions are Arkansas, Georgia, Mississippi, and Missouri where some corn growing
areas are currently highly irrigated. According to the 1964 Agricultural Census, there
was no irrigation of corn in Missouri in 1964. In Georgia and Mississippi, the irrigated
fractions of corn for grain were slightly above 0.2% in 1964, against about 55% as
of the 2017 Census. In Arkansas, 2.4% of corn (for grain) acreage was irrigated in
1964, against 85.7% as of the 2017 Census. Hence, for all States lacking county-level
irrigation data for corn at the beginning of our sample period, we assume that θ1960 is
equal to zero in every county.

As for current irrigation, the approach is the same for all counties in our sample. For
each county, we select the highest of the corn irrigation fractions reported in 2012
and 2017 Agricultural Censuses. We select the highest of both values because we try
to measure irrigation capacity. Hence, such capacity may not be fully utilized in a
particular year, resulting in the 2017 value being lower than the 2012 value in some
cases.

The results of the estimation of Equation 10 by OLS are presented in Table 1 of
Section 4.2. We also estimate the simple regression of RLD on EDDLD (i.e. without
the first term on the right-hand side of Equation 10) and display the results in Table 1.
In this manner, we examine how much the omission of (θEDD)LD alters the estimate
of the coefficient associated with EDDLD.

2.4 Third step: counterfactual analyses
After having estimated the long-term effects of EDD and irrigation on corn yields, we
carry out two counterfactual experiments. Such experiments aim at providing insight
into the magnitude of these effects in the context of the observed trends in EDD and
corn-irrigation development since the 1960s.

2.4.1 Non-climate change scenario
Our first counterfactual analysis seeks to assess the magnitude of the changes in current
corn yields induced by the long-term trends in extreme temperatures that we measure
since 1960. It consists in assuming a null EDD long-difference in every county of our
sample and evaluating the changes in current yield normals - compared to the normals
that we observe - resulting from this assumption.

6The sources of the data about corn irrigation in the 1960s differ depending on the state. Two out of the
three sources present missing information which lowers the accuracy of our measures in some cases. Please
see Section 3.3 for details.
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Formally, we first calculate a counterfactual yield standardized long-difference for each
county, denoted R

0
LD,i based on the following equation:

R
0
LD,i = ˆ̃β(θ2023,iEDD1960,i − θ1960,iEDD1960,i) × 1

Ti
+ α̂ + ei (11)

with ˆ̃β the estimate of β̃ resulting from the estimation of Equation 10 by OLS (see
Table 1) and ei the residual for county i. Note that the second term on the right-hand
side of Equation 10 does not appear in Equation 11 above. This is precisely because we
assume that EDDLD,i = 0 for every county i in this counterfactual analysis. Moreover,
in the first term, we substitute EDD1960,i for EDD2023,i for consistency with the no-
EDD long-difference assumption. Once that we have calculated R

0
LD,i for each county

in the sample, we multiply it by the corresponding Ti to obtain the total corn yield
long-difference for county i. Then, we add this total long-difference to R1960,i to obtain
the counterfactual current value of corn yield normals in county i, denoted R0

2023,i.

The underlying objective of this approach is to evaluate to what extent human-induced
climate change might have already affected yield growth in the Corn Belt. Hence, we
call this first analysis the “non-climate change” scenario in what follows. However, this
objective might not be fully achievable with such a simple experiment. Indeed, several
studies dealing with the warming-hole problem for the central-eastern US highlight
the strong internal climate variability in this region in recent decades (Kumar et al.
2013; Eischeid et al. 2023). Such a variability might have dampened the emergence
of global warming in this region so far. For instance, Eischeid et al. (2023) explain
the recent lack of summertime warming in central-eastern US from the persistent and
unusual intensification of the water cycle observed over the region, mostly attributed
to internal variability. Their results suggest that, in the absence of this phenomenon,
regional warming would have been stronger in recent years. Since our analysis does
not distinguish long-term internal variability from external climate change, we might
understate the losses in yields caused by the latter.

Moreover, it is worth noting that climate change can have both anthropogenic and
natural sources. Indeed, it is well known that solar and volcanic activities can influence
the climate system, independently from human societies. Hence, we cannot entirely
attribute our observed trends in EDD to human activities since these natural factors
could have been at work for our period and region of interest. However, the IPCC
(2023) provides evidence that climate change from natural sources has been negligible
for many decades over North America. These results do not precisely concern the
central-eastern US but still provide some confidence that human activities have been
the predominant factor behind climate change in the Corn Belt since 1960. We provide
the results of this non-climate change scenario in Section 4.3.1.

2.4.2 Non-irrigation development scenario
Our second counterfactual analysis focuses on the contribution of the long-term
developments of corn irrigation in the Corn Belt to current corn yields in the region.
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Precisely, it consists in assuming that the current corn irrigated fraction has remained
equal to its value of the 1960s in each county of our sample. In this manner, we
can estimate and compare what today’s corn yields would have been in the absence
of adaptation through irrigation (and assuming no substitution with another form
of adaptation) during the period under study. We denote the current yield normals
derived from this second scenario by RN

2023.

This second analysis aims at providing insights into the importance of current irrigation
in preserving reasonable yields within the relevant areas of the Corn Belt. Such insights
appear valuable since climate change is expected to threaten water availability in
at least some parts of the region, potentially making it difficult to sustain current
irrigation levels in the future (McPherson et al. 2023). This second analysis may inform
policymakers in guiding farmers towards more (or less) parsimonious water usage, or
alternative adaptation strategies such as crop switching (Rising and Devineni 2020).
Section 4.3.2 describes the results of this second counterfactual analysis.

3 Data
3.1 Corn acreage and yield data
In order to delineate our Corn Belt, we needed data about corn acreage at the county-
level. We used two data sources about corn acreage. First, we used county-level data
on harvested acreage of corn (for grain) from the Agricultural Censuses since 1997.
For every county with at least some corn area, we calculated the areal fraction of corn
by dividing the harvested acreage of corn by the county’s total land area (as of 2010
from the US Census Bureau). Due to disclosure avoidance rules, Agricultural Census
data are hidden for some counties. Therefore, we completed these data with USDA
NASS Crop Data Layers (CDL). The CDL are crop-specific land cover data at a 30-
meter resolution produced from satellite imagery. They are available annually for the
entire Contiguous US (CONUS) since 2008. For every year between 2008 and 2023, we
attribute a value of 1 to any gridpoint containing corn and 0 for any other gridpoint.
Then, we average all gridpoint values within every county to obtain county-level areal
proportions of corn.

