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Abstract

We give a blow-up behavior for solutions to a Liouville type equation

with boundary singularity and Dirichlet boundary condition. An applica-

tion, we have a compactness result for solutions to this Problem under a

Lipschitz condition.

Keywords: Blow-up, boundary, singularity, a priori estimate, compactness, Lips-

chitz condition, Dirichlet boundary condition, singular weight.

MSC: 35J60, 35B44, 35B45

1 Introduction and Main Results

We set ∆ = ∂11 + ∂22 on an analytic domain Ω ⊂ R
2.

We consider the following boundary value problem:

(P )







−∆u = −|x|−2α log
|x|

2d
V eu in Ω ⊂ R

2,

u = 0 in ∂Ω.

Here:

d = diam(Ω), α ∈ (0, 1/2), 0 ∈ ∂Ω,

and,

0 ≤ V ≤ b < +∞, −|x|−2α log
|x|

2d
eu ∈ L1(Ω), u ∈ W 1,1

0 (Ω).

The previous equation of the previous boundary value problem, was studied
by many authors, with or without the boundary condition, also for Riemannian
surfaces, see [1-14], we can find some existence and compactness results. The
solutions are in the sense of the distributions.
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Remark that: the weight −|x|−2α log
|x|

2d
>> |x|−2α, but the solutions with

the previous conditions on u and V , stay again in C1,ǫ(Ω̄), ǫ > 0. Here we
look to the case of a weight with singularity, bigger than the usual weight,
|x|−2α, α ∈ (0, 1/2).

Among other results, we can see in [7] the following important Theorem,

Theorem.(Brezis-Merle [7]).If (ui)i and (Vi)i are two sequences of functions
relatively to the problem (P ) with, 0 < a ≤ Vi ≤ b < +∞, then, for all compact
set K of Ω,

sup
K

ui ≤ c = c(a, b, α,K,Ω).

For a potential V with more regularity, there are other type of estimates,
for example, sup+ inf type inequalities. It was proved by Shafrir see [14], that,
if (ui)i, (Vi)i are two sequences of functions solutions of the previous equation
without assumption on the boundary and, 0 < a ≤ Vi ≤ b < +∞, then we have
the following interior estimate:

C
(a

b

)

sup
K

ui + inf
Ω

ui ≤ c = c(a, b,K,Ω).

Now, if we suppose (Vi)i uniformly Lipschitz with A the Lipschitz constant,
then, C(a/b) = 1 and c = c(a, b, A,K,Ω), see [5].

Here we give the behavior of solutions which blow-up on the boundary and
we give a compactness result for a boundary value Problem, with Lipschitz
condition on the prescribed scalar curvature.

Here, we have the following problem as the Brezis-Merle Problem (see [7]):

Problem. Suppose that Vi → V in C0(Ω̄), with, 0 ≤ Vi. Also, we consider
a sequence of solutions (ui) of (P ) relatively to (Vi) such that,

∫

Ω

−|x|−2α log
|x|

2d
euidx ≤ C,

is it possible to have:

||ui||L∞ ≤ C?

Here, we give a characterization of the behavior of the blow-up points on
the boundary and also a proof of the compactness theorem when the prescribed
scalar curvature are uniformly Lipschitz. For the behavior blow-up solutions on
the boundary, the following condition is enough,

0 ≤ Vi ≤ b,

The condition Vi → V in C0(Ω̄) is not necessary.

But for the proof of the compactness result for the previous problem we
assume that:

||∇Vi||L∞ ≤ A.

Our main results are:
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We have the following characterization of the behavior of the blow-up points
on the boundary.

Theorem 1.1 Assume that maxΩ ui → +∞, Where (ui) are solutions of the
probleme (P ) with:

α ∈ (0, 1/2), 0 ≤ Vi ≤ b, and

∫

Ω

−|x|−2α log
|x|

2d
euidx ≤ C, ∀ i,

then; after passing to a subsequence, there is a function u, there is a number
N ∈ N

∗ and there are N points:
x1 = 0, x2, . . . , xN ∈ ∂Ω− {0}, such that,

∂νui → ∂νu+

N
∑

j=1

αjδxj
, α1 ≥ 4π(1−α), αj ≥ 4π weakly in the sense of measures.

and,

ui → u in C1
loc(Ω̄− {x1, . . . , xN}).

or,
x1, . . . , xN ∈ ∂Ω− {0},

∂νui → ∂νu+

N
∑

j=1

αjδxj
, α1 ≥ 4π, αj ≥ 4π weakly in the sense of measures.

and,

ui → u in C1
loc(Ω̄− {x1, . . . , xN}).

