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a b s t r a c t

This work proposes an NMPC scheme for stabilizing multicopter dynamics with semi-globally asymp-
totic stability guarantees. Recurrent issues in the state of the art, such as the existence of a terminal
invariant set and a decreasing terminal cost under a local controller are analyzed. Within this
context, the novelty resides in the use of a nonlinear local controller with feedback linearization
properties which allows for arbitrary enlargement of the ellipsoidal terminal region with respect to the
initial conditions. The framework is completed through a detailed analysis of the NMPC parameters.
Comparisons and simulations for a nanodrone system show the benefits of the approach.

© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Popular multicopter platforms come with built-in controllers
hich control the rotors to track the four inputs consisting of
he thrust level and the three Euler angles (Nascimento & Saska,
019). Hence, controlling the multicopters reduces to the control
f their translational dynamics (Nguyen et al., 2020). However,
esigning such a high-level controller is difficult due to the com-
lex mix of nonlinear dynamics and constraints of the drones.
or control problems with constraints, MPC is a widely embraced
echnique due to its capability of providing optimal solutions
hile handling constraints (Alamir, 2018), meanwhile, the closed-

oop asymptotic stability is guaranteed by the existence of a pos-
tively invariant terminal set and a Lyapunov function associated
o the terminal cost (Mayne et al., 2000).

In this work, we focus on an NMPC design with semi-global
tability guarantees (Braslavsky & Middleton, 1996) obtained via
n appropriate enlargement of the terminal constraint set for
multicopter. The proposed design uses a terminal invariant

et with an associated feedback linearization (FL) local con-
roller (Nguyen et al., 2021), which can guarantee the solution
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Mhaskar under the direction of Editor Thomas Parisini.
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existence and closed-loop asymptotic stability only after the first
successful iteration (cf. recursive feasibility). With a terminal con-
straint, the system must initially start close to the terminal region
since the predicted state at the end of the prediction horizon must
be inside the terminal set. A solution is to increase the prediction
horizon but with an unavoidable cost of computation, which
could even be impractical in real multicopter systems. Here, we
increase instead the size of the terminal set. Note that, tuning the
set is difficult due to the complexity of the existing NMPC designs
with guaranteed stability, because the tuning parameters do not
directly or easily parameterize the terminal set and the resulting
attractive region. Consequently, the procedures are often heuris-
tic (repeated tuning/checking iterations) or conservative (due to
assumptions which are restrictive) (Cannon et al., 2003; Magni
& Scattolini, 2004). One popular approach is the quasi-infinite
horizon NMPC (qsMPC) design (Chen & Allgöwer, 1998) where the
size of the terminal constraint set has to be scaled to ensure the
admissible properties and the stability, hence, any modifications
on the tuning parameters demand additional re-checks.

Several authors have been working on terminal set enlarge-
ment approaches. De Doná et al. (2002) modify the terminal
set and the terminal cost based on a saturated linear feedback
controller, which serves as a local controller. Cannon et al. (2004)
use the concept of partial invariant sets and solve offline lin-
ear programming problems to maximize the volume of partially
invariant polytopic sets. Limon et al. (2005) compute the se-
quence of reachable sets using the inner-approximations of one-
step sets to construct a contractive terminal set. Brunner et al.
(2013) compute the terminal set as a convex hull of the trans-
lated and scaled invariant sets along the predicted trajectory.
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
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ost of the aforementioned work requires solving optimization
ub-problems.
In this work we go further and propose a standard ellipsoid

erminal invariant set under an FL controller which can be ar-
itrarily enlarged (subject to the state constraints that might
xist), covering an arbitrarily chosen compact set containing the
nitial states. We show that the NMPC design achieves the semi-
lobal stability property. As extensions of Nguyen (2019), we
ropose here two main components: (i) a method to enlarge the
erminal region until it encompasses an arbitrary initial state;
ii) a formulation to easily tune the terminal region’s size which
irectly depends on the FL controller gains and on the solution of
n auxiliary Lyapunov equation.
Notations: Denote by In the identity matrix of size n, 0m×n the

zero matrix of size m × n, and 0 the zero matrix of appropriate
dimension. Let λmin(A), λmax(A), and spec(A) denote the minimum
eigenvalue, maximum eigenvalue, and the spectrum of the square
matrix A, respectively. Sn

+
(Sn
++

) represents the vector space of
n × n real symmetric positive semidefinite (positive definite)
matrices. For a vector x ∈ Rn and a symmetric matrix P ∈
Rn×n, ∥x∥2P is the weighted norm x⊤Px while ∥x∥ is the Euclidean
norm. We also denote d(x,Y ) = sup{d(x, y) : y ∈ Y } the
argest distance from a point x to all points in the set Y and r̄i
s the radius of the ball Bi. Let [L] ≜ [diag{Lx, Ly, Lz}] denote the
iagonal matrix L with Lx, Ly, Lz ∈ R on its main diagonal. Finally,
‘c(·)’’ and ‘‘s(·)’’ denote the cos(·) and sin(·) functions.

