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Smooth approximation of polyhedral potential field in
NMPC for obstacle avoidance

Theodor-Gabriel Nicu1, Florin Stoican1, Ionela Prodan2

Abstract— The sum function notion allows to define
a piecewise affine (over a polyhedral support) surface
which accurately penalizes the closeness to polyhedral
obstacles. This, in turn, leads to a piecewise descrip-
tion of the potential field surface further used in a
NMPC (Nonlinear Model Predictive Control) motion
planning problem.

We introduce and analyze here their smooth equiv-
alents to show significant computational speedup. We
analyze the links between the piecewise and smooth
surfaces (magnitude and location of critical points).
The results are validated in simulation and shown
to compare favourably with previous mixed-integer
based formulations.

I. Introduction
The last decades have seen an exponential increase

in the analysis and design of motion planning in both
academia and industry. The people’s need and interac-
tion with mobile platforms is constantly increasing, and
as such, a wide variety of applications have been (and
still are) developed (see, e.g., [1]). One of the main issues
in the field is the obstacle avoidance problem under the
restriction of constraints imposed by the agent’s internal
dynamics and computational limitations [2].

One popular approach is based on artificial potential
field methods (see, e.g., [3]). The idea is to “push” the
complex part into the offline (assuming the environment
known) design of a surface (the potential field) which
incorporates information about the environment and
then, at runtime, provide a relatively simple control
action (e.g., take the surface’s gradient as control ac-
tion). Hence, the design stage should provide a surface
with “hills” that repel from the obstacles’s location and
“valleys” to direct towards the goal.

Arguably, the two main problems affecting potential
field methods are:

i) composing a surface which accounts for all elements
of interest;

ii) finding a control action which does not get bogged
down in the inevitable local minima.

For the first, we make use and extend the concept of
the “sum function”, employed in [4], [5], to accurately
describe polyhedral obstacles. For the second, we con-
sider a model predictive control (MPC) implementation

1 Politehnica University of Bucharest, Department of
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to compute the control action. Without being a panacea,
MPC has the double benefit of taking into account
constraints and of predicted the system’s evolution along
a prediction horizon (which largely avoids the pitfalls of
greedy methods such as the steepest gradient selection).
Note as well that the local minima issue is well known in
the state of the art with multiple methods employed with
varying degrees of success, e.g., the virtual hill concept [6],
local minima avoidance using an input to state stability
property [7].

When using MPC one should be careful not to negate
the advantages which led to selecting a potential field
method in the first place. Specifically, MPC is usu-
ally implemented as an online constrained optimization
problem which requires solving at each simulation step.
Especially when the cost is nonlinear (the potential
field in our case), the computation time may become
significant. E.g., the piecewise affine descriptions given in
[5], [4] require mixed integer modelling and subsequent
use of specialized solvers. This shortcoming is the main
justification for the current paper. We aim to use the
shape-description capabilities of the sum function but
also to avoid the computational overload associated with
piecewise descriptions. The paper’s contributions are:

i) We relax the discontinuity-inducing terms by
smooth near-equivalents which are well known in the
literature. The resulting surfaces (the sum function
and potential field) gain smoothness at the price of
a reasonable loss in the precision of representation;

ii) This in turn allows to express the MPC cost as
a smooth, albeit strongly nonlinear, term. Due to
the cost gradient’s continuity, a significant compu-
tational speedup is observed;

iii) Lastly, we analyze the links between the piecewise
surfaces and their smooth counterparts from the
viewpoints of approximation error and location of
local minima.

The rest of the paper is organized as follows. Section
II revisits the ’sum function’ definition and its use in
constructing a potential field. Section III introduces its
smoothing approximation and IV enumerates some of the
links between the piecewise and smoothed cases. Simula-
tion results are shown in Section V and the conclusions
are drawn in Section VI.



