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On MPC-based Strategies for Optimal Voltage References in DC
Microgrids

Pol Jané-Soneira, Ionela Prodan, Albertus J. Malan, and Sören Hohmann

Abstract— Modern power systems are characterized by low
inertia and fast voltage dynamics due to the increase of sources
connecting via power electronics and the removal of large
traditional thermal generators. Power electronics are commonly
equipped with fast controllers that are able to reach a desired
voltage setpoint within seconds. In this paper, we propose and
compare two approaches using Model Predictive Control (MPC)
to compute optimal voltage references for the power electronic
devices in order to minimize the losses in a DC microgrid: i) a
traditional setpoint-tracking MPC which receives a previously
computed optimal setpoint; ii) an economic MPC which does
not require a priori computed setpoints. We show that the
economic MPC outperforms the setpoint-tracking MPC in
simulations with the CIGRE benchmark system when multiple
load disturbances occur. Some insights and discussions related
to the stability of the closed-loop system using its dissipativity
properties are highlighted for both approaches.

I. INTRODUCTION

In the last years, DC microgrids (MGs) have become
technically feasible due to the recent advances in semicon-
ductor converter technology [1]. Furthermore, they have the
potential to prevail over their AC counterparts in the future
due to their higher efficiency, the more natural interface to
most distributed generation units (DGUs), renewable energy
sourcess (RESs), storages and loads [1], [2]. In addition,
DC MGs are significantly simpler to regulate, since the
frequency control becomes unnecessary [2]. The problem
of maintaining constant voltage levels in DC MGs under
varying load conditions is well studied in literature and it
is called primary control. On the one hand, droop-based
methods [3], [4] are widely-used decentralized approaches
and exhibit favorable properties such as (limited) power-
sharing. Several improvements such as nonlinear, adaptive
or dead-band droop have also been proposed, as summarized
in [5]. However, these methods show load-dependent voltage
deviation and steady-state voltage offsets, which need to
be compensated by a higher level control. On the other
hand, passivity-based controllers tackling the shortcomings
of droop-based approaches have been proposed recently [6],
[7]. These regulators achieve an offset-free regulation of a
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given voltage reference and exhibit advantageous plug-and-
play properties for DGUs while guaranteeing overall asymp-
totic stability via passivity. Similar stability properties can
only be achieved with droop-based methods by simplifying
the system models with questionable assumptions and ap-
proximations [4]. However, these passivity-based controllers
necessitate a secondary control to achieve power-sharing or
coordination.

Secondary control architectures, built on top of droop-
controlled or passivity-based controlled DGUs, differ con-
siderably in their purpose and nature. The secondary control
of droop-controlled DGUs is typically a proportional-integral
controller, which is used for compensating unwanted voltage
drifts. It can be implemented in a centralized, decentralized
or distributed manner using consensus protocols [5], [8].
In contrast to droop-based methods, passivity-based primary
controllers do not necessitate a secondary control layer in
order to restore the desired or feasible voltage levels [6],
[7], [9]. With a secondary control layer freed from ensuring
stability and feasibility, it can focus on providing suitable
voltage references in order to pursue other objectives, such
as minimizing power losses or costs, or achieving power-
sharing. In [10], a secondary controller for achieving propor-
tional current sharing is proposed. Similarly, [11] proposes
DC power sharing whilst also taking unactuated agents into
account. These methods are able to guarantee convergence to
a desirable steady-state employing passivity theory. However,
as it is the case for the secondary control architectures for
droop-based controllers, the dynamic performance for reach-
ing this steady-state is not considered, i.e., voltage overshoots
damaging MG components may occur. Furthermore, similar
to the primary passivity-based controllers, they cannot take
into account actuator or state constraints.