. Prerequisites

We recapitulate several contributions introduced in Nguyen
t al. (2021), which are essential for the subsequent extension of
he NMPC design with semi-global stability guarantees.

.1. Multicopter feedback linearizable dynamical system

We consider the translational dynamics of a thrust-propelled
ehicle system (Nguyen et al., 2020) given as follows:[ẍ
ÿ
z̈

]
=

[ 0
0
−g

]
+

[c(φ)s(θ )c(ψ)+ s(φ)s(ψ)
c(φ)s(θ )s(ψ)− s(φ)c(ψ)

c(φ)c(θ )

]
T  

h(u,ψ)

, (1)

with ξ ≜ [x, y, z]⊤ the 3D position, g the gravitational accelera-
ion, (φ, θ, ψ) the three Euler angles, and T ∈ R+ the input thrust
normalized by division with the quadcopter’s mass).2 The system
1) is denoted compactly as:

˙ = f (x, u), (2)

ith x ≜
[
ξ⊤, ξ̇

⊤
]⊤
∈ R6 the state vector, u ≜ [T , φ, θ ]⊤ ∈ R3

he input vector, and f (·) ≜ [ξ̇
⊤

, h⊤(u, ψ)]⊤ taken from (1). The
nput u is subject to the saturation constraints:

(t) ∈ U =
{
(T , φ, θ ) : 0 ≤ T ≤ Tmax, |φ|, |θ | ≤ ϵmax

}
, (3)

ith Tmax, ϵmax the maximum values of normalized thrust and
ngle. Our aim is to stabilize the dynamics (1)–(2) around their
ero equilibrium point3:

e = 0, ue = [g, 0, 0]⊤, (4)

2 To avoid the over-actuated control problem, the yaw angle ψ is considered
n assumed known value affecting the system (as in the literature (Formentin
Lovera, 2011; Lu et al., 2017)).
3 Taking xe = 0 does not reduce the generality of the analysis since the
ulticopter dynamics allow to hover in an arbitrary point.
 A

2

The system (1)–(2) admits the FL law denoted by uFL(µξ , ψ) ≜
[TFL(µξ ), φFL(µξ , ψ), θFL(µξ , ψ)]⊤, with ψ the yaw angle as in (1)
and µξ ≜ [µx, µy, µz]

⊤ the virtual input vector (Lu et al., 2017;
Nguyen et al., 2021):

TFL(µξ ) =
√
µ2

x + µ
2
y + (µz + g)2, (5a)

FL(µξ ;ψ) = arcsin

⎛⎝ µxs(ψ)− µyc(ψ)√
µ2

x + µ
2
y + (µz + g)2

⎞⎠ , (5b)

FL(µξ ;ψ) = arctan
(
µxc(ψ)+ µys(ψ)

µz + g

)
. (5c)

The properties of the FL law (5) are briefly recalled here:

(P1) If µz ≥ −g , the FL law (5) linearizes the nonlinear system
(2) into the triplet of double integrators systems:

ẋ = Ax+ Bµξ , (6)

with A =
[

03×3 I3
03×3 03×3

]
and B = [03×3, I3]⊤. See the proof of

Proposition 4.1 in Nguyen et al. (2020).
(P2) The input constraint admissible set w.r.t. the FL-based

control uFL(µξ , ψ) given in (5) is as follows:

XFL =

{
|µx| ≤ Ux, |µy| ≤ Uy, |µz | ≤ Uz

}
, (7)

with (Ux,Uy,Uz) defined as in Proposition 4.3 from Nguyen et al.
(2020). Within the admissible set XFL (7), the FL law uFL(µξ , ψ)
admits a Lipschitz bound useful to prove the stability of the NMPC
designs (Nguyen et al., 2021).

2.2. NMPC setup with terminal ingredients

The core requirements for designing NMPC with both the
terminal cost and terminal constraint are briefed as follows (Chen
& Allgöwer, 1998): (i) the terminal set being constraint admissible
and positive invariant under a predefined local controller which
guarantees the recursive feasibility; (ii) the closed-loop stability
is established by choosing the terminal cost such that the opti-
mal cost value becomes a Lyapunov function. For stabilizing (2)
around the equilibrium point (4), an NMPC controller at time t is
employed:

ū∗t (·) = argmin
ūt (·)

∫ t+Tp

t
ℓ(x̄t (s), ūt (s))ds+ F (x̄t (t + Tp)), (8)

subject to: ˙̄xt = f (x̄t , ūt ), (9a)

ūt (s) ∈ U , s ∈ [t, t + Tp], (9b)

x̄t (t) = x(t), (9c)

x̄t (t + Tp) ∈ Xf , (9d)

with (x̄t (s), ūt (s)) the predicted state and input at time s ∈
[t, t + Tp] and ūt (·) the whole predicted input trajectory. Only
the solution within the first sampling time interval δ is applied,
and the NMPC input is u(s) = ū∗t (s), ∀s ∈ [t, t + δ]. At t + δ, the
state is measured, time shifts t ← t+δ, and (8)–(9) are repeated.

