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A variable terminal set NMPC construction:
application for multicopter stabilisation

Bogdan Gheorghe1, Florin Stoican1 and Ionela Prodan2

Abstract— In this paper we relax the stan-
dard NMPC (Nonlinear Model Predictive Control)
through a variable terminal set construction for stabi-
lizing a multicopter system. This contribution allows
us to increase the feasible domain and/or reduce
the required prediction horizon length. Furthermore,
to reduce the complexity of the computations we
use zonotopic sets which prove instrumental due to
their efficient representation. The theoretical results
are validated in simulation and experiment for the
stabilisation along a trajectory of a nano-multicopter’s
translational dynamics.

Index Terms— Multicopter system, Trajectory
tracking, Nonlinear Model Predictive Control
(NMPC), Terminal constraints, Zonotopic sets.

I. Introduction
Motion planning problems for multicopter systems are

challenging in both the academic and industrial set-
tings. Drone versatility has contributed to applications
in fields like entertainment, aerial photography, precision
agriculture, search and rescue, etc. [1]. Most of these
applications require optimization-based control policies
with constraints satisfaction, stability and robustness
guarantees. Model predictive control (MPC) is one of the
most enduring control techniques due to its theoretical
and practical versatility [2]. Its capacity to explicitly
consider constraints and a cost is essential in applications
which require feasibility and stability guarantees.

Arguably, the main weakness of (nonlinear) MPC is
the computation burden. Basically, MPC implementa-
tions boil down to a repeated solution of a constrained
optimization problem. While there are many ways which
exploit the particularities of the structure [3], the com-
putation time may still be critical in systems with fast
dynamics (and especially if they are nonlinear). On
the other hand, continuous increases in computational
power means that previously unattainable implementa-
tions are now within our grasp, even in embedded im-
plementations. In particular, there is significant interest
in applying MPC to robotic platforms in general and
multicopters in particular [4], [5].
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Recherche 2021 - PlanMAV and the LabEx Persyval.
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For critical systems, an initial source of reluctance
in using MPC was the lack of theoretical guarantees
for feasibility. A number of results has provided the
necessary tools but with a series of caveats. On one side
is the classical terminal set approach [6] which ensures
recursive feasibility. On the other, there are methods
which show equivalence with the former approach for suf-
ficiently long prediction horizons [7]. The second method
is not suitable for fast dynamics due to the computational
load and the first is often conservative as it constrains the
set of initial states to only those which are backwards
reachable from the terminal set.

One way to mitigate the restrictions is to relax the ter-
minal set definition. E.g., [8] proposes a scaling procedure
and [9] extends it to a fully dynamical formulation.

The terminal set is usually given as a maximal positive
invariant set with an ancillary admissible state feedback
law. In this context, our idea is two-pronged:
i) instead of a fixed terminal set, add constraints enforc-

ing its invariance, inclusion of the terminal state inside
it and the existence of an admissible control law;

ii) use zonotopic sets to characterize the terminal set
due to their more compact representation and partial
immunity to problem size [10].

Motivated by these ideas, the contributions are:
i) provide novel set invariance conditions for zonotopic

sets, similar to the polyhedral ones from [11];
ii) propose a variable terminal set adaptation of the

standard MPC, using a zonotopic description;
iii) particularize the MPC construction for the transla-

tional dynamics of a multicopter system.
Noteworthy, zonotopic formulations have become quite
popular in recent years, with results such as set inclusion
[12] or even robust positive invariance [13] which are re-
lated to the theoretical novelties proposed here (Prop. 2
and its corollaries). Beyond the particularities of the
usage and proving the results, the clear differentiating
factor is that we consider zonotopes with independent
scaling factors.
Notation. Om×n ∈ Rm×n is the matrix with m rows and
n columns whose entries are zero. Whenever m = n, we
use On. In ∈ Rn×n is the identity matrix. The column
vector whose m entries have value one, is denoted by 1m.
For an arbitrary matrix G ∈ Rm×n, Gi denotes its i-th
column. |A|, with A ∈ Rm×n, represents the element-
wise absolute value of A. The symbol ‘·’ denotes matrix
multiplication. The Minkowski sum between two sets, X



and Y , is defined as X ⊕ Y = {x+ y : ∀x ∈ X, ∀y ∈ Y }.
‘c’ and ‘s’ are shorthand for ‘cos’ and ‘sin’.