Model Predictive Control (MPC) for DC MGs is an emer-
ging research topic since it allows considering state and input
constraints [12]. Many approaches consider an MPC-based
secondary control for droop-controlled DC MGs [13]–[16].
However, since they require droop-based primary controllers,
these approaches do not allow a plug-and-play operation of
DGUs. Other approaches attempt to directly control the Buck
converter voltage without an underlying primary controller
[17]. However, the filter dynamics necessitate a sampling
time in the microseconds range, which makes an online
solution of the MPC optimization problem feasible only for
small MGs and short optimization horizons [17]. Recently,
economic MPC has been applied to power systems in [18],
[19]. However, these approaches consider simplified AC
systems, and the results are not applicable to low inertia DC
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power systems as considered in this work.
Contributions: We propose a secondary control architec-

ture using MPC for DC MGs with passivity-based primary
controllers, which is able to guarantee constraint satisfaction
while minimizing an objective function. In particular, we
propose two different receding horizon controller designs:
i) a classic setpoint-tracking MPC, for which we propose
a Lyapunov function for any MG configuration and hence
proof stability using established methods; ii) an economic
MPC with better closed-loop performance. Furthermore, we
provide extensive simulation results on a realistic benchmark
system and a thorough comparison of both MPC-based
approaches.

The remainder of this paper is structured as follows. In
Section 2, the system model for which we design the MPC-
based secondary control, comprising the physical system en-
dowed with passivity-based primary controllers, is presented.
The tracking and economic MPC designs are described in
Section 3. In Section 4, we present extensive simulation
results comparing both approaches in the nominal case and
when disturbances are present. Finally, we draw conclusions
and outline future research directions in Section 5.

Notation: Lowercase letters x ∈ Rn represent vectors,
and uppercase letters X ∈ Rn×n represent matrices. The
transpose of a vector x ∈ Rn is written as x>. The vector
x = col{xi} and matrix X = diag{xi} are the n × 1
column vector and n×n diagonal matrix of the elements xi,
i = 1, . . . , n, respectively. Let In denote the n × n identity
matrix and Spec(X) the spectrum of matrix X . A directed
graph is denoted by G(V, E), where V is the set of nodes
and E ⊂ V × V the set of edges. The cardinality for a set
V is denoted by |V|. The incidence matrix M ∈ R|V|×|E| is
defined as M = (mij) with mij = −1 if edge ei ∈ E leaves
node vj ∈ V , mij = 1 if edge ei ∈ E enters node vj ∈ V , and
mij = 0 otherwise. The Hadamard (element-wise) product
of x and y is denoted by x ◦ y.

II. SYSTEM MODEL

In this paper, we consider a set V of n = |V| electrical
buses connected via a set E of m = |E| electrical lines.
The network topology is described with the graph G(V, E),
where V are the nodes and E the edges. Fig. 1 shows such
a MG with n = 11 nodes and m = 12 lines. In the next
subsections, we derive the models of the components of
the DC MG, i.e. the electrical buses and the power lines.
In Subsection II-C, we show favorable passivity properties
of the overall MG system. To conclude the section, we
propose a model reduction, discretize the system and provide
a Lyapunov function which holds for any MG topology,
which is necessary for the MPC design in Section III.

A. Distributed generation unit (DGU)

A graphical representation of a bus is shown in Fig. 2.
It is composed of a Buck converter supplying a voltage
vt,i ∈ R≥0, a load with current il,i ∈ R, and a filter with
the resistance Rf,i ∈ R>0, inductance Lf,i ∈ R>0 and
capacitance Cf,i ∈ R>0. We idealize the Buck converter with

Fig. 1. Graphical representation of the meshed CIGRE benchmark MG
[20] with n = 11 nodes and m = 12 power lines.

Buck
converter

Lf,i Rf,i

Cf,i

il,i

iext

vt,i

if,i vi

Fig. 2. Electric scheme of a bus including a DGU and a load.

the widespread averaging model, by which we disregard the
switching behavior [21]. The dynamics for every bus i ∈ V
are described with the states vi and if,i, which describe the
node voltage and filter current, by

Cf,iv̇i = if,i − il,i(vi)− iext,i (1a)

Lf,ii̇f,i = vt,i −Rf,iif,i − vi, (1b)

where iext,i is the cumulative current injected by intercon-
necting lines. The DGUs at the nodes are equipped with a
passivity-based primary voltage controller as in [6], which
regulates vi to a reference voltage vref,i. The controller
adds a state ei ∈ R to the system for the integral action,
and employs a state feedback vt,i = k>i [vi, if,i, ei]

> with
ki ∈ R3. The node dynamics with the passivity-based voltage
controller are