The stage cost ℓ(·, ·) and terminal cost F (·) are defined in a
tandard quadratic form:

(x, u) ≜ ∥x−xe∥2Q + ∥u−ue∥
2
R, F (x) ≜ ∥x− xe∥2P , (10)

ith Q ∈ S6
++

, R ∈ S3
+
, weighting matrices to be defined and

∈ S6
++

, obtained by solving the Lyapunov equation:

⊤

K P + PAK +M = 0, (11)
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here the matrix AK ≜ A+ BK ∈ R6×6 describes the closed-loop
ehavior of the linear system (6):

˙ = (A+ BK )x = AKx, (12)

ith matrices A, B as in (6) and gain K ∈ R3×6 given by:

=
[
diag{Kpx , Kpy , Kpz }, diag{Kdx , Kdy , Kdz }

]
. (13)

ll the control gains must be negative to ensure the stability of
ynamics (12) by applying the controller uFL(µξ = Kx, ψ) from
5) to the nonlinear dynamics (2). In the NMPC formulation (8),
FL(Kx, ψ) is the local controller:

loc(x) ≜ uFL(Kx, ψ), (14)

ogether with the choice of the symmetric matrix M ∈ R6×6 in
(11) as follows, to ensure stability and recursive feasibility of the
NMPC closed-loop system:

M ≽ Q + λmax(R)(K⊤K + 2Γ ), (15)

with K as in (13), and Γ ∈ R6×6 is defined as:

Γ =
1

(−Uz + g)2
K⊤xyKxy, (16)

ith Kxy =
[
diag{Kpx , Kpy , 0}, diag{Kdx , Kdy , 0}

]
and Uz from (7).

he set Xf ⊂ R6 used in (9d) is the terminal invariant set derived
n Nguyen et al. (2021), where we design a terminal set4 for a
iscrete-time NMPC controller applied on a multicopter system:

Xf = {x ∈ R6
: x⊤Px ≤ δ}, (17)

ith δ = λmin(P)r2, r2 = min
q∈{x,y,z}

{
U2
q

K2
pq+K

2
dq

}
, (18)

with P obtained from solving (11), Uq as defined in (7) and Kpq , Kdq
from (13). Since the semi-global stability of the NMPC scheme
is a requirement in the controller design, we present next its
definition and impose an additional assumption on the initial
state set.

Definition 1 (Braslavsky and Middleton (1996)). A system is semi-
globally stabilizable to an equilibrium point xe by means of a
class F of feedback control laws if, for any a priori determined
compact set X0 of initial conditions, there exists a control law in
F that makes xe asymptotically stable with a domain of attraction
that contains X0.

Assumption 2. The initial states set X0 ⊂ R6 is compact and
contains the state equilibrium point xe as in (4).

3. NMPC design with terminal region enlargement

Determining the terminal set Xf in (17) requires solving the
Lyapunov equation (11) for the matrix P with a matrix M sat-
isfying (15). We will provide their formulations parameterized
in terms of the control gains (13) and make use of them in the
terminal region enlargement analysis.

3.1. Explicit solution of the lyapunov equation in (11)

We first find a parametrization of M in (15) as a function of
the control gains in (13). We simplify this 6 × 6 matrix into a
diagonal one, characterized by 6 elements which are chosen such
that the condition (15) is satisfied.

4 All the ellipsoids and balls in this paper are centered at the state
quilibrium point x = 0 as in (4).
e

3

Lemma 3. There exist a square diagonal matrix M ∈ S6
++

,

= diag{mx,my,mz,mvx ,mvy ,mvz }, (19)

nd a symmetric positive definite matrix Q ∗ ∈ S6
++

,

Q ∗ =
[
diag{Q ∗1x ,Q

∗

1y ,Q
∗

1z } diag{Q
∗

3x ,Q
∗

3y ,Q
∗

3z }

diag{Q ∗3x ,Q
∗

3y ,Q
∗

3z } diag{Q
∗

2x ,Q
∗

2y ,Q
∗

2z }

]
, (20)

here Q ∗ represents the right-hand side of (15), i.e.,
∗ ≜ Q + λmax(R)(K⊤K + 2Γ ), (21)

atisfying M ≽ Q ∗ ≻ 0. □

roof. By calculating λmax(R) of R in (10) and directly replacing K
n (13), Γ in (16), Q in (10) into the right-hand side of (15), Q ∗ has
he symmetric form as in (20). Since spec(K⊤K ) = {0, 0, 0, K 2

px +
2
dx , K

2
py +K 2

dy , K
2
pz +K 2

dz }, K
⊤K ≽ 0. Similarly, with spec(K⊤xyKxy) =

{0, 0, 0, 0, K 2
px + K 2

dx , K
2
py + K 2

dy}, K
⊤
xyKxy ≽ 0, which leads to Γ ≽ 0.