II. Preliminaries
In this section we introduce several standard notions

from set-based control, see [14], [15] for further details.
A bounded and fully-dimensional polyhedron X ⊂ Rd,

has a dual representation, with both a half-space form

X = {x ∈ Rd : a⊤i x ≤ bi, i = 1 . . . nh}, (1)

as an intersection of linear inequalities and a convex sum
of its extreme points (i.e., its vertices)

X = {x ∈ Rd : x =

nv∑
j=1

αjvj ,

nv∑
j=1

αj = 1, αj ≥ 0}. (2)

The pairs (ai, bi) ∈ Rd × R denote the inequalities and
vj ∈ Rd denote the vertices.

Zonotopes are a subset of the polyhedra class, popular
due to their robustness against problem size and numer-
ical manipulations.

Definition 1 ([15]). A zonotope is a centrally symmetric
polyhedron, given as a Minkowski sum of line segments.
This generator representation is defined by a center c ∈
Rd and a generator matrix G =

[
G1 . . . GD

]
∈ Rd×D:

Z(c,G) = {c+
D∑
i=1

Giλi : |λi| ≤ 1, i = 1 . . . ng}. (3)

Zonotopes have several interesting properties [15], [16]:
i) they are closed under Minkowski sum:

Z(c1, G1)⊕ Z(c2, G2) = Z(c1 + c2,
[
G1 G2

]
); (4)

ii) they are closed under multiplication by any
appropriately-sized matrix:

M · Z(c,G) = Z(Mc,MG); (5)

iii) have an equivalent half-space representation: to each
sequence of d−1 generators 1 ≤ j1 < j2 . . . jd−1 ≤ D
corresponds the pair (hi, ki) ∈ Rd × R, where:

hi⊥gjl , ∀jl ∈ {j1 . . . jd−1}, ki =
∑

jl /∈{j1...jd−1}

∣∣h⊤i gjl ∣∣ , (6)

such that

Z(c,G) =
⋂

1≤j1<...jd−1≤D

{x ∈ Rd : |hi(x− c)| ≤ ki}. (7)

iv) the inclusion Z(c,G) ⊆ X, with X defined as in (1),
holds iff:

a⊤i c+
∑
j

∣∣a⊤i Gj∣∣ ≤ bi ∀i. (8)

v) the number of faces (facets, ridges, etc.) has a tight
bound and is significantly less than the one associ-
ated to a random polyhedron of similar complexity.

III. Variable terminal set condition

A. Set invariance conditions for zonotopes
Consider the stable, linear and time invariant dynamic

x+ = Ax, with A ∈ Rn×n. (9)

A set is called positive invariant for (9) iff implication x ∈
S =⇒ x+ ∈ S holds [17]. Further, recall the original (for
symmetric polyhedral sets) result of Bitsoris [11] which
provides a simple condition for set invariance.

Proposition 1. For dynamics such as those in (9), the
symmetric polyhedral set

S = {x ∈ Rn : |Fx| ≤ θ}, F ∈ Rm×n, θ ∈ Rm, (10)

is positive invariant iff there exist H ∈ Rm×m such that

HF = FA, (|H| − Im) · θ ≤ Om×1. (11)

Remark 1. This result, and variations inspired by it,
resisted the test of time due to their simplicity. Only linear
constraints appear, making it easy to integrate in larger
optimization problems. Not least, relation (11) remains
linear even when searching for a static gain, i.e., when
A 7→ A+BK.

The caveat is that we assume F fixed, otherwise the
term HF becomes bilinear and difficult to solve due to
the size of the problem (usually m, denoting the number
of inequalities describing the set S in (10), is large). ♦

The same reasoning should hold for zonotopic sets.
They have “more” structure, hence, choosing/finding
a candidate set is easier. Furthermore, the generator
representation is significantly more compact than either
of the polytopic ones (half-space or vertex-based).