Corn yield data at the county level are from USDA NASS annual surveys. Due to
missing years for some counties in the Corn Belt, we retain only the counties with
at least 45 annual observations of corn yields since 1960. We therefore exclude six
counties from the 1,171 counties included in our delineated Corn Belt. Note also that
in Colorado, Texas, and New York states, corn yield data are only available since 1963,
1968 and 1972 respectively.

3.2 Climate data
The temperature data we use to calculate extreme degree days are hourly 2-meter
temperatures from ERA5-Land. ERA5-Land is a reanalysis dataset providing gridded
data at a 0.1◦ × 0.1◦ resolution over the global land surface (Muñoz Sabater 2019).
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We begin with calculating hourly EDD above 29◦C for every gridpoint in the dataset.
Hence, for any gridpoint g at any hour h, we calculate EDDg,h as:

EDDg,h =
{

(Tg,h − 29) × 1
24 if Tg,h > 29

0 otherwise

with Tg,h the temperature (in Celsius degrees) in gridpoint g at hour h. We then
sum EDDg,h over all hours of each annual corn growing season (from April 1st to
September 30th) from 1960 to 2023.

At this stage, we have annual EDD values at the gridpoint level for every gridpoint
in the dataset. As we seek to include only the areas where corn is frequently grown
when averaging EDD values to the county level, we use USDA NASS Crop Frequency
Layer (CFL) for corn. The corn CFL indicates the number of years for which corn has
been grown on a specific 30-meter gridpoint over the 2008-2023 period. Taking into
account the fact that corn is often grown in rotation with soybean and that land may
lie fallow in some years (Green et al. 2018), at least five years of corn were considered
necessary for a CFL gridpoint to be retained as a frequent-corn gridpoint. Then, we
remove from our dataset all EDD gridpoints containing no frequent-corn gridpoint.
Finally, we average the values from the remaining EDD gridpoints in a county, by
weighting each EDD gridpoint according to the number of frequent-corn gridpoints
within it. In this manner, we obtain county-level yearly EDD values corresponding to
the areas where frequent corn cultivation is the most important.

3.3 Irrigation data
The data sources about corn irrigation in the beginning of our study period differ
depending on the state. For Colorado, Nebraska and South Dakota, data are from
surveys conducted by USDA NASS in the beginning of the 1960s. For Nebraska and
South Dakota, the survey year is 1960 while for Colorado, it is 1963, according to the
first year of data on corn yields we have. For Kansas, Louisiana, and Oklahoma we
use data from the 1959 Agricultural Census. For Texas, we use the 1969 Agricultural
Census, since corn yield data began in 1968 in Texas. It is worth mentioning that the
way corn irrigated acreage is measured varies slightly depending on the source of the
data. In some cases, the information about the exact fraction of irrigated corn (for
grain) is missing. To deal with these cases, we develop an approach which enables
us to derive intervals to which the missing values necessarily belong. Then, based on
these intervals, we derive estimates of these values while assessing the uncertainty
surrounding these estimates. This approach is extensively discussed in Section A.1 of
the Appendix.

The most recent measure of irrigation infrastructure is obtained from selecting the
highest value for the fraction of corn (for grain) irrigated between the 2012 and 2017
Agricultural Censuses for every county. In some counties, the exact value for one
year, or both, is hidden due to disclosure avoidance practices. However, USDA NASS
Agricultural Census Web Maps still provide an interval to which the true value belongs.
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In some cases, we therefore have to estimate the exact value of the irrigated fraction of
corn as the midpoint of the interval to which it belongs. Note that this issue introduces
uncertainty regarding the accurate value of the irrigated fraction of corn for 31% of
counties. This is detailed in Section A.2 of the Appendix.

4 Results
4.1 First-step results
In Figure 2 below, we first illustrate the chosen type of time trend for each county
based on the methodology described in Section 2.2. Among the 1,171 counties for
which we have calculated EDD, 652 present a significant time trend (at the 10%
significance level) representing 55.7% of our sample.7 It is clear from Figure 2 that
a majority of counties display an upward linear trend. However, 100 counties, most
of them located in the southwest of the region and the southern Mississippi Portal,
present accelerating quadratic trends. This suggests that the pace of increase in EDD
may be greater for these counties in the future than what it has been thus far. This is
even more concerning since this pace has already been substantial in the southwestern
part of the region, as we describe below. Additionally, we observe slowing quadratic
trends in some counties around Illinois through Ohio. A cluster of counties in the
northwest presents downward time trends, although none of them is significant. Note
that this pattern is fairly preserved when using the AIC to select the trend types,
except that the slowing quadratic type is retained for only one county in that case
(see Figure C1.1 in the Appendix).

We now shift our focus to the values derived for the difference between EDD1960
and EDD2023 (i.e for EDDLD). This variable is illustrated in Figure 3 and Table D1
provides summary statistics for EDDLD. We observe a positive value (i.e an increase
in EDD) for 1,127 counties out of the 1,171 under consideration. Moreover, all the
significant time trends correspond to positive values of EDDLD. The mean of the
variable equals 13.66 (the median is 8.86). These results contrast with those from Butler,
Mueller, and Huybers (2018), who find downward EDD trends in most parts of the
Midwest since 1981. This difference is likely due to the fact that these authors calculate
EDD simply based on daily Tmax data. Yet, the warming-hole literature has shown
that this phenomenon applies to daily maximum temperatures more than to other
aspects of temperatures (Wilson et al. 2023; Eischeid et al. 2023). Therefore, Butler,
Mueller, and Huybers (2018) might measure trends in Tmax rather than actual trends
in EDD. Using hourly-based EDD measures, we demonstrate that the occurrence of
temperatures above 29◦C has steadily increased since 1960 in most Corn Belt counties.