With R ≽ 0 in (10), λmax(R) ≥ 0, hence λmax(R)(K⊤K + 2Γ ) ≽ 0.
Combining with Q ≻ 0 in (10), Q ∗ ≻ 0. Finally, we examine the
positive semi-definiteness of the matrix (M −Q ∗) by considering
the quadratic form x⊤(M − Q ∗)x with M in (19), Q ∗ in (20)
and an arbitrary vector x = [x, y, z, vx, vy, vz]⊤ ∈ R6: x⊤(M −
Q ∗)x =

∑
q∈{x,y,z}[(mq − Q ∗1q )q

2
+ (mvq − Q ∗2q )v

2
q − 2Q ∗3qqvq] ≥ 0.

This is verified by simultaneously guaranteeing each individual
quadratic form to be non-negative:

(mq − Q ∗1q )q
2
+ (mvq − Q ∗2q )v

2
q − 2Q ∗3qqvq ≥ 0,∀q ∈ {x, y, z}. (22)

From Gantmacher (1960), a quadratic form is positive semidef-
inite iff the principal minors of its coefficient matrix are non-
negative, so the condition (22) is satisfied by imposing:

mq − Q ∗1q ≥ 0,mvq − Q ∗2q ≥ 0, (mq − Q ∗1q )(mvq − Q ∗2q ) ≥ Q ∗23q , (23)

∀q ∈ {x, y, z}. Moreover, the entries on main diagonal of Q ∗ ≻ 0
are also positive, i.e. {Q ∗1q ,Q

∗

2q > 0 : q ∈ {x, y, z}}. Therefore, a
choice for M which satisfies (23) is:

mq ≥ Q ∗1q + |Q
∗

3q | > 0, mvq ≥ Q ∗2q + |Q
∗

3q | > 0,∀q ∈ {x, y, z}. (24)

This completes the proof. □

Next, we show that with the terminal set Xf as in (17)–(18),
the matrix M as in (19), and the terminal weighting matrix P
satisfying (11), the NMPC scheme (8)–(9) is recursively feasible
and the dynamics (12) are asymptotically stable.

Lemma 4. The terminal set Xf in (17) is forward invariant in
the continuous-time domain. Moreover, the recursive feasibility of
the NMPC scheme and the asymptotic stability of the closed-loop
dynamics are guaranteed with the choices of P and M satisfying (11),
(15). □

Proof. Consider the Lyapunov function V = x⊤Px. Since P ≻ 0,
V > 0. Next, V̇ = x⊤(A⊤K P+PAK )x = −x⊤Mx < 0, since M ≻ 0 as
in Lemma 3, hence, Xf is forward invariant. Moreover, d

dt F (f (x))+
ℓ(x, uloc(x)) ≤ x⊤(A⊤K P + PAK )x + x⊤Q ∗x = x⊤(−M + Q ∗)x ≤ 0,
since M ⪰ Q ∗ as proven in Lemma 3, with Q ∗ as in (21), which
verifies the asymptotic stability. The proof is complete. □

Having obtained a parametrization of the matrix M in terms
of Q ∗ as in (20), we solve the full rank Lyapunov equation (11) to
obtain the matrix P . In order to do so, notice that AK and M both
have the form of a 6 × 6 square matrix composed of four blocks
of 3 × 3 diagonal matrices, hence, we choose the matrix P to be
also a square matrix composes of blocks of diagonal matrix, then
we perform block matrix manipulations to find P and prove that
P is positive definite.
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roposition 5. The solution of the Lyapunov equation (11) is
defined as a symmetric positive definite matrix:

P ≜

[
[P1] [P3]
[P3] [P2]

]
=

[
diag{P1x , P1y , P1z } diag{P3x , P3y , P3z }
diag{P3x , P3y , P3z } diag{P2x , P2y , P2z }

]
, (25)

hose entries are given by:

1q =
1
2

(
Kdq

Kpq
−

1
Kdq

)
mq +

Kpq

2Kdq
mvq , (26a)

2q =
mq

2KpqKdq
−

mvq

2Kdq
, (26b)

P3q = −
mq

2Kpq
, (26c)

ith Kpq , Kdq in (13), mq,mvq in (19) for q ∈ {x, y, z}. □

Proof. By replacing AK =

[
0 I3
[Kp] [Kd]

]
, M =

[
[m] 0
0 [mv ]

]
in (19),

and P =
[
[P1] [P3]
[P3] [P2]

]
in (25) into (11), exploiting the element-

ise matrix multiplication (denoted by ◦) on blocks of diagonal
matrices, and reorganizing the terms, we attain:

2[Kp] ◦ [P3] + [m] = 0, (27a)

[P1] + [Kp] ◦ [P2] + [Kd] ◦ [P3] = 0, (27b)

2[P3] + 2[Kd] ◦ [P2] + [mv] = 0, (27c)

which can be further simplified to a matrix equation:[0 0 2[Kp]

0 2[Kd] 2I3
I3 [Kp] [Kd]

][P1
P2
P3

]
= −

[ m
mv

0

]
, (28)

where P i ≜ [Pix , Piy , Piz ]
⊤ for i ∈ {1, 2, 3}, m ≜ [mx,my,mz]

⊤,
and mv ≜ [mvx ,mvy ,mvz ]

⊤. Then, the condition Kpq , Kdq < 0 for
q ∈ {x, y, z} entails that the square matrix on the left-hand side
of (28) is full rank, hence, (28) has a unique solution. By solving
(28) for nine unknown variables {P1q , P2q , P3q : q ∈ {x, y, z}}, we
obtain (26). □

3.2. Eigenvalues of the matrix P

After obtaining the parametrization of the matrix P as in (25)–
(26), we provide its eigenvalues since they will be employed to
expand the terminal invariant set Xf and be used to verify if
the matrix P is positive definite. Moreover, as we demonstrate
hereinafter, the size of the terminal set is also determined by the
feedback gains Kpq , Kdq in (13).