II. Problem statement
Arguably, the two main problems affecting potential

field methods are, first, composing a surface which ac-
counts for all elements of interest and second, finding a
control action which does not get bogged down in the
inevitable local minima of the afore-obtained surface.
A. The overall sum function surface

We start by recapitulating the ‘sum function’ idea
[8] which takes into account the shape of polyhedral
obstacles to provide a piecewise affine surface, further
employed in the design of the repulsive component of
the potential field.

As prerequisite, let us define the pairs (a⊤k , bk) ∈ Rn×
R for k = 1 . . . N which describe hyperplanes,

H0
k = {x : Rn : a⊤k x = bk}, (1)

cutting the space Rn into disjoint (up to their border)
half-spaces

H±
k = {x : Rn : ∓a⊤k x ≤ ∓bk}. (2)

Taking all these cuts gives a hyperplane arrangement [9],
a union of disjoint cells,

A(σ) =
N⋂

k=1

Hσk

k , (3)

each of them defined by a unique combination of signs
σ = {σ1 . . . σN} ∈ Σ ⊂ {±}N . This notation provides a
coherent framework in which to define obstacles
P =

⋃
σ•,i∈Σ•

A(σ•,i), Rn \ P =
⋃

σ◦,j∈Σ\Σ•

A(σ◦,j), (4)

by a list of interdicted sign tuples Σ• ⊂ Σ.
We may now introduce γ•,i(x), the sum function asso-

ciated to the i-th obstacle (defined by A(σ•,i)):

γ•,i(x) =

N∑
k=1

ωk

[
σ•,i
k

(
a⊤k x− bk

)
+
∣∣σ•,i

k

(
a⊤k x− bk

)∣∣], (5)

with ωk ≥ 0 a positive scalar weight1 and σ•,i
k , the

k-th element of the σ•,i sign tuple. Since the sign of
the absolute operator appearing in (5) changes only
when x switches between half-spaces (2), the rationale
for introducing (1)–(4) becomes clear: the hyperplane
arrangement induced by (1) serves as polyhedral support
for (5) and allows to define it piecewise affine as

γ•,i(x) = 2
∑

k: σ•,i
k ̸=σk

σ•,i
k

(
a⊤k x− bk

)
, (6)

for all x ∈ A(σ) with σ ∈ Σ.
The piecewise affine relation (6) is defined for a single

obstacle. The extension to the multi-obstacle case, as per
[4], is done by applying the ‘min’ operator:

γ•(x) = min
σ•,i∈Σ•

γ•,i(x). (7)

1Since ωk can be ‘pushed’ into (a⊤k , bk) by a suitable scaling, we
ignore it hereafter.

The result is that (7) will be zero whenever x is in-
side any of the obstacles defined by σ•,i ∈ Σ• and
greater than zero otherwise [4], [5]. This makes (7) into a
‘seed’ to which standard repulsive functions are applied
to construct a repulsive potential surface taking into
account the polyhedral shape of the obstacles. This is
in contrast with the standard approach where only the
distance to the obstacle’s center is considered (and hence
information about its shape is lost/disregarded).
B. Motion planning problem

Consider the linear time invariant dynamics
xk+1 = Axk +Buk, yk = Cxk, (8)

with u ∈ Rm, x ∈ Rn, y ∈ Rp the system’s input, state
and output vectors. Matrices A,B,C define the state-
space representation and are of appropriate dimensions.

The goal of a typical motion problem is to give a
sequence of inputs such that a cost minimized (e.g., total
path length) and various constraints are respected (e.g.
obstacle avoidance and target reaching). The ethos of po-
tential field formulations is to relax hard constraints into
penalties added to the cost, i.e., to construct a potential
field surface which repels the agent from obstacles and
attracts it toward the goal.