However, there is substantial heterogeneity across counties. Indeed, the standard
deviation equals 15.01, with -3.71 as the minimum value (although associated with an
insignificant time trend) and the maximum value reaching 98.59. Figure 3 shows that
counties located in the southwestern part of the Corn Belt have undergone stronger
long-term increases in EDD compared to those in the northern and eastern parts. In

7Here we perform inference based on the standard errors robust to heteroskedasticity and autocorrelation
proposed by Newey and West (1994).
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particular, Texas emerges as the state most affected by long-run increases in EDD,
with an average increase of 69.28 across its counties. On the contrary, North Dakota
is the less affected state, with an average value equal to -0.35. This pattern strongly
reflects that of EDD normals in 1960 (see Figure D2 for a map of EDD1960). Indeed,
the coefficient of determination of the simple OLS regression of EDDLD on EDD1960
equals 66%. This is not surprising, as warmer counties either meet or exceed the
threshold of 29◦C more frequently. Hence, a similar increase in temperature will trigger
a more substantial increase in EDD within counties that have an initially warmer
climate.

We then exploit the considerable cross-county heterogeneity in long-run EDD changes
to investigate whether it can explain the differential corn yield trends observed among
Corn Belt counties since 1960.

Figure 2: Selected type of time trend for EDD

Significant trend
(10% level)

NO
YES

linear increasing
linear decreasing
quadratic accelerating
quadratic slowing down

Notes: This map illustrates the type of time trend which has been selected for every
county regarding the evolution of EDD from 1960 to 2023. See Section 2.2 for a description
of the selection method. Significance is determined according to standard errors robust
to heteroskedasticity and autocorrelation.

4.2 Second-step results
As shown earlier, over half of the counties in the Corn Belt have undergone significant
trends in EDD since 1960, and there is considerable cross-county heterogeneity in these
trends. Now, we investigate whether this heterogeneity can account for the disparities
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Figure 3: EDD long-differences (1960-2023)

Significant trend
(10% level)

NO
YES

0
25
50
75
100

Notes: This map illustrates our estimated long-difference for EDD over the 1960-
2023 period in every county, denoted as EDDLD. This variable corresponds to the
difference between the values of EDD in 1960 and 2023 fitted according to the time
trend which have been selected for a given county. See Figure 2 above for the selected
type of trend in every county. Significance is determined according to standard errors
robust to heteroskedasticity and autocorrelation.

observed in the long-run trends of corn yields across counties. Of particular interest is
our investigation into whether irrigation has played a role in mitigating the impact of
EDD changes on corn yields.

To carry out these analyses, we first estimate Equation 10 without including the first
term which is supposed to capture the adaptation-to-climate and the mitigation-of-
climate-change effects presented in Section 2.3. Omitting this variable produces a
biased estimate of the coefficient associated with EDDLD because the latter variable
is correlated with the beneficial effect of the evolution of irrigation. To evaluate the
magnitude of this bias, we then estimate the complete form of Equation 10 and compare
the results of both regressions.

Table 1 presents the results. In the simple regression of RLD on EDDLD, our estimated
coefficient equals -0.48 and is highly significant. Interestingly, the 95% confidence
interval for this estimate does not include the average coefficient estimate across
counties obtained when running the time-series regressions of corn yields on EDD,
which is -0.64 (see Section B of the Appendix). This finding is rather inconsistent with
that of Burke and Emerick (2016). Indeed, they find that the estimated effect of EDD
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on corn yields from a cross-sectional long-difference regression (such as ours) is close
to that obtained from a panel fixed-effects regression. They interpret this similarity as
indicative of the absence of significant adaptation to warming trends in the Corn Belt.

The results presented in the second column of Table 1 provide further evidence
that this statement should be qualified. In fact, both coefficients estimated from the
complete form of Equation 10 are significant with the expected sign. The estimate
of the coefficient associated with EDDLD is equal to -1.11. It corresponds to βN

in Equation 10, which represents the effect of EDD on corn yields in non-irrigated
areas. It is more than twice as large as the coefficient from the first column, and
the difference between both estimates is strongly significant. Therefore, omitting the
variable capturing adaptation through irrigation leads to underestimating substantially
the harmful impact of EDD on yields for non-irrigated corn.

Interestingly, the impact that we estimate for rainfed corn is (significantly) much larger
than what Butler and Huybers (2013) find for the most sensitive rainfed areas of the
Corn Belt (their most negative estimate is about -0.55) using time-series regressions.
Our cross-section estimate is more consistent with the findings of our own time-series
analysis, but a gap still remains. Indeed, an estimate equal to -1.11 corresponds to the
10% quantile of our time-series estimates, which means that only a few counties exceed
such a negative estimate for the impact of EDD (see Section B in the Appendix for a
description of our time-series results). The more negative estimates that we obtain in
both the cross-section and the time-series with respect to Butler and Huybers (2013)
could be due to the fact that they control for the (supposedly beneficial) influence of
growing degree days (GDD) in their specification. In addition, they run their regressions
by imposing a positive and negative coefficients for GDD and EDD, respectively.
Most importantly, they calculate degree days based on daily average temperatures
instead of hourly measures. This former approach has been shown by Schlenker and
Roberts (2009) to be far less efficient in predicting yields because the most extreme
temperatures are averaged out.

Besides, the estimate of the coefficient for (θEDD)LD equals 0.90. According to
Equation 10, it corresponds to the difference between βI and βN , the former being
the effect of EDD on yields in irrigated areas. We thus demonstrate that the harmful
impact of EDD on corn yields is weakened by irrigation. More precisely, each 10
percentage points increase in the proportion of irrigated corn in a county generates a
reduction of about 0.09 in the negative impact of EDD on corn yields. This is similar
to the result of Butler and Huybers (2013) which find that counties that irrigated at
least 10% of their acreage have a sensitivity to EDD which is 0.08 smaller on average.
Additionally, our point estimates suggest that the irrigation of corn mitigates 81%
of the impact of EDD. This is also consistent with the result of Lobell et al. (2013)
which suggests that the predominant channel through which EDD affect corn yields is
through raising plant water stress.