Cf,iv̇i = if,i − il,i(vi)− iext,i (2a)

Lf,ii̇f,i = αivi + βiif,i + γiei (2b)
ėi = vref,i − vi, (2c)

where

αi =
k1,i − 1

Lf,i
, βi =

k2,i −Rf,i

Lf,i
, γi =

k3,i

Lf,i
.

are controller parameters. In this work, we assume a time-
varying resistive load, i.e.

il,i(vi) = Yi(t)vi, (3)

where Yi ∈ R > 0 is the load admittance. In the following,
we present an important result from [6] which will prove



instrumental for the MPC stability analysis. It states that
choosing the control parameters according to [6], the node
dynamics are passive w.r.t. the input-output pair (−iext,i,vi).
This allows to interconnect arbitrarily many nodes by (pass-
ive) lines while guaranteeing stability for constant voltage
references vref,i.

Proposition 1 ([6]): Let [v̄i, īf,i, ēi] be an equilibrium
point of (2) and define the error variables ṽi = vi − v̄i,
ĩf,i = if,i − īf,i and ẽi = ei − ēi. System (2) is equilibrium
independent passive w.r.t. the input-output pair (−ĩext,i, ṽi)
for any vref,i > 0 with the storage function Si : R3 → R≥0

Si(ṽi, ĩf,i, ẽi) =

 ṽiĩf,i
ẽi

> Cf,i 0 0

0 βi

ωi

γi
ωi

0 γi
ωi

αiγi
ωi

 ṽiĩf,i
ẽi

 (4)

if the control parameters are chosen such that

k1,i < 1 (5)
k2,i < Rf,i (6)

0 < k3,i <
1

Lf,i
(k1,i − 1)(k2,i −Rf,i). (7)

Proof: The proof can be found in [6].

B. Power Line

The power lines are modeled with the pi equivalent
circuit [22], which is shown in Fig. 3. It is composed of
a series inductance Ll,j ∈ R>0 and resistance Rl,j ∈ R>0,
and two parallel capacitances Cl,j

2 ∈ R>0. Note that the
line capacitance is connected in parallel to the bus filter
capacitance of the busses which the line is interconnecting.
Hence, only one capacitor with a capacitance being the sum
of both can be considered. Furthermore, since the capacitance
of typical filter capacitors [6], [23] are higher than line
capacitances of medium voltage power lines [20] by several
orders of magnitude, the line capacitors can be neglected.
The dynamics for line j ∈ E interconnecting nodes k, l ∈ V
are thus described by

Ll,j i̇L,i = −Rl,jiL,j + v∆j , (8)

where v∆j = vl − vk is the input and vk, vl are the
bus voltages. The next proposition serves as an important
building block towards an overall Lyapunov function in
Subsection II-C.

Ll,j Rl,j

Cl,j

2
Cl,j

2
vkvl

Fig. 3. Graphical representation of a line in the pi equivalent circuit.

Proposition 2 ([24]): Let īL,j , v̄∆,j be an equilibrium
point of (8) and define ĩL,j = iL,j− īL,j , ṽ∆,j = v∆j− v̄∆,j .
System (8) is equilibrium independent strictly passive w.r.t.

the input-output pair (̃iL,j , ṽ∆j) with the storage function
Sj : R→ R≥0

Sj (̃iL,j) = Ll,j ĩ
2
L,j . (9)

Proof: The proof is given in [24].
Remark 1: For static power lines, i.e. if the inductance is

neglected, system (8) is still strictly passive w.r.t. the same
input-output pair, since it represents an offset-free strictly
monotonically increasing map [25].

In the next subsection, the stability of the overall system
is investigated, after which we dwell on the model reduction
and discretization for using the model for the MPC design.