The danger is that a simple update rule like taking
the steepest descent gradient along the potential surface
is too “greedy” and risks to get bogged into local minima.
Hence, a popular approach is to apply a receding horizon
technique, such that the input action is taken by analyz-
ing the behavior of the system along a prediction horizon
(and not looking only at the current time instant). A
typical formulation [10] is given by the model predictive
control (MPC) approach

ū⋆
N = arg min

ūN

N∑
ℓ=1

PA(x̄ℓ − r) + PR (γ•(ȳℓ)) , (9a)

s.t. x̄ℓ+1 = Ax̄ℓ +Būℓ, ȳℓ = Cx̄ℓ, (9b)
ūℓ ∈ U , ȳℓ ∈ Y , ∀ℓ = 0 . . . N − 1. (9c)

The cost penalizes the distance to a target r via the
attractive potential PA(x̄ℓ − r) and the closeness to
obstacles, via the repulsive potential PR(γ•(ȳℓ)). PA(·) :
R 7→ [0,∞) and PR(·) : R 7→ [0,∞) are the attractive,
and respectively repulsive functions and may be of any
form as long as they are monotonously increasing, and
respectively decreasing. In U ,Y are kept the ‘simple’
constraints such as those describing input/output mag-
nitude bounds. The loop is closed by choosing as starting
predicted state the current state of the dynamics (x̄0 ← [
xk) and by applying the first input from the optimal
sequence ū⋆

N to the dynamics (ū⋆
0 7→ uk).

Several remarks are in order.

Remark 1. Note the use of yℓ as argument in the re-
pulsive potential component. In motion planning, usually
the output measures the agent’s position and the obstacles
are in the same subspace. ■
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Fig. 1: Smooth approximations of discontinuous functions

Remark 2. Exploiting the monotonicity assumption for
the repulsive function PR(·), we have the equivalence

PR (γ•(x)) = PR

(
min

σ•,i∈Σ•
γ•,i(x)

)
, (10a)

= max
σ•,i∈Σ•

PR
(
γ•,i(x)

)
. (10b)

■
Remark 3. Lastly, while MPC is by no means a panacea,
in practice it still shows good performance (local minima
avoidance, target reaching) for reasonable computational
complexity. This is still dependent on length of the pre-
diction horizon and on adequate tuning of the various
parameters appearing in the cost. ■

III. Main idea
The sum function (7) is an interesting idea since it

allows to consider the obstacles’ shape. Furthermore, its
complexity depends not on the number of obstacles (as
given by the size of sign tuple collection Σ•) but on
the number of hyperplanes (1) defining the underlying
hyperplane arrangement. Still, the piecewise description
shown in (6), which becomes even more convoluted by
applying the ‘min’ operator in (7), see [5], leads to
mixed-integer formulations which are difficult to model
and solve, despite powerful dedicated solvers and recent
advances [11].

As previously noted, the piecewise nature of (7) im-
pedes a fast resolution of the repeated receding horizon
(9). The solution we propose hereinafter is to relax the
discontinuity-inducing terms by smooth near-equivalents
which are well known in the literature. The resulting
surfaces (i.e., the sum function and potential field) gain
smoothness at the price of a reasonable loss in the
precision of representation. This in turn allows to express
the cost in (9) as a smooth, albeit strongly nonlinear,
term.

A. Smooth relaxations
As seen in (5) the apparition of the absolute operator

induces a discontinuity coming from the switch in the

sign of the argument, i.e., |x| = sign(x) · x. This issue is
well-known in the literature where various sigmoid-like
functions are given as candidates to model sign(x). In
what follows we consider the hyperbolic tangent

δd(x) : R 7→ [−1, 1], δd(x) =
edx − e−dx

edx + e−dx
, (11)

parameterized after a scalar d ≥ 0. For further use, note
that (11)’s derivative is given by

d

dx
δd(x) = d

(
edx + e−dx

)2 − (edx − e−dx
)2

(edx + e−dx)
2 = d(1−δ2d(x)).

(12)
Fig. 1a illustrates the discontinuous sign(x) and δd(x),
defined as in (11), for d ∈ {1, 5, 10, 12}. As expected,
larger values of d correspond to a faster variation of
the function δd(x) (hence, a better approximation of the
discontinuity).

