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On the energy consumption of a quadcopter
navigating in an orchard environment⋆

Florin Stoican1, Vincent Marguet2, Dan Popescu1, Ionela Prodan2, Loretta Ichim1

Abstract— The problem of efficient motion planning is of
significant interest in precision agriculture. We propose a
mechanism to estimate it via Bezier function parametrization of
the position, velocity and acceleration profiles for a quadcopter
system. This is done by providing closed-form descriptions of
the cost components, which are further incorporated into the
overall motion planning problem to analyze the effect of various
tuning parameters (such as total flight time, maximum velocity
and acceleration). The ideas are tested over a proof-of-concept
orchard navigation setup (challenging due to the close grouping
of the way-points) with the final goal being thee comparison
between horizontal-first and vertical-first path construction.

I. INTRODUCTION

Precision agriculture is nowadays a hotbed of innovation
due to the twin pressures of ever-increasing productivity
demand and cost of qualified labor [1], [2]. Hence, the use
of robotic platform to augment or even fully replace manual
labor is of great interest to the industry. There has been
significant work done with ground-based platforms (”mini-
trucks”, [3]) but more recently, unmanned aerial vehicles
(UAVs) have come to the fore. While more limited in payload
and autonomy, they counterbalance by greater flexibility and
even reduced costs [4], [5].

Within the broad class of UAVs we may separate between
fixed-wings and rotary (multicopter) variants. They are com-
plementary in their capacities: while the former has more
autonomy (up to tens of kilometers and hours of flight) the
later permits a broader range of trajectories (no stall velocity
constraint, capacity to hover in place, etc.). For the later,
most popular platforms are quadcopters (with four motors,
the minimum number to ensure simultaneous position and
yaw angle tracking) as they provide the best compromise in
availability, price and redundancy.

While intensely studied in recent decades, the issue of
motion planning for drones is still an open one [6], due to
the many constraints that may appear (of internal dynamics,
external requirements, cost and reliability). Most commonly,
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the user provides a list of way-points from which a path is
then derived by ancillary software installed by the vendor on
the drone (the “auto-pilot”). The resulting trajectory is then
tracked in a given amount of time and with a certain energy
consumption [7].

Hereinafter we will consider as specific application the
problem of orchard navigation [8] which is more challenging
than the typical mission in that it requires to fly inbetween
rows and take measurements at specific way-points. These
requirements raise challenges in two directions:

i) due to the closely-grouped way-points, the quadcopter
dynamics can no longer be ignored (imposing thus
limitations on accelerations, velocities and rate of turns);

ii) the cost along the path strongly depends on the order in
which the way-points are passed, a combination of ei-
ther the total time spent and/or the battery consumption
has to be considered.

The idea followed in this paper is to propose a smooth
parametrization of the profile (via Bezier functions [9]) thus
alleviating the infeasibility concerns from item i) and, using
as a proxy the thrust input of the translational dynamics of
the quadcopter, to provide a reasonable approximation of the
energy consumption required by item ii).

The key advantage of Bezier parametrization is that it
allows to provide an explicit formulation of the cost in
terms of the weights which define the trajectory (the control
points). This allows to analyze the cost value in different
configurations. In particular, we compare horizontal and
vertical sweep strategies taking into account the velocity and
acceleration profiles along the path. Specifically, we provide
a velocity profile which allows an arbitrary hovering time at
each way-point.

Having explicit relations between average velocity, path
length and way-points position allows to tweak the overall
mission to reduce duration (uses the maximum allowed
energy), energy consumption (at the price of a longer run
time) or a mix between the two of them. Section II gives the
prerequisites further used in the energy consumption analysis
carried in Section III and for the profile generation procedure
discussed in Section IV. These are further combined for the
proof-of-concept implementation from Section V. Conclu-
sions are drawn in Section VI.

