
HAL Id: hal-04861046
https://hal.science/hal-04861046v1

Submitted on 1 Jan 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Indoor formation motion planning using B-splines
parametrization and evolutionary optimization

Vincent Marguet, Cong Khanh Dinh, Florin Stoican, Ionela Prodan

To cite this version:
Vincent Marguet, Cong Khanh Dinh, Florin Stoican, Ionela Prodan. Indoor formation motion plan-
ning using B-splines parametrization and evolutionary optimization. Control Engineering Practice,
2024, 152, pp.106066. �10.1016/j.conengprac.2024.106066�. �hal-04861046�

https://hal.science/hal-04861046v1
https://hal.archives-ouvertes.fr

Indoor formation motion planning using B-splines parametrization and
evolutionary optimization

Vincent Margueta, Cong Khanh Dinha, Florin Stoicanb and Ionela Prodana

aUniv. Grenoble Alpes, Grenoble INP†, LCIS, F-26000, Valence, France.
† Institute of Engineering and Management University Grenoble Alpes.

{vincent.marguet, cong-khanh.dinh, ionela.prodan}@lcis.grenoble-inp.fr,
bFaculty of Automatic Control and Computers, Politehnica University of Bucharest, Splaiul Independenţei nr. 313, sector

6, Bucharest, RO-060042, Romania florin.stoican@upb.ro

Abstract

Formation generation with connectivity maintenance under efficiency restrictions for a group of autonomous
vehicles is a challenging problem. By planning trajectories offline, the vehicles can follow optimized paths,
resulting in improved efficiency in terms of time, energy, and resource utilization. This paper introduces a co-
herent approach that leverages evolutionary computing, notably a differential evolutionary algorithm, along
with B-spline parametrizations, to effectively coordinate multiple indoor nanodrones. Off-line trajectories
for both the leader and followers are designed to enforce multiple constraints (i.e., position, velocity, an-
gles, thrust, angular velocity, waypoint passing, obstacle avoidance). The proposed approach accommodates
intricate maneuvers such as formation switching and obstacle avoidance, facilitated by a knot refinement
procedure that minimizes conservatism in constraint enforcement. The theoretical results are validated in
both simulation and experiments.

Keywords: Trajectories generation, Formation planning, B-spline curves, Knot refinement, Differential
Evolution (DE), Multicopters.

1. Introduction

Motivation and related works: The applica-
tions of aerial drones, particularly multicopters, are
steadily expanding, with increasing utilization in
various sectors. They have been deployed in agri-
culture [1], infrastructure inspection [2], as well as
in entertainment fields such as cinematography [3].
In certain applications, it has been demonstrated
that the utilization of multiple drones flying in for-
mation is advantageous from an economic stand-
point. For example, in precision agriculture appli-
cations, it has been observed that the deposition
amount of spray is greater when employing close
formation drone spraying compared to sequential
spraying [4]. Additionally, drones are frequently
used for data collection and transmission tasks.
Maintaining connectivity in this applications en-
sures the uninterrupted transmission of data from
drones to ground stations or remote servers, en-
abling real-time analysis and decision-making [5],
[6]. Hence, across a wide range of aerial drones ap-

plications, maintaining connectivity is essential for
ensuring safe, reliable, and effective operation [7],
[8].

Overall, the combination of nonlinear dynamics
inherent to multicopters, high dimensionality, real-
time requirements, and connectivity constraints
renders the optimization problem for trajectory
generation with operating and connectivity con-
straints highly challenging to solve. In the liter-
ature, both online and offline procedures have been
proposed to address this issue.

The online approach [2],[9] offers the advantage
of adapting trajectories in real-time by utilizing
onboard components such as Light Detection and
Ranging (LiDAR) technologies to assess the agent’s
actual position and its surrounding environment.
However, online trajectory computation must be
performed rapidly, with limited data and expensive
onboard technologies. These additional constraints
may restrict the number of considerations in solving
the problem online.

Preprint submitted to Control Engineering Practice April 15, 2024

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4812277

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed

Generating constrained trajectories offline offers
several advantages [10, 11]:

i) it allows for more computationally intensive
optimization algorithms to be employed, as
there is no real-time constraint, leading to im-
proved trajectory solutions;

ii) it allows the incorporation of complex environ-
mental and mission constraints, which may be
challenging to address in real-time scenarios;

iii) it provides the opportunity for trajectory re-
finement and post-processing, allowing for the
optimization of additional objectives or the ad-
justment of trajectories based on updated in-
formation.