In the following theorem, we have a compactness result which concern the
boundary value problem (P ).

Theorem 1.2 Assume that (ui) are solutions of (P ) relatively to (Vi) with
the following conditions:

d = diam(Ω), α ∈ (0, 1/2), 0 ∈ ∂Ω,

0 ≤ Vi ≤ b, ||∇Vi||L∞ ≤ A, and

∫

Ω

−|x|−2α log
|x|

2d
eui ≤ C,

We have,

||ui||L∞ ≤ c(b, α,A,C,Ω),
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2 Proof of the theorems

Proof of theorem 1.1:

We have,

ui ∈ W 1,1
0 (Ω).

By [7], eui ∈ Lk, ∀k > 1 and by the elliptic estimates:

ui ∈ W 2,k(Ω) ∩ C1,ǫ(Ω̄), ǫ > 0.

By the Stokes formula, we have,

∫

∂Ω

∂νuidσ ≤ C,

Without loss of generality, we can assume that ∂νui ≥ 0. Thus, (using the
weak convergence in the space of Radon measures), we have the existence of a
non-negative Radon measure µ such that,

∫

∂Ω

∂νuiφdσ → µ(φ), ∀ φ ∈ C0(∂Ω).

Let us consider a point x0 ∈ ∂Ω. We say that x0 is regular if, x0 6= 0 and
µ({x0}) < 4π, or x0 = 0 and µ({0}) < 4π(1 − α). A point x0 ∈ ∂Ω is a
nonregular point, if the previous conditions are not satisfied.

For a regular point x0 ∈ ∂Ω, we may assume that the following curve,
B(x0, ǫ) ∩ ∂Ω := Iǫ is an interval. (In this case, it is simpler to construct the
following test function ηǫ).

Case 1: µ({0}) ≥ 4π(1− α).

This means that 0 is a nonregular point for the measure µ.























ηǫ ≡ 1, on Iǫ, 0 < ǫ < δ/2,

ηǫ ≡ 0, outside I2ǫ,

0 ≤ ηǫ ≤ 1,

||∇ηǫ||L∞(I2ǫ) ≤
C0(Ω, x0)

ǫ
.

We take a η̃ǫ such that,

{

−∆η̃ǫ = 0 in Ω

η̃ǫ = ηǫ on ∂Ω.

We use the following estimate, see [8],

||∇ui||Lq ≤ Cq, ∀ i and 1 < q < 2.

We deduce from the last estimate that, (ui) converge weakly in W 1,q
0 (Ω),

almost everywhere to a function u ≥ 0 and
∫

Ω −|x|−2α log
|x|

2d
eu < +∞ (by
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Fatou lemma). Also, Vi weakly converge to a nonnegative function V in L∞.
The function u is in W 1,q

0 (Ω) solution of :







−∆u = −|x|−2α log
|x|

2d
V eu ∈ L1(Ω) in Ω

u = 0 on ∂Ω,

As in the corollary 1 of Brezis-Merle result, see [7], we have eku ∈ L1(Ω), k >
1. By the elliptic estimates, we have u ∈ C1(Ω̄).

We can write,

−∆((ui − u)η̃ǫ) = −|x|−2α log
|x|

2d
(Vie

ui − V eu)η̃ǫ + 2 < ∇(ui − u)|∇η̃ǫ > . (1)

We use the interior esimate of Brezis-Merle, see [7],

Step 1: Estimate of the integral of the first term of the right hand side of
(1).

We use the Green formula between η̃ǫ and u, we obtain,

∫

Ω

−|x|−2α log
|x|

2d
V euη̃ǫdx =

∫

∂Ω

∂νuηǫ ≤ 4ǫ||∂νu||L∞ = Cǫ (2)

We have,







−∆ui = − log
|x|

2d
Vie

ui in Ω

ui = 0 on ∂Ω,

We use the Green formula between ui and η̃ǫ to have:

∫

Ω

−|x|−2α log
|x|

2d
Vie

ui η̃ǫdx =

∫

∂Ω

∂νuiηǫdσ → µ(ηǫ) ≤ µ(I2ǫ) ≤ 4π−ǫ0, ǫ0 > 0

(3)
From (2) and (3) we have for all ǫ > 0 there is i0 = i0(ǫ) such that, for

i ≥ i0,

∫

Ω

−|x|−2α log
|x|

2d
|(Vie

ui − V eu)η̃ǫ|dx ≤ 4π − ǫ0 + Cǫ (4)

Step 2: Estimate of integral of the second term of the right hand side of (1).

Let Σǫ = {x ∈ Ω, d(x, ∂Ω) = ǫ3} and Ωǫ3 = {x ∈ Ω, d(x, ∂Ω) ≥ ǫ3}, ǫ > 0.
Then, for ǫ small enough, Σǫ is hypersurface.