II. PREREQUISITES

This section gives the relevant (for this paper) elements of
Bezier function parametrizations and quadcopter dynamics.
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A. Bezier functions

For further use we consider a trajectory ξ(t) ∈ Rd,
expressed as a combination of basis functions Bi,n(t) ∈ R,
weighted by control points Pi ∈ Rd:

ξ(t) =

n∑
i=0

PiBi,n(t), ∀t ∈ [0, 1]. (1)

Although theoretically any family of basis functions can be
chosen, we prefer to work with Bezier functions1 as they
have many interesting properties [10] and are simple to
handle:

Bi,n(t) =

(
n

i

)
(1− t)n−iti, ∀t ∈ [0, 1]. (2)

Among the many properties of interest we note that the
Bezier functions are positive (Bi,n(t) ≥ 0) and partition
the unity (

∑n
i=0Bi,n(t) = 1) over their domain, [0, 1]. This

allows to state the first property of interest [10].

Property 1. The continuous curve ξ(t) lies in the convex
hull defined by control points {P0, . . . , Pn}.

Further, any p-times derived Bezier function of order n
may be expressed as a combination of order n−p functions.
This leads to the second property.

Property 2. First and second order derivations of (1) are
themselves combinations of Bezier functions (of order n− 1
and n− 2 this time) and control points:

ξ̇(t) = n

n−1∑
i=0

(Pi+1 − Pi)Bi,n−1(t), (3a)

ξ̈(t) = n(n− 1)

n−2∑
i=0

(Pi+2 − 2Pi+1 + Pi)Bi,n−2(t). (3b)

Incidentally, Property 1, applied to (3) shows that also
the velocity and acceleration are contained within convex
hulls (this time given by sequences P ′

i := n(Pi+1−Pi) and
P ′′
i := n(n− 1)(Pi+2 − 2Pi+1 + Pi), respectively).
Recall that, by construction, Bezier functions are defined

over the domain [0, 1]. This may be relaxed as follows.

Property 3. Considering that a profile ξ(t) is defined over
the interval t ∈ [α, β] we may reformulate (1) by an affine
transformation of the Bezier functions’ argument:

ξ(t) =

n∑
i=0

PiBi,n

(
t− α
β − α

)
, ∀t ∈ [α, β]. (4)

Remark 1. Note that using (4) instead of (1) will change
accordingly the relations from (3), e.g., (3b) becomes

ξ̈(t) =
n(n− 1)

(β − α)2
n−2∑
i=0

(Pi+2−2Pi+1+Pi)Bi,n−2

(
t− α
β − α

)
.

♦

1The binomial term is given by the formula:
(n
i

)
= n!

i!(n−i)!
.

B. Quadcopter dynamics

In what follows we recapitulate some of the standard
results in quadcopter modelling and control [11]. It is well-
known that a multi-copter’s dynamics are best put in an
inner (rotational dynamics) and outer (translational dynam-
ics) loop. The former is, without exception (at least for
commercial drones) implemented on the drone itself and
cannot be accessed by the end-user. What may be tweaked
(again, depending on the vendor and the technical prowess
of the user) are the control parameters of the outer loop (i.e.,
the translational dynamics).

To this end, we give2 the standard (in the inertial coor-
dinate frame) translational nonlinear dynamics of a generic
quadcopter system:

ẍ = (cϕ sθ cψ + sϕ sψ) · T, (5a)
ÿ = (cϕ sθ sψ − sϕ cψ) · T, (5b)
z̈ = g + cϕ cθ · T, (5c)

where the system’s state (position plus velocity) is given
by

[
x y z ẋ ẏ ż

]
and

[
T ϕ θ

]
denotes the input,

where T is the normalized thrust, ϕ is the roll angle, and θ
is the pitch angle. The yaw angle (ψ) of the quadcopter is
considered a known (measured) parameter. Notations ‘c’ and
‘s’ are shorthands for the trigonometric cos and sin operators.

It is well-known [11], and we do not further detail the
intermediary calculations here, that all input components
(thrust, roll and pitch) may be expressed in terms of the
desired accelerations (further denoted with the ‘overline’
symbol):

T =

√
ẍ
2
+ ÿ

2
+ (z̈ − g)2, (6a)

ϕ = arcsin

 ẍsψ − ÿcψ√
ẍ
2
+ ÿ

2
+ (z̈ − g)2

 , (6b)

θ = arctan

(
z̈ + g

ẍcψ + ÿsψ

)
. (6c)

The thrust is given directly to the drone but the roll and pitch
are passed as references to the inner loop which controls the
rotational dynamics. Assuming that the inner loop ensures
θ 7→ θ, ϕ 7→ ϕ and directly applying the thrust T to the
drone means that, under nominal conditions, we have x 7→
x, y 7→ y, z 7→ z.
A couple of remarks are in order.