C. Overall System

A group of n = |V| independent buses is described by

Ctv̇ = if − Y (t)v − iext (10a)

Lti̇f = αv + βif + γe (10b)
ė = vref − v (10c)

where α = diag{αi}, β = diag{βi} and γ = diag{γi}
contain the control parameters, Ct = diag{Cf,i}, Rt =
diag{Rf,i}, Lt = diag{Lf,i} and Y = diag{Yi} are the filter,
load and line parameters, and v = col{vi}, if = col{if,i} and
e = col{ei} are the stacked states of each DGU i ∈ V . A
group of m = |E| power lines is described by the equations

Lli̇L = −RliL + v∆, (11)

where iL = col{iL,j}, v∆ = col{v∆j} are the stacked states
and inputs, and Rl = diag{Rl,j} and Ll = diag{Ll,j} the
parameters of each power line j ∈ E . The interconnection
of the buses i ∈ V and the power lines j ∈ E according
to the graph G(V, E) is described by the incidence matrix
M ∈ Rn×m as defined in Section I. In particular, the voltage
drop over the power lines v∆ ∈ Rm can be described with
the voltages of the buses they are connected to, i.e.

col{v∆j} = v∆ = M>v = M>col{vi}. (12)

The current drawn from bus i ∈ V is the sum of the currents
through lines connected to bus i, i.e.,

col{−iext,i} = −iext = −MiL = −Mcol{iL,j}. (13)

According to [6, Lemma 1], this constitutes a skew-
symmetric interconnection. Having described the intercon-
nection, the whole MG composed of n = |V| nodes inter-
connected by m = |E| lines obeys the dynamics

Ctv̇ = if − Y (t)v −MiL (14a)

Lti̇f = αv + βif + γe (14b)
ė = vref − v (14c)

Lli̇L = −RliL +MT v. (14d)

The following result about the stability of the interconnected
system paves the way for proving stability of the closed-loop
system with MPC.

Proposition 3: Consider a system of independent buses
and lines as in (10) and (11) interconnected through



(12) and (13) as in (14). A Lyapunov function of the
interconnected system for any vref > 0 is given by

V (x̃) =
∑
i∈V

Si(ṽi, ĩf,i, ẽi) +
∑
j∈E

Sj (̃iL,j) (15)

with x = col{ṽi, ĩf,i, ẽi, ĩL,j}.
Proof: System (10) is passive w.r.t. (−ĩext, ṽ) with

storage function Sbus =
∑
Si(ṽi, ĩf,i, ẽi), which follows

trivially from Prop. 1, since the bus dynamics in (10) are
independent. Applying the same reasoning, system (11) is
strictly passive w.r.t. (ṽ∆, ĩL) with storage function Slines =∑
Sj (̃iL,j) by Prop. 2. From (15), it holds that

V̇ =
∑
i∈V

Ṡi(ṽi, ĩf,i, ẽi) +
∑
j∈E

Ṡj (̃iL,j) (16a)

< −ĩ>extṽ + ĩ>L,j ṽ∆j
(12),(13)

= 0. (16b)

The inequality in (16b) follows from the passivity of (10)
and the strict passivity of (11) as in Prop. 1 and Prop. 2.
The last equality follows from the skew symmetric intercon-
nection (12) and (13).

Note that the Lyapunov function holds for an arbitrary
number of interconnected buses and lines, as long as the
DGU controllers fulfill Prop. 1.

D. Model reduction and discrete time model for MPC

The MG model in (14) contains very fast dynamics,
especially the power lines in (14d)1. This requires very small
step sizes when describing these dynamics as a discrete time
system, which may compromise the real time optimization
of the MPC. The solution adopted here is to neglect the
inductances in the lines, i.e. to use the quasi-stationary line
approximation [17], [26]. With this approximation, the MG
dynamics can be described with

Ctv̇ = if − Y (t)v −MR−1
l M>v (17a)

Lti̇f = αv + βif + γe (17b)
ė = vref − v. (17c)

These equations capture the dynamics of the passivity-based
controlled DGUs interconnected with lossy static lines. Note
that (15) is also a Lyapunov function for (17), since Prop. 3
still applies due to the passivity properties of static lines (see
Remark 1). System (17) is rewritten compactly in state-space
representation with

A =

−C−1
t (Y +MRlM

>) C−1
t 0

L−1
t α L−1

t β L−1
t γ

−I 0 0

 ∈ R3n×3n

B =
[
0 0 I

]> ∈ R3n×n

and discretized using the forward Euler method with the step
size h

x(k + 1) = Akx(k) +Bku(k) (18)

1The power line dynamics constitute a first order lag with a time constant
of T =

Ll,j
Rl,j

, which takes values around 10−6 for typical medium voltage
power lines [23].

with x(k) = col{v(k), if(k), e(k)}, u = vref(k), Ak =
I + hA and Bk = hB. Furthermore, the assumption of
piece-wise constant system parameters (i.e. loads) during
the discretization time is made. The following proposition
ensures the existence of a Lyapunov function for the discrete
time system (18), which way paves the way to apply the
classical stability theorems for predictive controllers [27].