Proposition 2. For dynamics (9), the zonotopic set

Z(0, G) = {x ∈ Rn, x = Gλ, ∀λ ∈ [−1, 1]D}, (12)

with G ∈ Rn×D, is positive invariant iff there exists
matrix Λ ∈ RD×D verifying

AG = GΛ, (|Λ| − ID) · 1D ≤ OD×1. (13)

Proof: The set invariance property (i.e., the impli-
cation that any state, updated via (9), is still inside the
set) is equivalent with the existence of the pair of vectors
λ, λ+ ∈ [−1, 1]D verifying the equivalence[
∀x ∈ Z(0, G) =⇒ x+ = Ax ∈ Z(0, G)

]
⇐⇒[

∀|λ| ≤ 1, ∃|λ+| ≤ 1 s.t. AGλ = Gλ+
]
. (14)

As a first step assume that there exists Λ ∈ RD×D

s.t. AGi = GΛi, ∀i = 1 . . . D, a reasonable assumption
since the columns Gi form an overcomplete1 basis of Rn.

1In the usual case when D ≥ n and any selection of n columns
is linearly independent.



Then, the following chain of equalities holds

x+ = AGλ =

D∑
i=1

AGiλi =

D∑
i=1

GΛiλi

=

D∑
i=1

D∑
j=1

GjΛjiλi =

D∑
j=1

(
Gj

D∑
i=1

Λjiλi

)
.

(15)

Equality (15) shows that inclusion x+ ∈ Z(c,G) holds iff∣∣∣∣ D∑
i=1

Λjiλi

∣∣∣∣ ≤ 1, ∀j, (16)

is verified (i.e., we take λ+j :=
∑D
i=1 Λjiλi). Since (16)

has to hold for any λ ∈ [−1, 1]D we arrive at condition
D∑
i=1

|Λji| ≤ 1, ∀j, (17)

by taking λi 7→ sign(Λji) in (16) and ignoring the
absolute operator (since a sum of positive elements is
itself positive). Gathering the column vectors Λi back
into matrix Λ and taking for j = 1 . . . D the inequality
(17) we arrive at (13), thus concluding the proof.

Remark 2. At a first glance, (13) is similar to (11).
The difference lies in the dimensions. The zonotope (12),
in generator form is defined by its generator matrix G
having D columns. On the other hand, in half-space rep-
resentation (12) (a symmetric polyhedral set, as defined
in (10)) has m =

(
D
n−1

)
pairs of half-spaces [15]. ♦

Remark 3. The presence of the absolute operator is
always worrying but

∑D
i=1 |Λji| ≤ 1 describes a linear

inclusion: the vector Λi =
[
. . . Λji . . .

]⊤ stays inside
the cross-polytope2 CD, inclusion which may be written
through linear inequalities making use of either the 2D

half-spaces or 2D extremal vertices defining CD. ♦
Remark 4. Adding a static feedback is straightforward.
By replacing A 7→ A+BK in (13) we arrive at

(A+BK)G = GΛ, (|Λ| − ID) · 1D ≤ OD×1,

which, noteworthy, remains linear. ♦
In recent papers such as [16], the case of the scaled

zonotope (i.e., one where the generators directions are
fixed but their scaling is given by decision variables δ ∈
RD+) has been intensely studied:

Z(c,G∆) = {x =

D∑
i=1

c+Giλi · δi, ∀|λi| ≤ 1}, (18)

with the shorthand ∆ = diag(δ). This notation allows to
expand the invariance conditions to the next corollary.

Corollary 1. For dynamics (9), the scaled zonotopic set
Z(0, G∆), given as in (18), is invariant iff relations

(A+BK)G∆ = G∆Λ, (|Λ| − ID) · 1D ≤ OD×1, (19)
2The dual/polar of the hypercube from RD.

hold. □
Proof: The result is straightforward and is obtained

by replacing G 7→ G∆ and A 7→ A+BK in the proof of
Proposition 2.

Neither Proposition 2 nor Corollary 1 quite cover our
requirements. In both of them we considered the simpler
case of a zonotopic set centered in the origin (c = 0). This
makes sense when the dynamics’ equilibrium point is also
the origin but it may lead to sets which are conservative
wrt the region in which they have to be included.

To handle this situation, we extend the control law
to the affine case and choose the zonotope’s center
accordingly in the next result.