Remark 2. It must be noted that any realistic control scheme
should consider a feedback component to counteract tracking
errors due to internal model uncertainties and external
disturbances (such as wind gusts). ♦

Remark 3. Relations (6a)–(6c) implement a so-called model
inversion procedure where the desired profile (terms x, y, z)
are used to determine the desired behavior of the input. While
powerful, this approach may also be dangerous due to the

2All signals appearing here are time-dependent but, to avoid the clutter,
whenever clear from context we discard the argument from the equations
(e.g., x instead of x(t)).
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nonlinearities appearing in the equations. We use it here
since it is quite popular in the literature and, simultaneously,
allows us to give explicit bounds for the cost. ♦

III. EXPLICIT COST DESCRIPTIONS

Ignoring energy consumption for ancillary mechanisms
(such as payload pan/tilt movements, the current drawn for
the camera and for telemetry) the main energy expenditure
is due to the quadcopter’s motor torques (proportional with
ω2
i where ωi is the i-th motor angular velocity). Expressing

these in terms of the desired profile (given by x, y, z) is quite
impractical due to the convoluted mathematical relations that
link them [12]. Therefore, in the rest of the paper, as a proxy
for energy consumption, we consider the total thrust effort
along the simulation:

Jthrust =

β∫
α

[T (t)]
2 dt. (7)

Remark 4. Using the thrust cost (7) as a proxy for energy
consumption is adequate when the angle torques (those that
govern the roll and pitch dynamics) are small. This is a
reasonable assumption in the precision agriculture setting
where trajectories are relatively ‘mild’, without aggressive
changes in pitch and roll values. Thus, the only angle torques
come from the feedback component of the control law and
those are expected to be small under nominal functioning.♦

Combining the tools given in the previous section we
provide an explicit description of (7). The first step is to
express the thrust in terms of control points and Bezier
functions.

Lemma 1. Taking ξ =
[
x y z

]⊤
, parametrized as in (1),

we may now express (6a) over the interval t ∈ [α, β] with
the help of (3b) as

T (t) =

√√√√ n−2∑
i,j=0

(P ′′
i − e3g)

⊤(
P ′′
j − e3g

)
Bi,n−2

(
τ)Bj,n−2 (τ),

(8)
with notation τ := (t− α)/(β − α).

Proof: Using the Bezier properties allows to write ẍ
ÿ

z̈ − g

 = ξ̈ − e3g =

√√√√n−2∑
i=0

(P ′′
i − e3g)Bi,n−2(t),

with the shorthands P ′′
i := n(n − 1) (Pi+2 − 2Pi+1 + Pi)

and e⊤3 :=
[
0 0 1

]⊤
. With this notation, T , defined as

in (6a), is rewritten as T = ∥ξ̈ − e3g∥2, which, together
with Property 3, directly leads to (8), thus concluding the
proof.

With the afore-defined lemma we may now provide an
explicit expression for the cost (7).

Proposition 1. With the notation of Lemma 1 and the
observation from Remark 1, the cost (7) may be expressed

in term of the control points {P ′′
i } as

Jthrust = (β − α) ·
n−2∑
i,j=0

[
Iij,n−2

(
P ′′
i

(β − α)2 − e3g
)⊤

(
P ′′
j

(β − α)2 − e3g
)]

, (9)

with the shorthand Iij,n−2 :=
∫ 1

0
Bi,n−2

(
τ)Bj,n−2 (τ) dτ .

Proof: Using (8) from Lemma 1 in (7) and switching
the sum/integral operator ordering, we obtain

Jthrust =

n−2∑
i,j=0

[(
P ′′
i

(β − α)2 − e3g
)⊤( P ′′

j

(β − α)2 − e3g
)

β∫
α

Bi,n−2

(
τ)Bj,n−2 (τ) dt

]
.