Proposition 4: Let λi = ai+ jbi ∈ Spec(A). There exists
a hmax = mini− 2ai

a2i +b2i
∈ R>0 for which the system (18)

with any step size h < hmax is asymptotically stable.
Moreover, a Lyapunov function Vd(x(k)) = x(k)>Px(k)
for system (18) exists and can be computed by solving the
semidefinite programming problem

P > 0, ATk PAk + P < 0. (19)
Proof: If λi = ai + jbi ∈ Spec(A), then hλi + 1 ∈

Spec(I + hA). From Prop. 3, we know that ai < 0. From
|hλi + 1| < 1 for all i follows hmax = mini− 2ai

a2i +b2i
.

III. OPTIMAL VOLTAGE REFERENCES

In this section, we present the controller design used
for finding suitable voltage references such that (i) the
power line losses are minimized, (ii) constraint satisfaction is
guaranteed, and (iii) stability is achieved. We propose first to
use the classical, setpoint-tracking MPC [27], which requires
the prior computation of optimal setpoints. By using the well
studied tracking MPC theory, we provide a formal stability
proof using the results of Prop. 4. Secondly, we design an
equivalent economic MPC, which is shown to be superior
in performance than the classical tracking MPC. For the
economic MPC we limit ourselves to the study the closed-
loop stability by simulations in Section IV.

A. Tracking MPC

In this method, we compute the optimal steady-state node
voltages v∗(k) in advance which is given as a setpoint to the
tracking MPC. The tracking MPC then computes a u(k) such
that the node voltages v follow the setpoint v∗. The optimal
steady-state voltages are computed solving the (open loop)
optimization problem

Optss(k) :=


minv v>Qlossv
s. t. p+ Yad v ◦ v = 0,

v ∈ V
p ∈ P

(20)

in which v>Qlossv = v>MR−1
l M>v ≥ 0 represent the

line losses in the system and p = col{pi} ∈ Rn is the
power infeed of a DGU to the bus. The constraints in (20)
represent the power flow equations, described through the
nodal admittance matrix Yad [22], and the voltage V ⊂ Rn
and power constraints P ⊂ Rm, which may be different
for each bus and DGU. Note that the matrix Yad contains,
apart from the line admittances, also the time-varying loads
in (3). With an estimation of the loads in the next time steps,
this optimization problem is solved for some time steps in
advance and v∗(k) ∈ arg min Optss(k) is obtained. Such an
optimal setpoint computation is typically performed every



few minutes, and a controller ensures that the steady-state is
held using feedback control.

For the feedback controller, we propose to use a setpoint-
tracking MPC. Having v∗(k), tracking MPC is defined as

MPCtrack :=



min

N−1∑
k=1

{
∆v(k)>Q∆v(k)+

∆u(k)>R∆u(k)

}
+ VN (∆v(N))

s. t. x(k + 1) = Ak(k)x(k) + bku(k),
x(k) ∈ X
u(k) ∈ U
k ∈ {1, . . . , N} ,

(21)
with ∆v(k) = v(k)− v∗(k), ∆u(k) = u(k)− v∗(k)2, R =
ηIn ∈ Rn×n, η ∈ R>0 and Q = In ∈ Rn×n, is employed to
compute the optimal voltage references u = vref which leads
to minimal losses by considering the DGU, filter, the lines
and loads. The constraints for the state and input variables
in (21) represent the voltage and current constraints, whereas
the controller state (17c) is not constrained. The matrices Q
and R penalize the deviation of the voltage v and reference
voltage vref to the optimal steady-state v∗. The following
theorem states how to choose the terminal costs VN (∆v(N))
such that closed-loop stability is ensured.