The measure of Ω− Ωǫ3 is k2ǫ
3 ≤ µL(Ω− Ωǫ3) ≤ k1ǫ

3.

Remark: for the unit ball B̄(0, 1), our new manifold is B̄(0, 1− ǫ3).
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We write,

∫

Ω

| < ∇(ui − u)|∇η̃ǫ > |dx =

∫

Ω
ǫ3

| < ∇(ui − u)|∇η̃ǫ > |dx+

+

∫

Ω−Ω
ǫ3

< ∇(ui − u)|∇η̃ǫ > |dx. (5)

Step 2.1: Estimate of
∫

Ω−Ω
ǫ2
| < ∇(ui − u)|∇η̃ǫ > |dx.

First, we know from the elliptic estimates that ||∇η̃ǫ||L∞ ≤ C1/ǫ
2, C1 de-

pends on Ω

We know that (|∇ui|)i is bounded in Lq, 1 < q < 2, we can extract from this
sequence a subsequence which converge weakly to h ∈ Lq. But, we know that we
have locally the uniform convergence to |∇u| (by Brezis-Merle theorem), then,
h = |∇u| a.e. Let q′ be the conjugate of q.

We have, ∀f ∈ Lq′(Ω)

∫

Ω

|∇ui|fdx →

∫

Ω

|∇u|fdx

If we take f = 1Ω−Ω
ǫ3

, we have:

for ǫ > 0 ∃ i1 = i1(ǫ) ∈ N, i ≥ i1,

∫

Ω−Ω
ǫ3

|∇ui| ≤

∫

Ω−Ω
ǫ3

|∇u|+ ǫ3.

Then, for i ≥ i1(ǫ),

∫

Ω−Ω
ǫ3

|∇ui| ≤ mes(Ω− Ωǫ3)||∇u||L∞ + ǫ2 = Cǫ.

Thus, we obtain,

∫

Ω−Ω
ǫ3

| < ∇(ui − u)|∇η̃ǫ > |dx ≤ ǫC1(2k1||∇u||L∞ + 1) (6)

The constant C1 does not depend on ǫ but on Ω.

Step 2.2: Estimate of
∫

Ω
ǫ2
| < ∇(ui − u)|∇η̃ǫ > |dx.

We know that, Ωǫ ⊂⊂ Ω, and ( because of Brezis-Merle’s interior estimates)
ui → u in C1(Ωǫ3). We have,

||∇(ui − u)||L∞(Ω
ǫ3

) ≤ ǫ2, for i ≥ i3 = i3(ǫ).

We write,

∫

Ωǫ3

| < ∇(ui − u)|∇η̃ǫ > |dx ≤ ||∇(ui − u)||L∞(Ω
ǫ3

)||∇η̃ǫ||L∞ ≤ C1ǫ for i ≥ i3,
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For ǫ > 0, we have for i ∈ N, i ≥ max{i1, i2, i3},

∫

Ω

| < ∇(ui − u)|∇η̃ǫ > |dx ≤ ǫC1(2k1||∇u||L∞ + 2) (7)

From (4) and (7), we have, for ǫ > 0, there is i3 = i3(ǫ) ∈ N, i3 =
max{i0, i1, i2} such that,

∫

Ω

|∆[(ui − u)η̃ǫ]|dx ≤ 4π − ǫ0 + ǫ2C1(2k1||∇u||L∞ + 2 + C) (8)

We choose ǫ > 0 small enough to have a good estimate of (1).

Indeed, we have:

{

−∆[(ui − u)η̃ǫ] = gi,ǫ in Ω,

(ui − u)η̃ǫ = 0 on ∂Ω.

with ||gi,ǫ||L1(Ω) ≤ 4π − ǫ0.

We can use Theorem 1 of [7] to conclude that there is q ≥ q̃ > 1 such that:

∫

Vǫ(x0)

eq̃|ui−u|dx ≤

∫

Ω

eq|ui−u|η̃ǫdx ≤ C(ǫ,Ω).

where, Vǫ(x0) is a neighberhood of x0 in Ω̄.

Thus, for each x0 ∈ ∂Ω− {x̄1, . . . , x̄m} there is ǫx0
> 0, qx0

> 1 such that:

∫

B(x0,ǫx0
)

eqx0
uidx ≤ C, ∀ i.

Now, we consider a cutoff function η ∈ C∞(R2) such that:

η ≡ 1 on B(x0, ǫx0
/2) and η ≡ 0 on R

2 −B(x0, 2ǫx0
/3).