Lemma 6. The spectrum of the matrix P ∈ S6
++

as in (25) composes
of six positive eigenvalues:

spec(P) = {λ1q , λ2q : q ∈ {x, y, z}}, (29)

where each pair of eigenvalues is explicitly given by:

{λ1q , λ2q} =

{
1
2

(
P1q + P2q ±

√
(P1q − P2q )2 + 4P2

3q

)}
, (30)

nd {P1q , P2q , P3q : q ∈ {x, y, z}} are from (26). □

roof. Since P is a real symmetric matrix, define λ ∈ R an
eigenvalue of P . Therefore, λ satisfies the characteristic equation
det(P−λI6) = 0. Expanding this constraint, we attain the system
of equations: λ2I3 − λ([P1] + [P2]) + ([P1] ◦ [P2] − [P3] ◦ [P3]) =
, which can be explicitly written as a set of three equality
onstraints:{
λ2 − λ(P + P )+ (P P − P2 ) = 0 : q ∈ {x, y, z}

}
. (31)
1q 2q 1q 2q 3q

4

y solving (31) for λ, we obtain (30). Now applying the Vieta’s
ormula for the quadratic polynomial on the left-hand side of
31), the pair {λ1q , λ2q} satisfies λ1q + λ2q = P1q + P2q =
mq(K2

dq
−Kpq+1)+mvq (K

2
pq−Kpq )

2KpqKdq
> 0, λ1qλ2q = P1qP2q − P2

3q =

−m2
q+mqmvq (2Kpq−K

2
dq

)−m2
vqK

2
pq

4KpqK
2
dq

> 0 with Kpq , Kdq < 0 in (13), mq,mvq

> 0 in (24). Hence, λ1q and λ2q are positive. □

3.3. Terminal region enlargement

Now, we show that the size of the terminal set Xf in (9d)
depends on the matrix P in (25) and its eigenvalues in (30), which
in turn depends on the feedback gains Kpq , Kdq in (13) of the
FL local controller (14). Therefore, by tuning the control gains
Kpq , Kdq , we change the size of the terminal set. This subsection
presents a method of increasing the terminal set such that it
covers the set of feasible initial states.

We may enlarge the ellipsoid Xf as in (17) by increasing its
semi-axes’ length (i.e.,

√
λi(P/δ) with i ∈ {1, . . . , 6}) . However,

he directions of the semi-axes also depend on the eigenvectors
f the matrix P/δ, and they are complicated to manipulate. There-

fore, we will increase the size of the ellipsoid terminal invariant
set Xf through increasing the radius of the ball inscribed in the
ellipsoid. To do so, we define the auxiliary notion of a terminal
all:

f =
{
x ∈ R6

| ∥x∥2 ≤ r̄2
}
, with r̄2 ≜

λmin(P)
λmax(P)

r2, (32)

here r as in (18), and come to the following Lemma.

emma 7. The terminal ball Bf as in (32) is inscribed in the ellipsoid
Xf defined as in (17)–(18), i.e., Bf ⊆Xf . □

Proof. For x ∈ Bf , from (32), λmax(P)∥x∥2 ≤ λmin(P)r2, Now,
sing the Rayleigh quotient which gives a relation between the
−weighted norm and the Euclidean norm of a vector x ∈ R6:
∥x∥2p ≤ λmax(P)∥x∥2, we obtain the chain of inequalities: ∥x∥2p ≤
λmax(P)∥x∥2 ≤ λmin(P)r2, which leads to the inclusion Bf ⊆ Xf
nd completes the proof. □

Observe that the radius of the terminal ball Bf in (32) depends
n the smallest and largest eigenvalues of the matrix P , without
oss of generality, the following assumption is made to pave the
ay for the terminal set enlargement.

ssumption 8. The feedback control gains Kpq , Kdq in (13) and
q,mvq in (19), have the same values regardless of q:

pq ≜ kp, Kdq ≜ kd, mq ≜ m1, mvq ≜ m2. (33)

With Assumption 8, the three pairs of eigenvalues {λ1q , λ2q} as
n (30) are equal for q ∈ {x, y, z} Furthermore, the minimum and
aximum eigenvalues of P in (25) are also equal to the minimum
nd maximum eigenvalues in each pair:

min(P) = min
q∈{x,y,z}

{λ1q , λ2q}, λmax(P) = max
q∈{x,y,z}

{λ1q , λ2q}. (34)

sing this simplification, we present next the feasibility of the
erminal set enlargement.

roposition 9. The radius of the ball Bf in (32) can be enlarged to
nfinity with appropriate feedback gains Kpq , Kdq from (13) and the
atrix M in (19) satisfying Assumption 8. □

roof. From the simplification (33) and its consequence (34),
he smallest and largest eigenvalues of matrix P are obtained by
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eplacing (26) to (30) and explicitly expressed as in (35).

min
max

(P) =
1
4

{(
kd
kp
−

1
kd
+

1
kpkd

)
m1 +

(
kp − 1
kd

)
m2

∓

√[(
kd
kp
−

1
kd
−

1
kpkd

)
m1 +

(
kp + 1
kd

)
m2

]2

+
4
k2p

m2
1

⎫⎬⎭ .