Theorem 1: The closed-loop system composed
of (18) with the feedback law u(k) = u∗(1),
u∗(τ) = arg min MPCtrack with τ = {1, . . . , N} is
asymptotically stable if the terminal costs are chosen
VN (∆v(N)) = x(N)>Px(N) with P as in Prop. 4.

Proof: Since the terminal cost VN (x(k)) =
x(k)>Px(k) is a Lyapunov function for all x(k) ∈ R3n,
asymptotic stability without the need of terminal constraints
follows directly from the classic setpoint-tracking MPC
theory [27, Sec. 3.7.2.2].

Remark 2: The optimal voltage setpoint for the tracking
MPC is considered to be piece-wise constant for the tracking
MPC. This is a classic assumption in MPC and is valid if the
optimal setpoint computation is sufficiently slow compared to
the system dynamics. Since the optimal setpoint computation
is typically performed every few minutes and the step size of
the MG dynamics in Prop. 4 takes values of few milliseconds,
this assumption is admissible and the setpoint-tracking MPC
theory applies.

B. Economic MPC

In this approach, we solve the optimization problem

MPCecon :=



minu

N∑
k=1

v(k)>Qlossv(k)

s. t. x(k + 1) = Ak(k)x(k) + bku(k),
x(k) ∈ X
u(k) ∈ U
k ∈ {1, . . . , N} ,

(22)

2Note that the input leading to the equilibrium point v∗ is u = v∗.

Steady state
optimization

tracking MPC

System

v∗

u∗

economic
MPC

System

u∗

tracking MPC economic MPC

Fig. 4. Comparison of setpoint tracking and economic MPC from a
procedural perspective

with Qloss as in (20) at every time step and apply only
the first control action u∗(1). Hereby, the traditional control
structure of computing the optimal setpoint and controlling it
by feedback setpoint-tracking MPC is combined into a single
feedback structure, see Fig. 4. Thus, it is not necessary to
compute or know the optimal setpoint in advance, it results
from the control action. It can therefore react immediately
to load changes without having to compute new steady-state
optimal setpoints, which is an advantage when dealing with
volatile RES. However, since the objective function is not
convex w.r.t. the optimal setpoint to be stabilized3, the mature
theory about classical setpoint-tracking MPC does not hold
[28]. The approach falls under the class of economic MPC.

In this work, the stability of economic MPC is demon-
strated through simulations in the following section4. In
particular, we show that economic MPC outperforms the
classical control structure for predictive controllers composed
of an optimal setpoint computation and a stabilizing setpoint-
tracking MPC.

IV. SIMULATION RESULTS

In this section, simulation results for the closed-loop sys-
tem with the tracking MPC (21) and the economic MPC (22)
are presented. We show that the economic MPC achieves
slightly better performance than the tracking MPC in the
nominal case, whereas a significant performance increase
is observed when disturbances unforeseen by the optimal
setpoint computation in (20) occur.

The MG considered in this work is based on the CIGRE
medium voltage benchmark system, since it represents the
network topology of a typical distribution system, and it is
aimed to serve as a benchmark system for voltage control
studies [20]. It is composed of 11 nodes and 12 power
lines and shows a meshed structure (see Fig. 1). Since the
benchmark system is conceived as an AC system, typical

3Here, we are not penalizing the deviations to a setpoint, and the cost is
not necessarily decreasing until the setpoint is reached [28].

4Note that economic MPC is an active field of research, with almost no
theoretical results when applied to power systems [18], [28].



DC system parameters are taken from [23] for the lines and
DGU filters. The step size is chosen to be h = 10 ms for
both MPCs, for which Prop. 4 is fulfilled. The optimization
horizon is set to N = 300, which corresponds to 3 s. For the
tracking MPC, new optimal setpoints are computed every 30
seconds. The parameter η is set to η = 10−2 in order to
achieve a better voltage tracking.

In the following, we compare both MPC approaches in
the nominal case, i.e. when the load is known with no error,
and in the case when load disturbances occur. Especially, we
compute the transmission losses achieved in each scenario in
order to assess the closed-loop performance in Section IV-C.