We write,

−∆(uiη) = −|x|−2α log
|x|

2d
Vie

uiη − 2 < ∇ui|∇η > −ui∆η.

By the elliptic estimates, (uiη)i is uniformly bounded in W 2,q1(Ω) and also,
in C1(Ω̄).

Finaly, we have, for some ǫ > 0 small enough,

||ui||C1,θ [B(x0,ǫ)] ≤ c3 ∀ i. (9)

We have proved that, there is a finite number of points x̄1, . . . , x̄m such that
the squence (ui)i is locally uniformly bounded in Ω̄− {x̄1, . . . , x̄m}.

And, finaly, we have:

∂νui → ∂νu+

N
∑

j=1

αjδxj
, α1 ≥ 4π(1−α) αj ≥ 4π weakly in the sens of measures.

(10)

7



Case 2: µ({0}) < 4π(1− α).

Then, 0 is a regular point for the measure µ.

Let us consider Bǫ(0), a ball of center 0 and radius ǫ > 0. As in the previous
case, we use the uniform estimate in W 1,q

0 (Ω), (1 ≤ q < 2) and Brezis-Merle’s
method, see [7], to have

eui ∈ L(1−ǫ′)/(1−α−ǫ′)(Bǫ(0)).

with a uniform bound.

Thus, by the Hölder inequality we have

ui ∈ L∞(Bǫ(0)).

with uniform bound. If we take µ({0}) < 4π, by the Brezis-Merle estimate
we have eui ∈ Lr(Bǫ(0)) with r > 1, but this r may not be large enough to ensure

ui ∈ L∞(Bǫ(0)), because we have the term −|x|−2α log
|x|

2d
in the equation.

Then, by the elliptic estimates, for α ∈ (0, 1)

ui ∈ W 2,1+ǫ′(Bǫ(0)) ∩ C0,ǫ′(Bǫ(0)) ∩ C2,ǫ′

loc (Ω− {0, x1, x2, . . . , xN}), (11)

and, for α ∈ (0, 1/2), we have

ui ∈ W 2,1+ǫ′(Bǫ(0)) ∩ C1,ǫ′(Bǫ(0)) ∩ C2,ǫ′

loc (Ω− {0, x1, x2, . . . , xN}). (12)

And thus, we have

∂νui → ∂νu+

N
∑

j=1

αjδxj
, αj ≥ 4π weakly in the sense of measures on ∂Ω. (13)

If we consider a neighborhood of a regular point x0 6= 0, we are far from
the singularity and the scheme of the first step work in this case; we have the
uniform convergence of ∂νui around x0. In the case α ∈ (0, 1/2), the elliptic
estimates gives us the C1 convergence of ui.

Proof of theorem 1.2:

Without loss of generality, we can assume that 0 is a blow-up point (either,
we are in the regular case). Also, by a conformal transformation, we can assume
that Ω = B+

1 , the half ball, and ∂+B+
1 is the exterior part, a part which not

contain 0 and on which ui converge in the C1 norm to u. Let us consider B+
ǫ ,

the half ball with radius ǫ > 0.

The Pohozaev identity gives :

∫

B+
ǫ

−|x|−2α log
|x|

2d
Vie

ui(1+o(1))dx+

∫

B+
ǫ

< x|∇Vi > −|x|−2α log
|x|

2d
Vie

uidx =

8



=

∫

∂+B+
ǫ

g(∇ui)dσ + o(1), (14)

∫

B+
ǫ

−|x|−2α log
|x|

2d
V eu(1 + o(1))dx +

∫

B+
ǫ

< x|∇V > −|x|−2α log
|x|

2d
V eudx =

=

∫

∂+B+
ǫ

g(∇u)dσ + o(1), (15)

Thus,

∫

B+
ǫ

−|x|−2α log
|x|

2d
Vie

uidx−

∫

B+
ǫ

−|x|−2α log
|x|

2d
V eudx+

+

∫

B+
ǫ

< x|∇Vi > −|x|−2α log
|x|

2d
Vie

uidx−

∫

B+
ǫ

< x|∇V > −|x|−2α log
|x|

2d
V eudx =

=

∫

∂+B+
ǫ

g(∇ui)− g(∇u)dσ + o(1) = o(1),

First, we tend i to infinity after ǫ to 0, we obtain:

lim
ǫ→0

lim
i→+∞

∫

B+
ǫ

−|x|−2α log
|x|

2d
Vie

uidx = 0, (16)

But,

∫

B+
ǫ

−|x|−2α log
|x|

2d
Vie

uidx =

∫

∂B+
ǫ

∂νui + o(ǫ) + o(1) → α1 > 0.

A contradiction.
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