Corollary 2. For dynamics (9), assuming the affine
control law

u = Kx+ γ, (20)

the scaled zonotopic set Z
(
[In − (A+BK)]

−1
Bγ,G∆

)
,

given as in (18), is invariant iff relations (19) hold. □
Proof: The zonotope’s center,

[In − (A+BK)]
−1
Bγ, is a fixed point for dynamics (9)

under control law (20). Hence, we make the change of
coordinates x 7→ x̃+[In − (A+BK)]

−1
Bγ which brings

the closed-loop system to the form x̃+ = (A + BK)x̃
and the zonotopic set to the form Z(0, G∆). Applying
Corollary 1 concludes the proof.

Illustrative example
Taking the randomly-generated generator matrix

G =

[
−15 −20 33 −17 −5
−14 24 −7 −48 −18
19 03 10 −20 −8
6 −8 −38 −23 15

]
· 10−2

and applying Proposition 2, adapted via Remark 4, we
obtain the static gain K =

[
−0.52 −1.55

]
which makes

invariant the linear dynamics defined by:
A =

[
0.38 0.76
0.16 0.87

]
, B =

[
1
1

]
.

−3 −2 −1 0 1 2 3

−2

−1

0

1

2

Z(0, AG)

Z(0, G)

x1

x
2

Fig. 1: Zonotope and its invariant set



Figure 1 shows the evolution of the zonotope in one
step thus graphically proving its invariance under the
aforementioned dynamics.

B. Model Predictive Control
Consider the discrete-time dynamic

xi+1 = f(xi, ui), (21)

where xi ∈ Rd denotes the state vector, and ui ∈ Rm, the
input vector. Function f(·, ·, ·) : Rn+m+p 7→ Rn makes
use of all these elements to update the state.

The control action ui is obtained hereinafter by repeat-
edly solving a model predictive control (MPC) problem.
MPC is one of the most popular techniques in control due
to its versatility and relative ease of implementation [2].
In its standard form it reduces to solving a constrained
optimization problem of the form

min
ū0,...,ūN−1

N−1∑
k=0

ℓ(x̄k, ūk, rk) + T (x̄N , rN ) (22a)

s.t. x̄k+1 = f(x̄k, ūk), ∀k = 0, . . . , N − 1, (22b)
x̄0 = xi, (22c)
x̄N ∈ S, (22d)
ūk ∈ U, x̄k+1 ∈ X, ∀k = 0, . . . , N − 1. (22e)

For further use, we note that U is described by the
nU pairs (a⊤U,i, bU,i) ∈ Rm × R and X by the nX pairs
(a⊤X,i, bX,i) ∈ Rn × R, as in (1).

The constrained optimization problem (22):
• predicts a sequence of states {x̄1, . . . , x̄N}, updated

through dynamics (22b) by a suitable (resulted from
solving (22)) sequence of inputs {ū0, . . . , ūN−1};

• such that it minimizes a stage cost ℓ(x̄k, ūk, rk)
(which usually penalizes a combination of states, in-
puts and references) and a terminal cost T (x̄N , rN )
(penalizing the last predicted state);

• while also verifying stage input/state constraints
(22e) and a terminal state constraint (22d);

• (22) is integrated in the control scheme, by: i)
initializing the prediction with the current plant
state value (constraint (22c)), and, ii) applying to
the plant dynamics (21) the first element of the
predicted input sequence ui ← [ ū0.

While MPC often works well in practice, it still has the
risk of failing to find a solution (i.e., (22) is infeasible).
The standard approach, [6], is to provide a terminal
cost and a terminal set inclusion condition which is
guaranteed to hold under a local control law u = ϕ(x):

x̄N+j ∈ S =⇒
x̄N+j+1 = f(x̄N+j , ϕ(x̄N+j)) ∈ S, ∀j ≥ 0. (23)

The difficulty in (23) is usually that neither the terminal
set S nor the local control law ϕ(·) are a priori known.
Usually, either one is fixed in order to obtain the other
or some limiting assumptions have to be made (e.g., on
the shape of the set).

In the rest of this section we provide a relaxation
of the terminal condition (22d) by making use of the
zonotopic invariance results from Section III-A. The idea
is straightforward. Instead of pre-computing either/both
of the terminal set and local control law, we replace (22d)
with a collection of inequalities which, implicitly, provide
the required elements, as shown in the next proposition.