The other source of discontinuity is the max operator,
applied in (10b). To smooth it we consider one of the
‘softmax’ variations [12]. Specifically, we exploit the
fact that the sublevels induced by p-norms respect an
inclusion property. That is, for any p ≥ q we have that
{x ∈ Rn : ‖x‖p = 1} ⊆ {x ∈ Rn : ‖x‖q = 1}. Hence,
taking p→∞ leads to an approximation of the ∞-norm
(which norm in fact describes the max operator). To this
end, we define

λp(x) : Rn 7→ [0,∞), λp(x) =

(∑
k

xp
k

) 1
p

. (13)

We disregard the | · | operator in (13) by choosing p even.
For further use, note that (13)’s gradient is given by

∇λp(x) =

(∑
k

xp
k

)− p−1
p

· xp−1 = λ1−p
p (x) · xp−1. (14)

The power operation applies elementwise.
Fig. 1b illustrates the behavior of max(−x, x) in both

exact form and approximated via (13), for p ∈ {2, 4, 10}.



Lastly, to provide a smooth description of the attrac-
tive potential component, we introduce

θm(x) : R 7→ [0,∞), θm(x) = m2

[√
1 + (x/m)

2 − 1

]
,

(15)
the pseudo-Huber loss function [13]. Its behavior is
quadratic in the vicinity of zero (it approximates x2/2)
and linear (with slope ≈ m) when farther away. For
further use, note that (15)’s derivative is given by

d

dx
θm(x) =

2x√
1 + (x/m)

2
. (16)

Fig. 1c illustrates the behavior of (15) for values m ∈
{0.1, 0.2, 0.3, 0.5}.

B. Smooth reformulation of the problem
The notions presented at the beginning of this section

will be now introduced into the piecewise affine surfaces
of Section II to smooth them, i.e., to make the surface
gradients continuous and endow them with a unique
description (not a piecewise one).

First, let us introduce (11) in (5), to arrive at the
smooth2 form3

γ•,i
ϵ (x) =

N∑
k=1

σ•,i
k

(
a⊤k x− bk

)
[1 + δd(·)] . (17)

Next, recall that the overall repulsive potential is the
maximum from each obstacle’s repulsive potential, as
shown in (10b). A first relaxation is to replace the non-
smooth γ•,i(x) from (5) with γ•,i

ϵ (x) from (17) in (10b):

PR(x) = max
σ•,i∈Σ•

PR
(
γ•,i
ϵ (x)

)
. (18)

Another step is required to avoid the discontinuities
induced by the max operator. Making the shorthand
notation Γ(x) =

[
. . . PR

(
γ•,i(x)

)
. . .
]

for the vector
of repulsive potentials induced by each obstacle, we make
use of (13) to arrive at

PR
ϵ (x) =λp (Γ(x)) = ‖Γ(x)‖p =

(∑
i

[
PR

(
γ•,i
ϵ (x)

)]p) 1
p

,

=

(∑
i

PR

( N∑
k=1

σ•,i
k

(
a⊤k x− bk

)
· [1 + δd (·)]

)p
) 1

p

.

(19)

Remark 4. Note that we have a hierarchy of successive
approximations: PR (γ•(x)) is the exact, piecewise form,
which is then relaxed (by smoothing the sum function
γ•,i 7→ γ•,i

ϵ ) into PR(x) from (18), from which, by
smoothing the ‘max’, we arrive at PR

ϵ (x) in (19). ■

2Hereinafter, we attach the ‘ϵ’ subscript to the smoothed variants
of the exact, piececewise forms, as a stand-in for the various
smoothing parameters (d, p and m).

3Whenever the argument is clear, and in the interest of compact-
ness, we do not write it.

Lastly, the attractive potential is given via (15):

PA
ϵ (x) = θm (‖x− r‖Q)

= m2

[√
1 +

(
(x− r)

⊤
Q (x− r)/m

)2
− 1

]
,

(20)

with r the goal to be reached and Q � 0 a positive
definite weight matrix of appropriate dimensions.