Furthermore, summing both estimated coefficients yields an estimate of βI equal to
-0.21. According to a robust Wald test, this parameter is significantly different from
zero. This means that irrigation does not fully mitigate the impact of EDD on corn
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yields. Nonetheless, irrigation does alleviate this impact in large part. Moreover, a
number of counties within our delineated Corn Belt have notably raised their acreage
of irrigated corn since the 1960s. As can be seen from Figure 4, most of these counties
are located in the Mississippi Portal, the north of Nebraska, Kansas and Georgia. The
rest are disseminated across the region. The substantial increases in corn irrigation in
the Mississippi Portal and northern Nebraska likely explain most of the remarkable
pace at which corn yields have increased in these areas since the 1960s (see Figure D1).
This is confirmed by our second counterfactual analysis, whose results are presented
in the next section.

Given the extent to which irrigation can reduce the impact of EDD on yields and
the surge in corn irrigation since 1960 in several parts of the Corn Belt, we state
that adaptation to global warming have already occurred in some parts of the region.
Note that the inclusion of the first term of Equation 10 in the specification raise the
coefficient of determination from 5.8% to 42.6%. Hence, by considering only the long-
term changes in EDD and irrigation, we are able to explain more than 40% of the
heterogeneity in corn yield trends across Corn Belt counties since 1960.

Table 1: OLS regression results for Equation 10
Eq. 10 (first term omitted) Eq. 10

Intercept 1.881*** 1.875***
[1.852, 1.911] [1.846, 1.904]

EDDLD −0.477*** −1.113***
[−0.603, −0.350] [−1.257, −0.969]

θEDDLD 0.902***
[0.836, 0.969]

Num.Obs. 1165 1165
R2 0.058 0.426
R2 Adj. 0.057 0.425
βI - -0.211
Wald-stat of βI = 0 - 11.739***

* p < 0.1, ** p < 0.05, *** p < 0.01

Notes: This table presents the results of the OLS estimations
based on Equation 10. The 95% confidence intervals based on
heteroskedasticity-robust standard errors are indicated in brackets.
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Figure 4: Irrigated proportion of corn: standardized long-differences
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Notes: This map illustrates the standardized long-difference in the proportion
of irrigated corn, denoted θLD, for every county in the Corn Belt. This
variable is defined, for a given county, as the difference between present-day
proportion of irrigated corn and that of the 1960s, multiplied by 100 and
divided by the length of the time-series for that county. Proportions of corn
irrigated in the 1960s at the county-level are taken from different sources
(see Section A for details).
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4.3 Third step results
4.3.1 Non-climate change scenario
Our first counterfactual scenario investigates the magnitude of the losses in corn yields
induced by the long-term increases in extreme temperatures previously shown. Recall
that we assume a null EDD long-difference in every county of our sample to assess the
relative changes in current yield normals - compared to the normals that we observe -
resulting from this assumption.

Figure 5 maps the percentage difference between observed current yield normals and
the normals that we derive based on our assumption of zero changes in EDD. Overall,
observed corn yield normals are lower than “non-climate change” normals in virtually
all counties of the Corn Belt. This is consistent with the positive long-differences in
EDD that we have identified for these counties. The only exception is the group of
counties, located in the northwest of the region, characterized by slight downward
trends in EDD as shown previously (see Figure 3). On average, we find a 6.6% loss in
corn yield normals - relative to the non-climate change baseline - due to long-term
changes in EDD across Corn Belt counties. According to our estimates, the current
average corn yield would have been 181.83 bushels per acre in the absence of warming,
compared to the observed average of 170.48 bushels per acre.

Figure 5 shows that the average loss masks considerable heterogeneity across counties.
Specifically, we estimate strong losses from climate change in the southern part of
the region, particularly in the south-west, and moderate-to-low losses towards the
north. The greatest losses from climate change are found in eastern and southern
Texas, where most counties have experienced yield losses greater than 25% relative
to the non-climate change scenario. Some counties located in Kansas and Colorado
have also witnessed losses of similar magnitudes. The highest loss equals 58.4% and
is located in Guadalupe County, Texas. The extreme losses in these counties are due
to the combined effects of strongly increasing EDD and relatively low irrigation (see
Figure 3 and Figure A2). Most counties in Kansas, Kentucky and the Carolinas have
also experienced important losses, ranging between 10% and 25%. These losses are also
driven by relatively strong increases in EDD with no development of corn irrigation. In
the southern parts of Iowa and Illinois, the two most important corn-producing states,
many counties have suffered losses between 5% and 10% due to climate change, which
is still substantial. The northern areas of both states, as well as Indiana and Ohio, have
experienced more moderate losses, between 2.5% and 5%. For the northernmost states
of the Corn Belt, we estimate losses lower than 2.5% compared to the non-climate
change scenario, because trends in EDD have been weak and largely insignificant.

Our results suggest that long-term changes in EDD have somewhat widened cross-
county disparities in corn yield normals. Indeed, the variance of current yield normals
equals 29.38 in the non-climate change scenario, while it equals 32.73 in observed yield
data. This slight increase in variance coincides with an accentuated leftward skewness
of the distribution as a result of climate change: the coefficient of skewness equals -0.84
in the observed data against -0.68 in the non-climate change case. Figure D3 in the
Appendix illustrates these changes by providing a comparison of both distributions.
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Such changes have occurred because EDD increases have more strongly affected
southern areas, which were already the less productive.

It is worth mentioning that some areas have avoided large losses thanks to very high
irrigation levels. Counties located in Northern Texas represent striking examples.
These counties have witnessed losses comparable to those of Southern Iowa despite
experiencing much stronger increases in EDD. A similar observation can be made for
most counties in the Mississippi Portal. The importance of the development of corn
irrigation since the 1960s in improving corn yields by adapting to increasingly warm
climate conditions is assessed in detail in our second counterfactual analysis.

Figure 5: Changes in current yield normals due to climate change
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Notes: This map illustrates the percentage differences between observed
corn yield normals, R2023,i and the normals derived from our counter-
factual non-climate change scenario, R0

2023,i. The latter constitute the
denominator.