(35)

ext, define σ ≜ m1/m2, then from the condition of m1, m2 in
emma 3, σ > 0. Further, let us define the function γ∓(kp, kd, σ ) ≜

k2d − kp + 1
)
σ+k2p−kp∓

√[(
k2d − kp − 1

)
σ + k2p + kp

]2
+ 4k2dσ 2,

hich is the numerator of λ min
max

(P) in (35) when the common
enominator is 4kpkd, hence, the radius r̄ of the ball Bf in (32)
atisfies:

¯
2
=
γ−(kp, kd, σ )
γ+(kp, kd, σ )

r2, (36)

here lim(kp,kd)→(0−,0−) γ
2
+
(kp, kd, σ ) = 4σ 2. Therefore, by replac-

ng r2 in (18), under Assumption 8, r2 = U2
min

k2p+k2d
with U2

min ≜

inq∈{x,y,z}
{
U2
q

}
to (36), we obtain the limit of r̄2 as kp, kd ap-

roach zero from negative as lim(kp,kd)→(0−,0−) r̄2

= lim(kp,kd)→(0−,0−)
−σk2dkp−k

3
p+2k

2
pσ−kpσ

2

σ2(k2p+k2d)
U2
min, where−σk2dkp−k3p+

k2pσ > 0, and lim(kp,kd)→(0−,0−)
−kp

k2p+k2d
= +∞ when k2d → 0 faster

han kp → 0−. Hence, the proof is complete. □

roposition 10. Suppose that Assumption 2 and Assumption 8
re satisfied, the ellipsoid Xf as in (17)–(18) can be served as
he terminal set for the NMPC problem (8)–(16) to achieve the
emi-globally asymptotic stability. □

roof. The radius of the terminal ball Bf is easily enlarged by
hanging the control gains kp, kd, which leads to the enlargement
f the terminal set Xf to cover any feasible initial states. With
ssumption 2 and its result in Proposition 9, there always exists a
all covering the set of initial states X0. Since the terminal ball is
entered at the state equilibrium xe = 0 defined in (4), the semi-
lobally asymptotic stability of the NMPC controller is guaranteed
y ensuring that the radius of the terminal ball larger than or
qual to the largest norm of all points belonging to the set X0:

¯ ≥ r0 ≜ d(xe,X0), (37)

hich completes the proof. □

.4. NMPC design procedure

After gathering all the necessary ingredients for the calcula-
ion of the terminal set, we present in Algorithm 1 the proce-
ure to design an NMPC controller with semi-globally asymptotic
tability.

. Illustrative examples

This section validates the NMPC design with the terminal
egion enlargement through simulations. While the proposed ap-
roach shows robust promise for experimental implementation,
n this paper we concentrate only on providing the necessary
ngredients for theoretical guarantees. The simulations are done
n the Crazyflie quadcopter platform with the input constraint U

n (3) chosen as follows:{
◦ ◦

}

= 0 ≤ T ≤ 2 g, |φ| ≤ 10 , |θ | ≤ 10 , (38)

5

Algorithm 1 NMPC design with semi-globally asymptotic stabi-
lization

data The compact set X0 contains the equilibrium state xe, Uq
(q ∈ {x, y, z}) in (7)

1: Calculate r0 = d(xe,X0) as in (37)
2: Choose Q ∈ S6

++
, R ∈ S3

+
in (10)

3: Construct K in (13), calculate Γ in (16) by solving r̄ ≥ r0 for
kp, kd < 0 in (33), with:

4: function r̄ =compute_r_bar(kp, kd)
5: Calculate Q ∗ = Q + λmax(R)(K⊤K + 2Γ ) in (21)
6: Specify M ≽ Q ∗ in (15) satisfying (24) and (33)
7: Determine P in the terminal cost (10) following (26)

8: Calculate r2 = min
q∈{x,y,z}

{
U2
q

kp2+k2d

}
in (18)

9: Calculate the radius of Bf in (32): r̄2 = λmin(P)
λmax(P)

r2

10: end function
11: Construct the terminal set Xf in (9d) using (17)

return P , Xf
12: Choose the MPC prediction horizon TP in (8) which guarantees

the recursive feasibility
13: Solve the optimization problem (8)

result NMPC solution ū∗t in (8)

the ψ angle is fixed as zero, and the input constraint (7) Uq =

.0875 ∀q ∈ {x, y, z} (Nguyen et al., 2021). For comparing the
erformance of our proposed Algorithm 1, we consider the qsMPC
pproach in Chen and Allgöwer (1998), which makes use of a
inear local controller uqs = Kqs(x − xe) + ue to linearize the
ynamics (2) inside the terminal set as:

˙ = AKqsx. (39)

.1. Simulation setup

The following three scenarios are established to evaluate our
roposed terminal set construction and enlargement approach.
e utilize the subscript i□, with i ∈ {1, 2, 3} for the equivalent

cenario.

cenario 1 (qsMPC) follows the procedure in Chen and Allgöwer
1998, Section 3). The feedback gain matrix Kqs is designated as
follows:

Kqs =

⎡⎢⎣ 0 0 kp 0 0 kd
kp
g s(ψ) − kp

g c(ψ) 0 kd
g s(ψ) − kd

g c(ψ) 0
kp
g c(ψ) kp

g s(ψ) 0 kd
g c(ψ) kd

g s(ψ) 0

⎤⎥⎦ , (40)

uch that the matrix AKqs in (39) is the same as AK in (12),
i.e., the eigenvalues of the corresponding closed-loop dynamics
are similar, so that our comparison is meaningful. We choose
1kp = 1kd = −2 which induces λmax(AKqs ) = −1 and leads to
the choice of κ = 0.95. We then solve for the terminal weighting
matrix as:

1P =
[ diag{304.8837,304.8837,342.4938} diag{147.3301,147.3301,166.1845}
diag{147.3301,147.3301,166.1845} diag{145.0961,145.0961,164.9377}

]
,

and find α = 0.0687. The terminal set in this scenario is 1Xf =

{x ∈ R6
: x⊤(1P)x ≤ α}.

Scenario 2 (the initial state outside the terminal set) mimics
our work in Nguyen et al. (2021). The feedback gains are similar
to scenario 1, 2kp = 2kd = −2 in (13), which makes the
radius of the ball Bf in (32) 2 r̄ = 0.2045 (2r = 0.3845). We
intentionally choose the initial state x0 = [0.3,−0.4, 0.5, 0, 0,
0]⊤ to be numerically and visually outside the terminal set 2Xf .
Hence, r = d(x ,X ) = ∥x − x ∥ = ∥x ∥ = 0.7071.
0 e 0 0 e 0
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cenario 3 (the initial state inside the terminal set) follows our
lgorithm 1. Here, we reduce kp, kd (13) until the radius r̄ of the

ball Bf in (32) larger than r0 in scenario 2 to make the initial
state inside the terminal set 3Xf , satisfying (37), which leads to
he choice 3kp = 3kd = −0.75 and the radius 3 r̄ = 0.7111
3r = 1.0253). The terminal sets in scenarios 2 and 3 are iXf =

x ∈ R6
: x⊤(iP)x ≤ λmin(iP)ir2} for i ∈ {2, 3}.

For all three scenarios, the simulation length is chosen as 6s.
he optimal control problem (8) is transformed to a nonlinear
rogramming problem and is solved using the Direct Multiple
hooting method (Bock & Plitt, 1984) in CasADi (Andersson et al.,
019) with solver IPOPT (Wächter & Biegler, 2006). The initial
uesses for the solver are (xe, ue). Each NMPC iteration [t, t + Tp]
s split into Tp/δ arcs, t0 = t, t1, . . . , tTp/δ = t + Tp, with
the sampling time in Section 2. In each arc [ti, ti+1], i ∈

1, . . . , Tp/δ− 1}, the input is kept constant, while the final state
t ti+1 is derived from (2) using the Runge Kutta 4th order method
ith step size δ = 0.1 and the initial condition at ti constrained
o be the final state of the previous interval [ti−1, ti], whereas
he initial condition at t0 is x0. The ellipsoidal terminal sets are
lotted with MPT3 toolbox (Herceg et al., 2013), while their
olumes are calculated using CORA (Gaßmann & Althoff, 2022).
he simulations are done on a lab computer with an AMD Ryzen 5
600 6-core processor, 3.4GHz, 12 CPUs, 16GB RAM, Python 3.8.5.
The sampling time δ in Section 2 is chosen as 0.1s. For the

rediction horizon Tp, we choose the minimum length such that
he problem attains the feasibility property, i.e., the first MPC
teration is solvable. Since the terminal set 3Xf in scenario 3
lready contains the initial state, the shortest Tp, 3Tp = 0.2s (2
teps) is chosen. For scenario 2, the minimum Tp to guarantee the
ecursive feasibility is 2Tp = 1.1s, while 1Tp = 1.9s for the qsMPC
with a small size ellipsoid.