To conclude, the total potential field P (x) = PR
ϵ (x) +

PA
ϵ (x) has been reformulated as a smooth (continuous in

its gradient) surface which may now be integrated into
the MPC problem4 (9). While the cost is strongly nonlin-
ear, its smoothness actually proves beneficial. Tools such
as CasADi [14] which implement algorithmic differenti-
ation provide fast and robust resolution of the problem
(as will be illustrated in Section V).

IV. Relation to the piecewise affine case
We are interested in the links between the exact (given

in piecewise form) and approximated surfaces discussed
in the previous section.

Let us first compare γ•,i(x) and γ•,i
ϵ (x). While (17)

defines a smooth surface we may choose to look at it from
the perspective of the polyhedral support characterizing
the original sum function (as given in (6))

γ•,i
ϵ (x) =

∑
k: σ•,i

k ̸=σk

σ•,i
k

(
a⊤k x− bk

)
[1 + δd(·)]

+
∑

k: σ•,i
k =σk

σ•,i
k

(
a⊤k x− bk

)
[1 + δd(·)] , (21)

for all x ∈ A(σ) with σ ∈ Σ. Comparing with (6) and
using that in the first sum 1 + δd(x) ≤ 2 and that the
elements of the second sum are negative we conclude that

γ•,i
ϵ (x) ≤ γ•,i(x). (22)

Next, we assess the distance between the exact poten-
tial (10b) and its smooth approximation from (19) by
recalling that for any x ∈ Rn and p ≥ 1, inequality
‖x‖∞ ≤ ‖x‖p ≤ n

1
p · ‖x‖∞ holds. Hence, we have that

max
σ•,i∈Σ•

PR(γ•,i
ϵ (x)) ≤ PR

ϵ (x)

≤ n
1
p · max

σ•,i∈Σ•
PR(γ•,i

ϵ (x)). (23)

For p → ∞ the left and right bounds converge to the
same value, hence PR(x)→ maxσ•,i∈Σ• PR(γ•,i

ϵ (x)).
On the other hand, using (22), coupled with the fact

that PR(x) is monotonously decreasing, we have that
PR(γ•,i

ϵ (x)) ≥ PR(γ•,i(x)). Introducing this in (23) then
leads to

PR(x) ≥ max
σ•,i∈Σ•

PR(γ•,i(x)). (24)

4Note that for simplicity of notation we have used ‘x’ in (17)–
(20). When introducing these relations in (9) we change the argu-
ment to ‘ȳℓ’.



The second element of interest is the presence and po-
sition of local minima/maxima in the potential surface.
Needless to say, locating critical points in a complex,
non-convex, surface is not straightforward. The idea is
simple, compute the gradient and find the values where
it vanishes, but the formulas quickly become unwieldy.
Taking (19) and applying the chain rules of derivation,
gives:

∇PR
ϵ (x) = λ1−p

p (·)
∑
i

[
(PR(·))p−1 · (PR(·))′· (25a)

N∑
k=1

[
1 + δn(·) + n(1− δ2n(·))

]
σ•,i
k ak

]
, (25b)

where we made use of (12) to get the gradient of (17),

∇γ•,i
ϵ (x) =

N∑
k=1

σ•,i
k ·
[
1 + δn(·) + n(1− δ2n(·))

]
ak. (26)

While an analytic description of the gradient has been
written in (25), it is clearly unsuitable for further cal-
culations. On the other hand, when far away from the
points of gradient discontinuity, we may approximate
∇γ•,i

ϵ (x) ≈
N∑

k=1

σ•,i
k ak = ∇γ•,i(x). A simple, constant

within a cell of the polyhedral support, gradient lends
itself to further manipulations. Specifically, points of
local minima/maxima may be easily deduced for γ•(x).
That is, for each of the surface vertices (call it v) we take
its neighboring cells (call them A(σj)) and see whether

all products v⊤
N∑

k=1

σj
kak are positive (local maximum) or

negative (local minimum). Furthermore, by construction,
to each minimum/maximum of the exact overall sum
function γ•(x) corresponds a maximum/minimum of the
potential field PR(γ•(x)). In other words, we may, with
some hope of success, analyze the behavior of the smooth
Pr(x) by analyzing, the much easier to handle, γ•(x).