4.3.2 Non-irrigation development scenario
This second counterfactual analysis consists in simulating what corn yield normals
would currently be if corn irrigation had remained equal to its levels of the 1960s,
and comparing these simulated normals to the observations. Figure 6 displays the
percentage change in current yield normals arising from the evolution of irrigation
for every county. Unsurprisingly, the difference is negligible in most counties, as a
result of the absence of significant changes in the proportion of irrigated corn in these
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counties. However, some areas have experienced large changes in corn yields due to
sizable trends in corn irrigation. On one hand, several counties in Colorado, Kansas
and Texas have undergone significant yield losses because corn irrigation has decreased
since 1960s. In five counties, these losses exceed 20%. Two of them nearly reach 50%
and the highest loss goes just beyond 60%. The two most important losses are located
in Kansas and stem from tremendous reductions in corn irrigation (see Figure 4) in
combination with a warm climate (see Figure D2), where the impacts of irrigation
changes are even more critical. Indeed, recall that the effect of changes in irrigation
is more pronounced in warmer (and warming) climates, as shown in Equation 9 of
our theoretical model. This property appears even more clearly when looking at the
two counties in Texas having losses above 20%. These counties present only slight
downward trends in corn irrigation. However, they are among the hottest counties in
our sample, so that the slight reductions in irrigation trigger very large losses in yields.

On the other hand, a large number counties in the central Great Plains, in Texas, and
along the Mississippi Portal the Southern Seaboard have experienced considerable
gains through the development of corn irrigation. In Nebraska, virtually all counties
have benefited from gains in corn yields between 2% and 20%. Several counties in
central Kansas present gains higher than 20%, some of them passing the threshold of
50%. Note that counties in Nebraska tend to have similar, or larger, irrigation increases
than counties in Kansas. In spite of that, irrigation changes have more benefited to
the latter counties on average, because of their warmer climate. The Mississippi Portal
has witnessed the most important gains from the development of corn irrigation, with
an average gain of 74.37% and a median gain of 68.31%. These impressive gains arise
as a result of maximum irrigation developments (from 0% to 100% in many counties)
in conjunction with a warm climate. Note that the largest relative gain corresponds
to Bee County, Texas, with a gain equal to 258.58%. The observed yield normal in
this county equalled 78.68 bushels per acre in 2023. Our analysis suggests that, absent
irrigation development, this county’s yield normal would only have been equal to 21.94
bushels per acre.

Overall, this second counterfactual experiment reveals how much irrigation currently
contributes to corn yields in several areas of the Corn Belt. Going back to the irrigation
levels of the 1960s would be extremely detrimental to yields in these areas.
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Figure 6: Changes in current yield normals due to irrigation development
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Notes: This map illustrates the percentage difference between observed
corn yield normals, R2023,i and the normals derived from our counterfac-
tual non-irrigation development scenario, RN

2023,i. The latter constitute
the denominator.
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5 Conclusion
In this study, we have first used climate data from the ERA5-Land reanalysis dataset
in order to examine long-run trends in extreme degree days above 29◦C in the Corn
Belt since 1960. ERA5-Land data have a high spatial resolution (0.1◦ × 0.1◦) and a
high temporal frequency (hourly). Accurately measuring temperatures in both the time
and spatial dimensions has been shown to be very important for identifying extreme
temperature occurrences and their impact on crop yields (Schlenker and Roberts 2009;
D’Agostino and Schlenker 2016). Moreover, the fine spatial resolution of the climate
data allows us to measure extreme temperatures only in corn cultivation areas, by
combining them with satellite-based corn land cover data.

Hence, we show that climate change has already translated to significant upward trends
in extreme degree days in 55.7% of Corn Belt counties. The southwest of the region is
the most affected area, for which accelerating trends are identified, suggesting that
even faster increases are to be expected in the future.

Next, we have considered the role of irrigation as a form of adaption to mitigate
the impact of these upward trends on corn yields. We have constructed measures of
corn irrigation in the 1960s at the county-level based on different sources, including
Agricultural Census archives. We have compared these measures with present-day
irrigation of corn to examine whether, and where, irrigation has developed since the
1960s. We show that corn irrigation has substantially grown in the Mississippi Portal
and in Nebraska, as well as in Georgia and Kansas.

We have proposed a simple theoretical framework providing us with a formal speci-
fication of how irrigation interacts with extreme temperatures in determining corn
yield growth. We then have empirically estimated this specification and found that
irrigation offsets 80% of the impact of extreme temperatures on corn yield growth.
We also have shown that omitting the role of irrigation produces a biased estimate of
the long-run impact of extreme degree days on corn yields. However, further research
might be needed to understand why our cross-sectional estimate of the negative effect
of extreme temperatures on rainfed corn yields is larger than the same effect esti-
mated in time-series. An avenue for research on this matter might be the potential
importance of certain agricultural practices in improving corn yields while cooling
the climate through increased transpiration or aerosol pollution Wilson et al. (2023).
Indeed, omitting such practices would generate a bias in our estimate of the long-term
effect on extreme temperatures on yields, towards a more negative estimate.

Finally, we have proposed two counterfactual analyses to better gauge the magnitude
of our estimates in the context of the observed trends in EDD and corn-irrigation
development since the 1960s. According to our estimates, climate change has already
reduced corn yields among Corn Belt counties by 6.6% on average. However, we show
that the important development of corn irrigation since the 1960s has raised corn
yields substantially in several parts of the region. These results highlight the need for
adaptation policies in US agriculture. This is even more urgent since the persistence
of the warming hole in recent decades has been shown to be driven in large part by
internal climate variability (Eischeid et al. 2023). Hence, this phenomenon might recede
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and reveal the true impacts of human-induced climate change on US agriculture in a
near future.

Our results also suggest that irrigation is very effective in adapting to a warming
climate. Nonetheless, Marshall et al. (2015) provide evidence that some regions will
experience increasingly limited water supplies due to the influence of climate change
on the water cycle. Therefore, developing irrigation might be irrelevant compared to
other forms of adaptation. Deeper investigations about the benefits and shortcomings
of irrigation and other adaptation options would be welcome.
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Appendix
A Irrigation data details
A.1 Irrigation in the 1960’s
As already mentioned in Section 3.3, the sources of the data about corn irrigated acreage
at the beginning of our study period differ depending on the state. For some states
(Kansas, Louisiana and Oklahoma) we use the 1959 Agricultural Census data. For
Texas, we use the 1969 Agricultural Census data. For Colorado, Nebraska and South
Dakota, the data are from USDA NASS surveys. Below, we describe the differences in
how corn irrigated acreage is measured according to each source.