Various works address the offline trajectories gener-
ation. For example, [12] propose deforming at run
time spline trajectories pre-computed offline to ac-
commodate changing environments and objectives.
Note that, the trajectory computed during the op-
timization process needs to be stored, hence requir-
ing a representation by a set of points. The sim-
plest approach to obtain these points is to designate
waypoints through which the drones must pass, as
demonstrated in previous studies such as [1], where
drones traverse straight lines between waypoints
representing farm blocks. However, obstacles may
exist between consecutive waypoints, necessitat-
ing a more sophisticated trajectory definition. A
promising solution involves combinations of control
points and specific functions that weight the im-
portance of these points throughout the trajectory.
Among these solutions, Bezier curves [13] and B-
spline curves [14], [15], [16] are commonly utilized.
It is noteworthy that these two types of curves are
interconnected, and [17] demonstrate that a 2D B-
spline curve can be locally converted into a Bezier
curve with additional control points, offering the
advantage of tighter convex hulls formed by the
control points. [18] solve an optimization prob-
lem using precomputed B-spline basis functions and
optimizing the control points coordinates to gen-
erate a feasible trajectory for a single multicopter
passing through predifined waypoints. In the afore-
mentioned study [16], B-spline curves describe the
environment perceived by the LiDAR system in-
tegrated into the agent, underscoring the utility of
such curves for representing complex environments.
Indeed, B-spline curves possess numerous mathe-
matical and geometrical properties that facilitate

the design of smooth trajectories while avoiding ob-
stacles, owing to the localized importance of each
control point. These properties will be elaborated
upon in the subsequent section.

Contributions: This study builds upon our pre-
liminary results, where an optimization-based algo-
rithm was developed for single multicopter trajec-
tory generation, as outlined in [19]. The optimiza-
tion problem minimized the input effort while satis-
fying various operational constraints. In this paper,
we extend our research to address formation motion
planning for multiple multicopters, with experimen-
tal validation. In addition to constraints on posi-
tions, velocities, angles, thrust, angular velocities,
and waypoint passing, we introduce obstacle avoid-
ance constraints and inter-agent conditions. These
include communication constraints among multiple
agents and the requirement to maintain and switch
formations during flight. Unlike the connectivity
maintenance approach proposed in [7], which in-
volves solving Line of Sight constraints using Mixed
Integer Programming (MIP) - known for its high
computational complexity [20] - our contribution
proposes a coherent integration of B-splines prop-
erties, knot refinement, and Differential Evolution
(DE) computation.

Thus, our contribution addresses an inherently
non-convex problem that traditional solvers strug-
gle to solve. The proposed algorithm generates of-
fline trajectories for multiple nanodrones while en-
suring compliance with their dynamical constraints,
waypoint passing, communication range, and for-
mation switching. By leveraging the properties of
B-splines, we efficiently formulate the cost in the
evolutionary algorithm, leading to improved com-
putation time and feasibility, when compared to
existing methods [18]. In summary, we achieve the
following:

i) solve a non-convex optimization problem with
less conservative properties by leveraging knot
refinement in the B-splines trajectories param-
eterization. This approach allows us to tighten
the convex hulls containing the curve in the
constraints formulation, leading to more accu-
rate and efficient solutions;

ii) design an offline motion planning algorithm ca-
pable of generating multiple trajectories that
adhere to various constraints, including un-
manned aerial vehicle dynamics, waypoint con-
straints, communication constraints, forma-

2

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4812277

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed

tion constraints, and obstacle avoidance con-
straints;

iii) conduct a comparative analysis of the results
obtained from our algorithm with those from
other methods documented in the literature
[18]. This comparison provides valuable in-
sights into the effectiveness and efficiency of
our approach;

iv) validate our proposed trajectories
through experiments involving multi-
ple indoor nanodrones, demonstrat-
ing the feasibility and practicality of
our approach in real-world scenarios
(https://tinyurl.com/CEPmarguetVID).

Organization: Section 2 provides a review of es-
sential definitions and properties of the B-spline
curve, knot refinement, introduces the multicopter
model utilized in this study, and outlines the prob-
lem of optimal trajectory generation. In Section 3,
the algorithm for solving a motion planning prob-
lem aimed at connectivity maintenance is detailed.
Section 4 demonstrates the advantages of this ap-
proach through experimental results and compar-
isons. Finally, Section 5 summarizes the findings
and draws conclusions.