A. Scenario 1: Nominal Case

First, the nominal case is considered, where the load
is assumed to be known with no error by the predictive
controllers and the steady-state optimization (20) for the
tracking MPC. The load during the simulation time is shown
in Fig. 5. At time t = 30 s, a load step occurs in all nodes.
The load step time is chosen to be at the same time when
new optimal setpoints are computed for the tracking MPC,
such that the MPC always receives the optimal setpoints.
Note that in real applications, the optimal setpoints will likely
not be computed at the same time as the load changes. The
scenario presented here is hence the best case scenario for
the tracking MPC in order to allow a fair comparison with
the economic MPC. The node voltages in the MG with the
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Fig. 5. Load at each bus over the simulation time in the nominal case.

tracking MPC and the economic MPC are shown in Fig. 6.
The dot-dashed lines are the optimal setpoints computed by
the steady-state optimization (20). Due to voltage, current or
power flow constraints in (20), different voltage references
that induce power flows through the lines are necessary.
In the case of tracking MPC, the node voltages follow the
optimal setpoints (dot-dashed) accurately. Since the optimal
setpoints of the voltages are computed with (20) and lead
to minimal power line losses, the closed-loop behavior with
the tracking MPC is (only) steady-state optimal. Only during
transients, i.e. when load steps occur, considering the system
dynamics for the explicit task of minimizing losses instead
of regulating a setpoint may improve performance. The
economic MPC achieves the optimal steady-state voltages
(dot-dashed) without requiring a priori voltage setpoints. The
node voltages with the economic MPC are identical to the
voltages with the tracking MPC, except for the time around
the load step.
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Fig. 6. Microgrid bus voltages when using a tracking MPC (above) and
an economic MPC (below) in the nominal case.

The line losses resulting from the node voltages are
computed for comparing the performance of tracking and
economic MPC. The economic MPC achieves 0.2 % less
transmission losses than the tracking MPC in the nominal
case (viz. Table I). This improvement is due to a better
transient behavior during the load step at t = 30 s. In the case
of the tracking MPC, since the deviations are penalized, the
node voltages follow the steps arising from the setpoint v∗(k)
which changes once at t = 30 s. This is, however, not optimal
w.r.t. minimizing the losses. On the other hand, the economic
MPC does not minimize the deviations to some setpoint,
it chooses the input on the basis of minimizing the losses,
also during transients. Thus, it achieves a better performance.
This effect is assumed to gain importance when disturbances
occur. Thus, in the next subsection, the performance of both
receding horizon control approaches will be compared for
the case when disturbances in the load occur.

B. Scenario 2: Disturbances

In the following, load variations are considered in order to
highlight the performance of economic MPC. We consider
three types of disturbances, 1) unknown load steps, 2) load
noise and 3) a line failure. The unknown load steps and
load noise are depicted in Figs. 7 and 9, respectively. The
unknown load steps occur in Nodes 2 and 6, while the
load noise occurs only in Node 1. Since the predictive
controllers need a prediction of the load over the optimization
horizon, it is assumed that the actual load is measured and
considered to be constant over the optimization horizon of
3 s. The optimal setpoint computation in (20) is assumed to
not have knowledge about these measurable disturbances,
since it computed the optimal setpoints in advance. The



voltage trajectories are reported in this section, while the
performance comparison is made in Section IV-C.

1) Unknown load steps: The node voltages in the MG
equipped with both predictive controllers can be seen in
Fig. 8. The tracking MPC still achieves an acceptable regu-
lating behavior when the load step occurs, since it penalizes
the deviations to that given setpoint. However, note that the
optimal setpoint computed in advance is no longer optimal
due to the load steps, which are not known in advance and
not considered in (20). On the other hand, the node voltages
set by the economic MPC differ w.r.t. the setpoints from (20)
when the disturbances occur. Since the economic MPC does
not minimize the deviations to a given setpoint and instead
directly minimizes the losses, a new but optimal steady-state
arises.
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Fig. 7. Predicted (dot-dashed) and real load in the case of unknown steps
in Node 2 and 6.
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Fig. 8. Microgrid bus voltages when using a tracking MPC (above) and
an economic MPC (below) under an unknown load step.

2) Load noise: The node voltages in the MG with both
receding horizon controllers in the case of load noise are
shown in Fig. 10. The voltages set by the tracking MPC show
significant oscillations around the given optimal setpoints. In

contrast, the node voltages produced by the economic MPC
are smooth and slightly differ from the optimal steady-state
voltages computed in advance, as expected.
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Fig. 9. Predicted (dot-dashed) and real load in the case of load noise in
Node 1.
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Fig. 10. Microgrid bus voltages when using a tracking MPC (above) and
an economic MPC (below) under unknown load noise.