1959 Agricultural Census

In the 1959 Agricultural Census, a distinction is made between the farms that fully
irrigate their corn acreage and those that partially irrigate it. For farms in the former
category, the acreages of corn for all purposes and corn for grain are reported separately.
However, regarding farms in the latter category, only the irrigated acreage of corn for
all purposes is provided, with no information about the specific irrigated acreage of
corn for grain. This lack of complete information rules out the exact calculation of
the irrigated fraction of corn for grain in most counties, where partly irrigated farms
represent a non-negligible share of corn irrigated acreage. However, this share generally
remains limited. This enables us to to calculate reliable estimates of the irrigated
fractions of corn for grain and assess the uncertainty associated with these estimates.

We formally describe our approach as follows. Let Ac and Ag represent the total
acreages of corn for all purposes and corn for grain, respectively, in any county. We
also denote Ic,f and Ig,f the irrigated acreages of corn for all purposes and corn
for grain belonging to fully irrigated farms. We similarly denote Ic,p and Ig,p the
irrigated acreages belonging to partly irrigated farms. Finally, we define the share of
corn-for-grain acreage that is irrigated, Fg, as follows:

Fg = Ig,f + Ig,p

Ag
(12)

Our objective is to estimate Fg with the value of Ig,p being unknown.

Our approach first consists in identifying the lower and upper feasible bounds for
Ig,p, which we denote Ig,p,min and Ig,p,max, respectively. We identify Ig,p,max based
on the two following conditions: i) Fg must be lower than 1 since it represents the
share of corn-for-grain acreage that is irrigated, and ii) Ig,p must be lower than Ic,p

because corn for grain is a component of corn for all purposes. It follows from the first
condition that Ig,p must be lower than Ag − Ig,f . Hence, Ig,p,max corresponds to the
lowest of Ic,p and Ag − Ig,f . It turns out that Ic,p is always the upper bound for the
counties in our sample.

To determine the lower bound, Ig,p,min, we further define Fo as follows:
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Fo = (Ic,f − Ig,f ) + (Ic,p − Ig,p)
Ac − Ag

(13)

It represents the share of the acreage of corn for another purpose than grain which is
irrigated.

We then point out two other conditions: i) Ig,p must be positive, and ii) Fo must be
lower than 1, by definition. The second condition implies that:

Ig,p ≥ Ic,f − Ig,f + Ic,p − (Ac − Ag) (14)

Therefore, Ig,p,min is equal to the maximum of the quantity on the right-hand side of
Equation 14 and 0.

Once we have calculated the correct values for Ig,p,min and Ig,p,max, we deduce the
interval to which Fg necessarily belongs. Since we need a single value for Fg for
each county, we finally check whether the fraction of the acreage of corn for all
purposes that is irrigated, denoted Fc, falls within this interval. If so, we assume that
the irrigated fraction of corn for grain is the same as that of corn for all purposes,
i.e. Fg = Fc. Otherwise, this assumption is not plausible, and we simply estimate Fg

as the midpoint of the interval. Note that we have also investigated the simple case
where Fg is systematically estimated as the interval midpoint. Both options lead to
virtually identical results.

Note that the ranges of the intervals can be regarded as measures of the uncertainty
surrounding our estimates of Fg. We thus provide here a description of the main
features of this uncertainty for the counties in the three states for which data from the
1959 Census were used. In Oklahoma, there is only one county with irrigation data
available, where there were no farms with partly irrigated corn acreage, resulting in no
uncertainty for that county. Among the ten counties of Louisiana in our sample, the
maximum interval range equals 2.20 (on a percentage basis) and the mean range is
0.34. Hence, the uncertainty is negligible for these counties. However, the 56 counties
located in Kansas with available data present some considerable uncertainties. The
median interval range in Kansas, equal to 3.98, indicates that the uncertainty remains
very low for most counties. The higher average range, equal to 8.30, reflects the fact
that a few counties have very high uncertainty levels, with the maximum interval range
equal to 57.84. However, 90% of counties in Kansas (i.e. all but 6 counties) remain
below a range of 17.92.

1969 Agricultural Census

In the 1969 Agricultural Census data, the issue described above is solved. Nevertheless,
a new issue arises : the data only reports the irrigated acreage for farms that have
sold more than 2,500$ of agricultural products during the year, thereby excluding very
small farms. Thus, corn (for grain) irrigated fractions calculated from these data might
be misleading if small farms constitute a significant share of the acreage and irrigate
at a different rate compared to larger farms.
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However, as in the previous case, we can assess the uncertainty due to this drawback
in any given county by constructing an interval to which the correct value for the
irrigated fraction of corn necessarily belongs. Indeed, even if the data regarding the
irrigated acreage for very small farms are lacking, the total corn acreage for these farms
is still provided. Hence, the total corn acreage in the county (i.e. for all categories of
farm combined) is available in the data.

Based on this information, we can then consider two borderline cases. The lower case
consists in assuming that very small farms do not irrigate any of their corn acreage. In
this case, the total irrigated acreage of corn in the county would correspond to the
value reported for larger farms. Thus, dividing this value by the total corn acreage in
the county, we obtain a lower bound for the irrigated fraction of corn in that county.
The opposite case involves assuming that the entire corn acreage of very small farms
is irrigated, thus providing an upper bound to the irrigated fraction of corn.

Given the way these intervals are constructed, they systematically include the value
of the corn irrigated fraction of larger farms. In our baseline analysis, we therefore
select this value as the point estimate for each county, assuming some homogeneity
between very small farms and larger farms within a county. We checked the robustness
of our results by using the midpoint of each interval instead, and found that they are
virtually unchanged.

As in the case of the 1959 Census, interval ranges represent the uncertainty surrounding
the point estimate for every county. Recall that Texas is the only state concerned
by the 1969 Census in our data. For the 39 counties in Texas, the median and mean
interval ranges both equal approximately 10.5 (on a percentage basis) which, although
considerable, remains reasonable. The maximum interval range equals 39.4, which is
substantial. However, 90% of these counties (i.e. all except 4 counties) do not exceed
an interval range of 19.01.

USDA NASS surveys
The USDA NASS surveys conducted in the 1960s provide data on the irrigated acreage
of corn for grain. To our knowledge, these data do not involve any particular issue.