Proposition 3. For x̄N , U and X given as in (22),
and with the linearizations A := ∂f(x, u)/∂x, B :=
∂f(x, u)/∂u in some suitably chosen fixed point, consider
the constraints

x̄N − x̃N = c, (24a)
x̃N = G∆λ, |λ| ≤ 1, (24b)

(A+BK)G∆ = G∆Λ, (|Λ| − ID) · 1D ≤ OD×1,
(24c)∑

j

∣∣a⊤X,iGj∣∣ δj ≤ bX,i − a⊤X,ic, ∀i = 1 : nX , (24d)∑
j

∣∣a⊤U,iKGj∣∣ δj ≤ bU,i − a⊤U,icU , ∀i = 1 : nU , (24e)

with the shorthand notations c = [In − (A+BK)]
−1
Bγ

and cU = Kc+ γ.
If (24) holds, then there exist an affine law as in (20)

and a zonotopic set as in (18) such that the set is made
invariant for the considered linearization and the state
and control action are admissible. □

Proof: The proposition simply gathers together the
elements detailed earlier. (24a) makes a change of coordi-
nates as in Corollary 2. (24c) ensures the set’s invariance.
(24d) and (24e) ensure admissibility by testing inclusion
(22e) through (8), i.e., that inclusions Z(c,G∆) ⊆ X
and Z(Kc + γ,KG∆) ⊆ U hold. Lastly, (24b) ensures
the inclusion of the terminal state into the set (similar
with (22d)), thus concluding the proof.

Remark 5. Considering linearized dynamics in Prop. 3
sidesteps the difficult question of invariance for nonlinear
dynamics. The approach is often implemented for the
terminal set construction in MPC with the linearization
errors as an additional source of uncertainty. ♦
Remark 6. Equations (24) represent the most complete
implementation wrt the results provided in Section III-A
but at the price of nonlinear terms. The linear imple-
mentation, where the center is the origin (c = 0) and the
scaling factors are unitary (∆ = δ·I) is given by relations:

x̄N = Gλ, |λ| ≤ δ−1 · 1, (25a)
(A+BK)G = GΛ, (|Λ| − ID) · 1D ≤ OD×1, (25b)∑
j

∣∣a⊤X,iGj∣∣ ≤ δ−1bX,i, ∀i = 1 : nX , (25c)∑
j

∣∣a⊤U,iKGj∣∣ ≤ δ−1bU,i, ∀i = 1 : nU . (25d)

The formulation is linear in δ−1. ♦



IV. Multicopter translational dynamics
application

Next, we adapt the MPC construction (22) by re-
placing the terminal cost with the relations from either
Prop. 3 or Rem. 6 for the translational dynamics of a
multicopter [7].
A. Multicopter Dynamics

The translational dynamics of a multicopter system,
given in an inertial coordinate system, are represented
by the nonlinear relations

ξ̇(t) = Aξ(t) + hψ(u(t)), (26)

where:

A =

[
O3 I3
O3 O3

]
, hψ(t) =


O3×1

T (cϕ sθ cψ + sϕ sψ)
T (cϕ sθ sψ − sϕ cψ)
−g + Tcϕ cθ

 (27)

with the system’s state (position plus velocity), ξ =[
x y z ẋ ẏ ż

]⊤ and u(t) =
[
T ϕ θ

]⊤, the in-
put, where T is the normalized thrust, ϕ is the roll
angle, and θ is the pitch angle. The yaw angle (ψ) of the
multicopter is considered a known (measured) constant.

Remark 7. Translational dynamics (26) represent only
the upper stange of the quadcopter’s control stack. Specif-
ically, the thrust is applied directly to the multicopter but
the roll, pitch and yaw angles are given as references to
be tracked at the lower level (which handles the rotational
dynamics). The division is not simply about different
time scales but also at the hardware implementation level:
virtually any multicopter system implements the control
loop (the “autopilot”) of the rotational dynamics onboard,
limiting (if not outright denying) access to it. ♦
B. MPC implementation

We adapt the generic MPC problem from (22) to the
specifics of the multicopter scheme:

• constructing a path as in [18], we track it via the
stage cost ℓ(x̄k, ūk, rk) = ‖xk−rk‖Q+‖uk−uk−1‖R
and the terminal cost T (x̄N ) = ‖x̄N − rN‖P ;

• the dynamics for model prediction are those from
(26), discretized by a Runge-Kutta rule of order 4
and sampling time Te;

• the bounds are considered only on the input magni-
tude and the rate of variation: U = {u ∈ R3 : u ≤
u ≤ u, |∆u| ≤ ∆u}, X = R6. ∆u denotes the input’s
variation between consecutive time instants.