3) Line failure: In the scenario of a line failure, the
line between Node 3 and 8 fails at time tfail = 20 s and
is unavailable thereafter. The line failure is assumed to be
measurable and known by the predictive controllers, but not
by the optimal setpoint computation in (20) which happens in
advance. The node voltages in the MG with both predictive
controllers in the case of a line fail can be seen in Fig. 11.
The tracking MPC minimizes the deviation to the provided
setpoint (dot-dashed line), which is not optimal for the new
MG topology. The voltages when using the economic MPC
converge to a new steady-state, which is optimal under the
new MG configuration.

C. Performance comparison

The performance increase of the economic MPC w.r.t. the
tracking MPC is shown in Table I. It shows the reduction of
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Fig. 11. Microgrid bus voltages when using a tracking MPC (above) and
an economic MPC (below) under a line failure.

transmission losses for the described scenarios normalized
to the transmission losses from the economic MPC. The
economic MPC achieves a better performance in all cases.
The increase in performance depends clearly on the severity
of the disturbance. The small disturbance from the load
noise shows a 2.6 % less transmission losses. For greater
disturbances, the reduction increases to 9.3 % (load step),
and 15.6 % (line failure). Thus, greater disturbances yield
greater performance benefits from the economic MPC, since
the optimal voltages differ more from the a priori calculated
setpoints. Since the economic MPC does not need to compute
any optimal setpoint in advance, it has a clear advantage
also in terms of computation and enjoys a simpler feedback
control structure naturally achieving the optimal setpoints as
a result of the control action.

TABLE I
PERFORMANCE INCREASE OF ECONOMIC MPC OVER TRACKING MPC

IN DIFFERENT SCENARIOS

Scenario Performance increase of economic MPC

Nominal 0.2 %
Unknown load steps 9.3 %
Unknown load noise 2.6 %

Line failure 15.6 %

V. CONCLUSION

This paper presents two MPC-based controllers for com-
puting optimal voltage references for a DC MG with
passivity-based primary controllers. An asymptotically sta-
bilizing setpoint-tracking MPC is designed, and stability is
proven by considering the passivity properties of the DC

MG with the primary controller. Furthermore, we present an
economic MPC controller which outperforms the traditional
control scheme composed of optimal steady-state computa-
tion and setpoint-tracking MPC.

Future work may concern the rigorous stability proofs of
the economic MPC for DC MGs. Dropping the necessity
of computing a priori optimal setpoints is a key advantage
of economic MPC which can be exploited for distributed
control of large scale energy systems.
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[19] J. Köhler et al., ‘Real time economic dispatch for power
networks: A distributed economic model predictive control
approach’, in Ann. Conf. on Decision and Control, 2017.



[20] K. Rudion et al., ‘Design of benchmark of medium voltage
distribution network for investigation of DG integration’, in
2006 IEEE Power Eng. Soc. General Meeting, 2006.

[21] R. D. Middlebrook and S. Cuk, ‘A general unified approach
to modelling switching-converter power stages’, in IEEE
Power Electron. Specialists Conf., 1976.

[22] J. Machowski et al., Power system dynamics: stability and
control. John Wiley & Sons, 2020.

[23] M. Tucci et al., ‘A Decentralized Scalable Approach to
Voltage Control of DC Islanded Microgrids’, IEEE Trans.
on Control Syst. Technol., 2016.

[24] B. Brogliato et al., Dissipative systems analysis and control.
Springer London, 2007.

[25] H. K. Khalil, ‘Nonlinear systems third edition’, Patience
Hall, 2002.

[26] V. Venkatasubramanian et al., ‘Fast time-varying phasor
analysis in the balanced three-phase large electric power
system’, IEEE Trans. on Autom. Control, 1995.

[27] D. Q. Mayne et al., ‘Constrained model predictive control:
Stability and optimality’, Automatica, 2000.

[28] M. A. Müller and F. Allgöwer, ‘Economic and distrib-
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