Uncertainty mapping
Figure A1 shows the spatial distribution of uncertainty ranges for all counties with
irrigation data available in the 1960s. The ranges are null for all counties in Colorado,
Nebraska and South Dakota since, as mentioned above, there is no required information
missing from USDA NASS survey data. Note that the concept of uncertainty we are
dealing with here only includes the uncertainty due to information gaps in the data. It
is very likely that USDA NASS survey data present some inaccuracies, especially due
to sampling error, which we can’t assess.
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Figure A1: Uncertainty ranges for the irrigated fraction of corn for grain in the 1960s
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Notes: This map illustrates the uncertainty ranges associated with our esti-
mates of the percentage of irrigated corn in the 1960s for each county. The
data sources and the methods used for calculating these estimates and uncer-
tainty ranges differ depending on the state. This is discussed in detail in
Section A.1.
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A.2 Present-day irrigation
Present-day irrigation levels are determined by selecting the highest of the irrigated
fractions of corn (for grain) reported in the Agricultural Censuses of 2012 and 2017.
However, exact fractions are sometimes hidden for non-disclosure reasons. In such
cases, we use USDA NASS Agricultural Census Web Maps (ACWM) data, which
provide an interval within which the hidden value falls. The intervals are as follows
: less than 5%, between 5% and 20%, between 20% and 40%, between 40% and
70%, between 70% and 90%, and above 90%. Hidden values do not always introduce
uncertainty about our measure of irrigation infrastructure. Indeed, in many cases,
the exact value is hidden for one year but it is available for the other year. In such
circumstances, three cases can occur. First, the available exact value might fall below
the lower bound of the interval provided in the ACWM for the hidden value. It follows
that the hidden value is higher than the available one and should be selected as
the maximum. In this case, we estimate it using the midpoint of the corresponding
interval, introducing uncertainty into our irrigation measure. The second case is the
inverse : the available value exceeds the upper bound of the interval for the hidden
one. Hence, the former is clearly higher than the latter. We select it as the maximum
and it does not introduce uncertainty. The last case occurs when the available value
falls within the same interval as the hidden one. In such a case, we can’t determine
which value is the maximum. For our baseline analysis, we decided to choose the
available exact value but this choice is quite arbitrary and, again, involves uncertainty.
We have checked the robustness of our results by choosing the midpoint of the interval
instead. Results are virtually identical to the baseline.

Figure A2 shows the resulting present-day irrigated fractions of corn for all counties
within our delineated Corn Belt. Additionally, Figure A3 illustrates the ranges of
uncertainty resulting from hidden values. Overall, uncertainty about the maximum
value of the irrigated fraction of corn affects 31% of counties. This map clearly shows
that the great majority of these counties actually present very reasonable uncertainty
ranges, equal to 5 on a percentage basis. None of the counties in our sample has an
uncertainty range exceeding 20 regarding present-day corn irrigated fractions.
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Figure A2: Present-day proportion of irrigated corn
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Notes: This map illustrates our county-level measure of the present-day
proportion of irrigated corn, denoted θ2023. This measure corresponds to
the maximum proportion of irrigated corn between the 2012 and 2017
Agricultural Censuses. When required, missing values are replaced by an
estimate equal to the midpoint of the interval to which the exact value
belongs according to the Agricultural Census Web Maps. For details about
this measure, see Section A.2.
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Figure A3: Present-day uncertainty ranges for the irrigated fraction of corn for grain
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Notes: This map illustrates the uncertainty ranges associated with our mea-
sures of the current percentage of irrigated corn for each county. These
uncertainties are due to hidden values in the Agricultural Censuses of 2012
and 2017 for some counties. When required, hidden values are replaced by
an estimate equal to the midpoint of the interval to which the exact value
belongs, thus generating uncertainty. See Section A.2 for details.
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B Time-series effects of EDD on corn yields
For every county in our sample, we run a time-series linear regression of annual corn
yields on EDD. Before running the regressions, we make the series stationary by
removing the time trends estimated based on the approach described in Section 2.2. We
undertake this time-series analysis to examine whether the effect of EDD on corn yields
is similar across all counties within our delineated Corn Belt. This is important since our
baseline estimations are cross-sectional, implying a certain level of homogeneity among
counties regarding the investigated relationship. Figure B1 presents each county’s
estimate of the coefficient corresponding to EDD in the simple linear regression of
corn yields on EDD. In 88% of counties, the coefficient is significantly different from
zero (at the 10% level). The coefficient is always negative where significant. The mean
coefficient estimate equals -0.64 (see the last row of Table D1 for descriptive statistics
about these coefficient estimates).

However, there is some heterogeneity. Indeed, the 5% quantile is -1.32 while the 95%
quantile is -0.10 (resulting in an amplitude of 1.22), and the standard deviation equals
0.62. Since we control for the influence of irrigation in our baseline analysis, we regress
our cross-section of EDD coefficient estimates on county-level measures of (present-day)
corn irrigation. This allows us to explore the extent to which this heterogeneity persists
when irrigation is accounted for. We show that cross-county differences in current
irrigation capacity explain 9.4% of the heterogeneity in EDD coefficients. Consequently,
the residual standard deviation decreases to 0.59 and the aforementioned amplitude
reduces to 1.05. We consider this remaining heterogeneity reasonably weak.
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Figure B1: Time-series EDD coefficient estimates
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Notes: This map illustrates the estimates of the coefficient associated with EDD
in the time-series regression of corn yields on EDD, estimated separately for
each county. Before running the regressions, corn yields and EDD are detrended
according to the type of time trend selected by the approach described in Section
2.2. Significance is determined based on heteroskedasticity-robust standard
errors.
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C Robustness checks
C.1 Robustness to the method for selecting the time trend
We replicate the approach presented in Section 2.2 with one difference: we select
between linear and quadratic time trends according to the Akaike Information Criterion
(AIC). The results of this robustness check are displayed in Figure C1.1 and Figure C1.2.
These are very similar to the baseline. However, the proportion of counties with a
significant trend is slightly lower (49.8% instead of 55.7%). In addition, the number of
counties for which the slowing quadratic trend is retained decreases to just one (from
the 55 of the baseline case).