Recalling that τ = (t−α)/(β−α) leads to dτ = dt/(β−α)
allows to rewrite the integral term as

(β − α)
∫ 1

0

Bi,n−2

(
τ)Bj,n−2 (τ) dτ,

thus concluding the proof.
The overall cost should not only consider the thrust’s

energy but also to account for the total time,

Jtime = β − α, (10)

and total length3 of the trajectory,

Jpath =

β∫
α

∥ξ′(τ)∥2dt. (11)

Applying the same reasoning as in Proposition 1, the cost
(11) is rewritten as

Jpath =
1

β − α ·
n−1∑
i,j=0

[
Iij,n−1 · (P ′

i )
⊤
P ′
j

]
, (12)

with the shorthand Iij,n−1 :=
∫ 1

0
Bi,n−1

(
τ)Bj,n−1 (τ) dτ .

Put together, the overall cost may then be written as

Jtotal = γ1Jthrust + γ2Jtime + γ3Jpath, (13)

with γ1,2,3, the weights which decide the relative importance
of a cost component.

Remark 5. Note that all components of the total cost depend
on the length of the simulation/experiment time (the term
‘β − α’ appearing in (9), (10) and (12)). In particular,
(9) shows that the more time is spent flying, the more the
relative importance of canceling the drone’s weight (due to
the gravitational acceleration term – g) increases. ♦

3In fact, (11) gives the energy of the trajectory but it is used nonetheless
due to its quadratic form and because it provides a good approximation of
the total length.
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IV. PROFILE GENERATION

The next step is to provide a procedure for choosing the
control points such as to ensure reasonable position, velocity
and acceleration profiles. While additional requirements may
always be considered, we restrict here to:

i) velocity and acceleration bounds: ∥ξ̇(t)∥2 ≤ v̄ and
∥ξ̈(t)− e3g∥2 ≤ ā for t ∈ [α, β], respectively;

ii) for a list of a priori given way-points, Wℓ, the drone
has to hover at that position for a pre-specified time τℓ.

The first condition, item i), is readily implemented by
enforcing the convexity condition of Property 1 for the
relations from Property 2, with the modifications shown in
Remark 1:

1

(β − α)2
n−1∑
i,j=0

(P ′
i )

⊤
P ′
j ≤ v̄2, (14a)

n−2∑
i,j=0

(
P ′′
i

(β − α)2 − e3g
)⊤ (

P ′′
j

(β − α)2 − e3g
)
≤ ā2.

(14b)

Remark 6. Note that conditions (14) are only sufficient.
There may be curves (1) which respect the requirements
of item i) without checking (14). The advantage of (14)
is that the constraints are expressed only in the control
points sequence {Pi}, thus greatly simplifying the subsequent
calculations. ♦

Of greater interest is item ii) which ensures that the actual
mission objective (taking pictures at the desired way-point)
is fulfilled. To do so, let us consider the behavior at and
around the i-th way-point Wi:

i) the path goes from the mid-point between the current
way-point an its predecessor (point (Wi−1+Wi)/2) and
until the mid-point between the current way-point and
its successor (point (Wi +Wi+1)/2);

ii) the associated time interval is [αi, βi] with αi := βi−1;
iii) at way-point Wi, the drone hovers (velocity and accel-

eration are zero) for a duration τi;
iv) velocity and acceleration are assumed to be maximal (v̄

and ā) at the start and end points of the trajectory.
While there are multiple ways of tackling these specifica-
tions, here we consider a closed-form construction to avoid
expensive (in computation time and hardware resources)
numerical optimizations. Specifically, we divide the interval
[αi, βi] into[

αi,
βi + αi − τi

2

)
∪
[βi + αi − τi

2
,
βi + αi + τi

2

)
︸ ︷︷ ︸

τi

∪
[βi + αi + τi

2
, βi

)
, (15)

where the middle sub-interval corresponds to the hovering
stage and the first and third ones are described by Bezier
curve profiles. As a first step we give the following lemma.