Remark 11. Assumption 8 only makes Q ∗1x = Q ∗1y > Q ∗1z , Q
∗

2x =
∗

2y > Q ∗2z , and Q ∗3x = Q ∗3y > Q ∗3z with kp, kd < 0, R ∈ S3
+
, Q ∈ S6

++

in (10), hence, the condition for the matrix M in (24) with the
simplification (33) is augmented to:

m1 ≥ maxq∈{x,y,z}{Q ∗1q+|Q
∗

3q |}, m2 ≥ maxq∈{x,y,z}{Q ∗2q+|Q
∗

3q |}. (41)

We choose Q , R in (10) to be 10I6, I3 for the three scenarios.
or scenario 2, maxq∈{x,y,z}{Q ∗1q + |Q

∗

3q |} = maxq∈{x,y,z}{Q ∗2q +
Q ∗3q |} = 18.2103, hence, we choose 2M = diag{20I3, 30I3}, while
n scenario 3, maxq∈{x,y,z}{Q ∗1q+|Q

∗

3q |} = maxq∈{x,y,z}{Q ∗2q+|Q
∗

3q |} =

1.1546, we choose 3M = diag{20I3, 30I3}. Therefore, following
26), we obtain 2P =

[
30I3 5I3
5I3 10I3

]
and 3P =

[
38.(3)I3 13.(3)I3
13.(3)I3 37.(7)I3

]
.

.2. Comparisons and discussions

The simulation results are shown in Figs. 1–5. Since the three
MPC controllers have the same weighting matrices Q , R in the
tage cost, the performance of these controllers boils down to
hree major factors: the terminal cost weighting matrix P , the size
f the terminal set Xf , and the prediction horizon Tp. In Fig. 1,
or each scenario, we plot the convex hull of the projections of
he three ellipsoids iXf onto the (q − vq) plans, for i ∈ {1, 2, 3}
nd q ∈ {x, y, z}, following the steps in Karl et al. (1994, Section
). We also show the state trajectories vqi − qi with q ∈ {y, z}
nd i ∈ {1, 2, 3}. The terminal set 1Xf in scenario 1 is the green
llipsoid that can only be easily seen with a 6x zoom. The ellipsoid
n scenario 2 is the red ellipsoid that does not cover the initial
tate. By just decreasing the control gains kp, kd, the red ellipsoid
ecomes the large blue ellipsoid in scenario 3. Our approaches
rovide larger ellipsoid terminal sets: the terminal set in scenario
(vol( X ) = 25 × 10−4) is ≃ 5.7 × 106 times larger than
2 f

6

Fig. 1. The trajectories projected onto the y− z plane.

Fig. 2. Multicopter actual motion for the 3 scenarios.

Fig. 3. Multicopter velocity for the 3 scenarios.

Table 1
The settling time (ts [s]) for each state in the 3 scenarios.

x y z vx vy vz

Scenario 1 2.7 3 3.1 2.8 3.1 3.3

Scenario 2 2.5 2.8 2.8 2.6 2.9 3.0

Scenario 3 1.8 2 4.7 2.1 2.4 4.3

the qsMPC terminal set (vol(1Xf ) = 4.3766 × 10−10), and by
simply reducing the control gains from scenario 2 to scenario 3,
the ellipsoid is ≃ 801 times larger (vol(3Xf ) = 2.0028).

The change of the position (x, y, z) are in Fig. 2, and the
velocity (vx, vy, vz) are in Fig. 3. We choose the 2% settling time
(t ) criteria to evaluate the convergence and gather the results
s
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i
f
2

Fig. 4. Multicopter control inputs for the 3 scenarios.

Fig. 5. Calculating time in the 3 scenarios.

n Table 1. For all 6 states, although scenario 1 has the same
eedback control gains as scenario 2 (kp = kd = −2), scenario
provides a faster convergence with its shorter Tp. On the other

hand, scenario 3 gives the fastest rate for x, y, vx, vy, but the
slowest for z and vz , despite the initial state is already inside the
terminal set and the Tp in scenario 3 is the shortest. The control
inputs are in Fig. 4, satisfying the input constraint (38), which are
implicitly imposed in the choice of Uq (q ∈ {x, y, z}).

An energy consumption function along the simulation horizon,
E =

∫ tend=6s
tinit=0s

T 2 dt , where T is the normalized thrust applied to
the Crazyflie, is employed to quantitatively compare the con-
trollers. The quadcopter spends the least energy in scenario 3
(3E = 588.3076 m2/s3) because it is already inside the terminal
invariant set from the beginning, while 1E = 588.6654 and 2E =
588.9833 (m2/s3). The calculating time (CT), i.e., the time needed
to solve (8), and the mean CT per step, are shown in Fig. 5. The
qsMPC takes 115 ms per step in average, higher than the sampling
time δ = 100 ms, while scenario 2 reduces this to 67 ms. With
the advantage of reducing the prediction horizon Tp to 2 steps,
scenario 3 has the shortest CT per step, 19 ms.

5. Conclusions

This brief paper presents an NMPC design with semi-globally
asymptotic stability for a multicopter, accomplished by demon-
strating the flexibility in enlarging the size of the terminal in-
variant set only by changing the feedback linearization control
gains. This technique shows potential in real-time implementa-
tion, where onboard computing time is critical. Future work will
focus on finding time-varying, optimal size terminal sets that
balance the performance of the NMPC scheme and the online
computation time.
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