The result is a standard output tracking scheme (the
reference provides the ”position” component of the state)
with the main claim of novelty being the variable termi-
nal set implementation from Proposition 3 / Remark 6.

For the subsequent analysis (both in simulation and
experiment), we consider the model and MPC parame-
ters from Table I.

To illustrate the tracking MPC approach proposed in
Section III-B for the drone dynamics shown in Section IV

Parameter Value
Crazyflie weight m = 0.035kg
gravitational acc. g = 9.81m/sec2

input upper bounds u = [T ϕ θ ] = [2g 10◦ 10◦]

input lower bounds u = [T ϕ θ ] = [0 − 10◦ − 10◦]

input rate bounds ∆u = [∆T ∆ϕ ∆θ] = [2g 10◦ 10◦]

cost matrices Q = diag(I3, O3), P = 10Q, R = I3

prediction horizon N = 20

sampling time Te = 0.1sec
generator matrix G = I

TABLE I: Parameters for the Crazyflie model and the
MPC controller.

we consider an experimental setup in which we test the
performance of the control scheme (and show the same
in simulation).
C. Experimental Setup

For ground-truth validation and to obtain an accurate
estimation of the state we make use of a state-of-the-
art indoor positioning system. We use an ensemble of 7
Miqus M3 cameras from Qualisys, which cover a volume
of 5× 5× 2.5 meters and provide accurate position and
Euler angles estimations for passive markers mounted on
the drone (with precision error ≤ 0.5 mm). As aerial
platform we use the Crazyflie nano-drone, an open-source
system mainly used for indoor research purposes [19].
This drone is based on a STM32F405 microcontroller
which has a Cortex-M4, with 196kB of RAM memory.

The Qualisys cameras emit infrared pulses which are
reflected back by the asymmetrically drone-mounted
markers, allowing the system to provide 6 DOF (position
+ Euler angles) estimation at a frequency of 50 Hz. The
control action is the result of solving an optimization
problem (implemented with the CasADi toolbox [20] in
a Python script, running on a computer connected to
the hardware installation). The command (thrust and
reference pitch, roll and yaw rate) is sent forward to
the drone via the CrazyRadio hardware interface, at a
frequency of 10 Hz.
D. Results and analysis

We illustrate the NMPC-computed trajectory (refer-
ence and experimental data) in Fig. 2. The trajectory
resulted in simulation closely tracks the reference, so is
not depicted.

The histograms of the tracking error and computation
times are depicted in Fig. 3. Fig. 3a provides the his-
togram of the tracking errors, i.e., the distance between
the experiment trajectory and reference: ||ξ(1 : 3) −
ξ̄(1 : 3)||2. Fig. 3b illustrates the distribution of the
computation times for the NMPC problem. We observe
that great majority of the values are less than 0.03 sec,
which is manageable for the sampling time, Te = 0.1 sec,
used in the experiment to update the control action.
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Fig. 2: Experimental results trajectory tracking

Lastly, the terminal set conditions were implemented
as in Remark 6, with the nonlinear dynamics linearized at
the hovering point (where the thrust cancels the weight
and the roll and pitch are at zero). To the invariance
condition, a slack term (penalized in the cost) was added
to avoid infeasibility due to initial conditions. A suitable
static feedback law was obtained, thus certifying the
soundedness of the approach.
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Fig. 3: Numerical results of the experiment

V. Conclusion
We provided conditions which simultaneously check

zonotopic set invariance and provide an affine control
law. These were integrated in a standard MPC problem
to define implicitly the local admissible control law and
the associated terminal set. The results have been vali-
dated in simulation and experiment for the translational
dynamics of a nano-multicopter system.
with the standard, fix terminal set implementation.

Future improvements will further implement and an-
alyze theoretical guarantees for stability and recursive
feasibility, not least, to provide meaningful comparisons

Moreover, we plan to explore zonotopes’ combinatorial
structure to both reduce the computational load and
provide a method of generator selection (not an obvious
step at higher dimensions).
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