Lemma 2. Consider a profile defined as in (4) over the
interval [α, β] with n ≥ 6. Then, the position, velocity and

acceleration specifications ξ(α) = p̄1, ξ̇(α) = v̄1, ξ̈(α) =
ā1 and ξ(β) = p̄2, ξ̇(β) = v̄2, ξ̈(β) = ā2, respectively are
respected iff the following relations hold:

P0 =p̄1, Pn =p̄2, (16)

P1 =p̄1 +
∆

n
v̄1, Pn−1 =p̄2 −

∆

n
v̄2,

P2 =p̄1 +
2∆

n
v̄1 +

∆2

n(n− 1)
ā1, Pn−2 =p̄2 −

2∆

n
v̄2

+
∆2

n(n− 1)
ā2.

with shorthand ∆ := β − α.

Proof: By the definition (1), at the end-points of the
domain (t = α and t = β, respectively) only the first and,
respectively, the last Bezier function are non-zero. Thus, we
may write the position, velocity and acceleration conditions
as

p̄1 = P0, p̄2 = Pn,

v̄1 =
nP ′

0

β − α, v̄2 =
nP ′

n−1

β − α ,

ā1 =
n(n− 1)P ′′

0

(β − α)2 , ā2 =
n(n− 1)P ′′

n−2

(β − α)2 ,

recalling the shorthand notations P ′
i := Pi+1−Pi and P ′′

i :=
Pi+2 − 2Pi+1 + Pi. Simple manipulations of these relations
lead to (16), thus concluding the proof.

Proposition 2. For the first and third sub-intervals from
(15), the desired specifications are respected by profiles of
form (4), defined by control point sequences {P i,−

0 , . . . P i,−
n }

where

P i,−
0 =

Wi−1 +Wi

2
, P i,−

n =Wi,

P i,−
1 =

Wi−1 +Wi

2
+
βi − αi − τi

2n
v̄, P i,−

n−1 =Wi,

P i,−
2 =

Wi−1 +Wi

2
+
βi − αi − τi

n
v̄ (17)

+
(βi − αi − τi)2

4n(n− 1)
ā, P i,−

n−2 =Wi.

and, respectively, {P i,+
0 , . . . P i,+

n } where

P i,+
0 =Wi, P i,+

n =
Wi +Wi+1

2
,

P i,+
1 =Wi, P i,+

n−1 =
Wi +Wi+1

2
− βi − αi − τi

2n
v̄,

P i,+
2 =Wi, P i,+

n−2 =
Wi +Wi+1

2
− βi − αi − τi

n
v̄

(18)

+
(βi − αi − τi)2

4n(n− 1)
ā.

Proof: Lemma 2 is applied twice. First we make the
substitutions p̄1 ← [ (Wi−1 +Wi)/2, v̄1 ← [ v̄, ā1 ←[ ā, p̄2 ← [
Wi, v̄2 ← [ 0, ā2 ←[ 0 and α ← [ αi, β ←[ (βi + αi − τi)/2.
These lead to equations (17). The procedure is repeated for
(18) for the substitutions p̄1 ← [ Wi, v̄1 ←[ 0, ā1 ← [ 0, p̄2 ← [
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(Wi + Wi+1)/2, v̄2 ← [ v̄, ā2 ← [ ā and α ←[ (βi + αi +
τi)/2, β ← [ βi, thus concluding the proof.

Remark 7. Note that Proposition 2 restricts only the first
and last three control points of the profiles. The remaining
ones (P i,±

3 , . . . P i,±
n−3) are free and may be the subject of

further optimization. Hereinafter, to simplify, we take n = 6
and avoid the issue altogether. ♦

V. APPLICATION TO ORCHARD NAVIGATION

We have now all prerequisites to solve the larger navi-
gation problem. To illustrate and validate the procedure we
consider a real apple orchard strip (35m x 68m) where the
following steps have been carried out:

i) an initial photogrammetry flight has taken overlapping
pictures (around 80, at height of 25m, with front and
lateral overlap of over 60%) to construct the orthomo-
saic depicted in Fig. 1a;

ii) from the raw data obtained at the previous step, eleva-
tion models are obtained, Fig. 1b depicts the difference
between surface and terrain elevations (the heights from
the DSM – digital surface map are compared with those
stored in the DTM – digital terrain map to isolate the
tree shapes);

iii) which is then manipulated further in Fig. 1c via standard
image processing tools (repeated operations of inflation
and erosion, followed subsequently by a segmentation
step) to obtain the blobs defining the orchard rows;

iv) lastly, in Fig. 1d, oriented bounding boxes are fitted over
each row and way-points which respect pre-specified
horizontal and vertical spacings are selected.