Figure C1.1: Selected type of time trend for EDD according to the AIC
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Notes: This map illustrates the type of time trend which has been selected for every
county regarding the evolution of EDD since 1960. Here, unlike the baseline case, the
selection has been made according to the AIC. Significance is determined according to
standard errors robust to heteroskedasticity and autocorrelation.
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Figure C1.2: EDD long-differences (1960-2023) according to AIC time trend selection
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Notes: This map illustrates our estimated long-difference for EDD over the 1960-2023
period in every county, denoted as EDDLD. This variable corresponds to the difference
between the values of EDD in 1960 and 2023 fitted according to the time trend selected
for a given county. Here, unlike the baseline case, the types of time trend have been
selected according to the AIC. Significance is determined according to standard errors
robust to heteroskedasticity and autocorrelation.
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C.2 Robustness to the delineation of the Corn Belt
We present the results of the replication of our baseline analyses on a narrower
delineation of the Corn Belt in Table C2.1 below. This narrower delineation includes
any county with an areal fraction of corn higher than 10% (instead of 5%) in at least
one year of CDL or Agricultural Census data. The results in Table C2.1 are virtually
identical to the baseline shown in Table 1.

Table C2.1: OLS regression results for Equation 10 (narrower
Corn Belt)

Eq. 10 (first term omitted) Eq. 10

Intercept 1.937*** 1.950***
[1.907, 1.967] [1.918, 1.982]

EDDLD −0.527*** −1.196***
[−0.687, −0.367] [−1.404, −0.989]

θEDDLD 0.899***
[0.798, 0.999]

Num.Obs. 859 859
R2 0.073 0.401
R2 Adj. 0.072 0.400
βI - -0.298
Wald-stat of βI = 0 - 14.392***

* p < 0.1, ** p < 0.05, *** p < 0.01

Notes: This table presents the results of the OLS estimations of
Equation 10 based on a narrower delineation of the Corn Belt. This
narrower delineation includes any county with an areal fraction of corn
higher than 10% in at least one year of CDL or Agricultural Census
data. The 95% confidence intervals based on heteroskedasticity-robust
standard errors are indicated in brackets.

D Supplementary information
D.1 Long-run differences in corn yields
Figure D1 below presents the results of the approach described in Section 2.2 applied
to corn yields instead of EDD. Note that, since the yield time-series are shorter
in some states (e.g. Colorado, Texas and New York), the long-run differences are
standardized according the number of yield observations in each county (see Equation 10
of Section 2.3 for details about this standardization). Thus, they must be interpreted
as average year-to-year changes instead of total changes during the period under study.
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Figure D1: Corn yield standardized long-differences (1960-2023)
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Notes: This map illustrates our standardized long-difference in corn yields over
the 1960-2023 period for every county, denoted as RLD. This variable corresponds
to the difference between the first and last years available in the values of corn
yields fitted according to the time trend selected for each county. Significance is
determined according to standard errors robust to heteroskedasticity.
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D.2 Normals of EDD in 1960
Figure D2 below depicts the values for EDD in 1960 fitted from the regression on a
time trend selected for each county with the approach described in Section 2.2.

Figure D2: EDD normals in 1960
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Notes: This map illustrates the values of EDD in 1960 fitted according to
the time trend selected for each county. See Figure 2 for the selected type
of trend in every county.

D.3 Distributions of current yield normals
Figure D3 provides a comparison of the cross-county distribution of current corn yield
normals in the observations, i.e. the variable R2023, with the distribution derived from
the non-climate change scenario, corresponding to the variable R0

2023. Figure D4 is
analogous to Figure D3 with the distribution of RN

2023 replacing that of R0
2023.
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Figure D3: Distributions of current yields normals: observed vs non-climate change
scenario
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Notes: The graph shows the cross-county distribution of observed current corn yield normals,
i.e. R2023 (in cyan), alongside that of the counterfactual yield normals derived under the
non-climate change scenario, i.e. R0

2023 (in purple). The sample includes the 1,165 counties
of our delineated Corn Belt. For details about the non-climate change scenario and the
calculation of R0

2023, see Section 2.4.
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Figure D4: Distributions of current yields normals: observed vs non-irrigation
development scenario
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Notes: The graph shows the cross-county distribution of observed current corn yield normals,
i.e. R2023 (in cyan), alongside that of the counterfactual yield normals derived under the
non-irrigation development scenario, i.e. RN

2023 (in purple). The sample includes the 1,165
counties of our delineated Corn Belt. For details about the non-irrigation development
scenario and the calculation of RN

2023, see Section 2.4.

44



D.4 Descriptive statistics
Table D1 provides the main descriptive statistics for our variables of interest.

Table D1: Descriptive statistics for the main variables of interest
Variables Obs. Mean Std.Dev. Min. Q1 Median Q3 Max.

EDDLD,i 1171 13.66 15.01 -3.71 3.97 8.86 17.83 98.59
EDDLD,i 1165 0.22 0.25 -0.06 0.06 0.14 0.28 1.96
θ2023,i 1165 0.16 0.27 0.00 0.00 0.03 0.17 1.00
θLD,i (% points) 1165 0.17 0.35 -1.31 0.00 0.04 0.18 1.60
RLD,i 1165 1.78 0.50 -0.37 1.52 1.80 2.03 3.44

β̂EDD,i 1165 -0.64 0.62 -15.83 -0.82 -0.59 -0.37 1.31
R2023,i 1165 170.48 32.73 43.29 150.60 175.11 195.18 243.28
R0

2023,i 1165 181.83 29.38 63.78 163.34 185.54 202.90 257.07
RN

2023,i 1165 163.25 34.32 21.94 141.42 168.65 186.95 242.32

Notes: This table provides the main descriptive statistics for the most important variables
in our analyses. Statistics regarding θEDDLD,i are not included because they have no
meaningful interpretation. Note that we provide separate descriptive statistics for EDDLD,i

and EDDLD,i. This is because the statistics provided for the former relate to the full sample
of the 1,171 counties for which we have EDD data. EDDLD,i is calculated from exactly
1960 to 2023 for all counties so that it does not need any standardization to be comparable
across space. It is the variable we focus on in Section 4.1 for sake of clarity. On the contrary,
EDDLD,i is the explanatory variable we use in our regressions. It is not calculated over
the exact same time length for all counties, hence the standardization. β̂EDD,i corresponds
to the variable mapped in Figure B1.
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