Remark 5. We have shown in this section that the sum
function and repulsive potential smooth approximations
are in some sense ‘close’ to the initial piecewise descrip-
tion and that, equally important, the latter may be used
to infer the behavior of the former. ■

V. Illustrative example

We consider a double integrator dynamic, discretized
with a sampling time of 0.25sec, and apply the MPC
controller (9) with the smoothed repulsive (19) and
attractive (20) potentials over the three-obstacle (illus-
trated in Fig. 3) example from [5].

Applying (19) with parameters d = 15, p = 6, m = 0.1
and with PR(x) = 1/(1 + x) leads to the surface shown
in Fig. 2. The behavior is the desired one: the closeness
to obstacles is penalized and their shape is clearly visible
in the surface contours.
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Fig. 2: The smoothed repulsive potential surface (with
parameters d = 15, p = 6, m = 0.1)

The parameter choice is at this point rather empirical,
hence we consider multiple combinations of parameters

Si ∈ {(d, p,m) : {10, 12} × {4, 6} × {0.1, 0.3}}, (27)

to asses the scheme’s behavior for various parameter
values. The scenario indexing is done in lexicographical
order, i.e., S{4id+2ip+im+1} corresponds to the id-th ‘d’
value, ip-th ‘p’ value and im-th ‘m’ value. In addition we
consider two mixed-integer representations of the exact
piecewise affine potential field from [5]: R2) describes the
piecewise overall sum function by its hyperplane arrange-
ment and R3) linearized the repulsive potential function
to arrive at vertex-based piecewise affine representation.

Running (9) for the same initial point/target for
the 8+2 methods we obtain the trajectories illus-
trated in Fig. 3. To avoid cluttering it, we only de-
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Fig. 3: Trajectories obtained for methods
{S1, S2, S3, R2, R3}

pict a subset of the trajectories (the remaining ones,



{S4, S5, S6, S7, S8}, are not included due to their simi-
larity compared to the other variations). In all cases, we
obtain obstacle avoidance and target tracking.

The control actions are depicted in Fig. 4. Noteworthy,
the smooth variants perform similarly in the output
space even with tighter input magnitude bounds.
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Fig. 4: Control inputs associated to the methods
{S1, S2, S3, R2, R3}

Not least, in Fig. 5 we depict the path lengths (red
curve, left axis) and computation times (blue curve, right
axis).
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Fig. 5: Overall simulation results for methods
{S1, S2, ..., S8, R2, R3}

As it can be clearly observed, all of the scenarios
{S1, ..., S8} which imply smoothing relaxations offer
a reduced computational time (averaging 36.16 sec.),
whereas the mixed-integer programming methods from
[5] are significantly slower (171.45 sec. and 331.82 sec.),
which is to be expected, due to the presence of binary
variables. Nonetheless, the path lengths are similar and
denote a similar performance.

Lastly, we depict the quiver plot (gradient map) of the
exact overall sum function (7) and identify the points of
local minimum (red circle) and maximum (blue square).
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Fig. 6: Gradient orientation for a polyhedral environment
alongside the associated local minima and maxima points

VI. Conclusion
Applying smooth approximations for the discontinu-

ities appearing in the standard sum function construction
we arrived at a nonlinear MPC implementation which
proved computationally robust and fast. We analyzed
the similarities between the exact (piecewise form) and
smoothed approximations of the sum function and po-
tential field surfaces.

As future work, we will consider ways to better analyze
the critical points of the potential field surface: how to
reduce their number by exploiting the degrees of freedom
in the construction and how guarantee local minima
escape with receding horizon control implementations.
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