These steps have been carried in the software suite ODM –
Open Drone Map [13], with subsequent done with the Image
Processing toolbox of Matlab.

Remark 8. Note that in this particular case we choose
the (x, y) positions of the way-point such that they are
equally distanced along the oriented boxes’ length. This is
a reasonable assumption for modern orchards where trees
are positioned at pre-defined distances and where anyhow
their coronas overlap into a “wall of folliage”. Nonetheless,
additional steps may be carried out, e.g., by identifying
regions of higher density within a given row (the tree
centers). ♦

In the specific case of the orchard, the way-points define
vertical slices (planes parallel to each orchard row, offset
from the row’s center to a safe distance). Without any loss
of generality let us consider a single slice which is defined
by way-points Wh,v where indices h, v denote respectively
the offset along the row length (horizontal movement) and
the row height (vertical movement), as obtained in step iv)
of the algorithm. We may assume two types of movement:

i) width-first, we move horizontally, at fixed height

Wi ←[ Wh,v, Wi±1 ← [ Wh±1,v, (19)

ii) height first, we move vertically, at fixed coordinates

Wi ←[ Wh,v, Wi±1 ← [ Wh,v±1. (20)

(a) mosaic map from photogrammetry flight

(b) depth map from cloud point

(c) segmentation

(d) way-point selection

Fig. 1: Illustration of way-point selection in orchard coverage

Note that the sign may change if the movement is one of
advance/return or of ascent/descent (e.g., instead of mapping
Wi±1 ← [ Wh,v±1 we may have Wi±1 ← [ Wh,v∓1).

Fig. 2 illustrates the horizontal-first sweep mode. Fig. 2a
shows three vertical planes (the left and right planes for
the first orchard row and the left for the second row). The
first plane (with markers denoting the way-point locations) is
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detailed in Fig. 2b. Subsequently, an analysis which estimates
the total cost (13) may be carried. It should be noted that the
actual numerical values (and hence, the decision of which
sweep mode is more efficient) are significantly influenced
by the various parameter employed (maximum velocity and
acceleration, way-point horizontal and vertical distance, etc.).

(a) horizontal sweep (b) vertical plane detail

Fig. 2: Illustration for the horizontal sweep mode

To each way-point Wi we have a profile composed of
three segments: the Bezier curve characterized by (17), the
hovering of duration τi and the Bezier curve characterized by
(18). To each of these corresponds a cost as defined in (13).
Note that for the mid-segment (the one with the hovering)
we may directly give Jthrust = g2τi, Jtime = τi and Jpath = 0.
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Fig. 3: Illustration of profile generation for a given way-point

As illustration, we consider a proof-of-concept implemen-
tation where the way-points are in a vertical grid, at heights
{0.5, 0.75, 1}m and are separated horizontally every 2.5m for
an orchard row of length 50m. Thus, we have 3× 21 = 63
way-points that we may cover either as in (19) or as in (20).
Further, we assume τi = 2sec, βi − αi = 4sec, v̄ = 1m/sec

and ā = 0.1m/sec2. Figure 3 depicts the profiles (position
in x − y coordinates and as functions of time) obtained for
a particular way-point in mode (19). Computing the Jtotal as
in (9) gives us 388.19 + 39.2 + 380.73 = 808.12.

VI. CONCLUSIONS

We proposed a mechanism to estimate the total energy
consumption for a quadcopter during flight using as proxy
the total thrust effort. We provided closed-form descriptions
of all elements of interest (cost components, profile shape)
in terms of the control points which weight the Bezier
parametrization of the profile. This allowed us to analyze
the behavior of the navigation scheme in two different sweep
patterns. Further work will concentrate on the influence of
the tuning parameters, the selection of the mid-points, the
validation of additional constraints and on more accurate
energy consumption estimations.
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