Notations: Throughout the paper, the following
notations are employed: vectors and matrices are
denoted in bold, T f is the final time of the flight
that starts at 0s; zi, żi, z̈i,

...zi , z(4)
i correspond to the

trajectory of agent i and its derivatives; z refers to
the trajectories of all the agents; n is the number of
control points describing a B-spline curve; Bd,ξ(t)
are the B-spline basis functions of degree d and
knot vector ξ; τk is the (k + 1)-th time instant of
the knot vector ξ; xPi

k is the coordinate on x-axis
of the (k + 1)-th control point of agent i; pwp

ℓ
is

the position of the ℓ-th way-point associated to
the time tℓ; the number of waypoints is NWP; the
transpose of a matrix X is denoted X⊤.

2. Prerequisites and problem formulation

2.1. B-spline curves in trajectory generation
A B-spline curve is described as a linear combina-

tion of control points and B-spline basis functions.
In our setting, the trajectory of an agent i is defined
as a B-spline curve:

zi(t) =
n−1∑
k=0

Pi
kBk,d,ξ(t) = PiBd,ξ(t),∀t ∈ [0,T f], (1)

with P =
[
Pi

0 . . . Pi
n−1

]
the matrix

which gathers the control points, Bd,ξ(t) =[
B0,d,ξ(t) . . . Bn−1,d,ξ(t)

]⊤
the basis vector.

B-splines of degree up to d ≤ m − 2 are defined
recursively over the knot sequence ξ = {0 = τ0 ≤
τ1 ≤ ... ≤ τm = T f }:

Bk,1,ξ(t) =

1, t ∈ [τk; τk+1[
0, otherwise,

(2a)

Bk,d,ξ(t) =
t − τk

τk+d − τk
Bk,d−1,ξ(t)

+
τk+d+1 − t

τk+d+1 − τk+1
Bk+1,d−1,ξ(t). (2b)

The following properties [21] hold:

P1) B-splines basis functions have a local support:

Bk,d,ξ(t) = 0, ∀t < [τk; τk+d+1). (3)

P2) B-splines basis functions partition the unity:

n−1∑
k=0

Bk,d,ξ(t) = 1, ∀t ∈ [τ0; τm] (4a)

and
Bk,d,ξ(t) ≥ 0, ∀t ∈ [τ0; τm]. (4b)

P3) The ’r’ order derivatives of B-spline basis func-
tions are linear combinations of B-splines of
lower degree, i.e. there exists a matrix Md,d−r

such that:

B(r)
d,ξ(t) =Md,d−rBd−r,ξ(t). (5)

P4) Bk,d,ξ(τl) ∈ Cd−µl at τl ∈ ξ with multiplicity µl

and C∞ otherwise. A function of class Ck is
a function that has a k-th derivative that is
continuous in its domain.

P5) The B-spline curve (1) lies within the union of
all convex hulls defined by all subsets of d + 1
consecutive control points.

P6) On each non-empty sub-interval [τℓ, τℓ+1), the
basis functions of degree d−1 can be expressed
as combination of the basis functions of degree
d, thus, the differentiated B-spline curve may
be expressed as:

żi(t) = ṖiBd−1,ξ(t) = ṖiDℓ

d−1,dBd,ξ(t), t ∈ [τℓ, τℓ+1),
(6)

3

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4812277

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed

with Dℓ
d−1,d computed accordingly. Such a ma-

trix always exist since any polynomial of degree
d − 1, żi(t) on the sub-interval [τℓ, τℓ+1), can
be described by polynomials of degree d, the
B-splines functions Bd,ξ(t), again on the sub-
interval [τℓ, τℓ+1).

Remark 1. Given P5), the end points of the tra-
jectory may be imposed directly through the choice
of first and last control points iff the first and last
knot elements have multiplicity d + 1:

ξ = {0 = τ0 = . . . = τd < τd+1 < . . .

. . . < τm−d−1 < τm−d = . . . = τm = T f }. (7)

For further use, note that we take n = m − d the
number of control points.

In [3], a non-uniform knot vector is used to solve
the trajectory generation problem: the knot ele-
ments themselves are decision variables in the op-
timization problem, i.e., the trajectory is cut into
smaller pieces and continuity between these pieces
(and their derivatives) has to be ensured. This
is cumbersome and greatly increases the complex-
ity of the problem. On the other hand, taking
an uniform knot sequence allows to have an eas-
ier formulation and faster computation as most of
the calculations can be performed once, prior to
the resolution of the optimization problem. Hence,
hereinafter, the knot vector is not only clamped
(as defined in (7)) but also uniformly spaced, i.e.,
τℓ+1 − τℓ = T f /(n − d),∀ℓ ∈ {d, . . . ,m − d − 1}. ♦

Lastly, we emphasize the geometric insight of the
convex hull property P5) through the illustration
in Figure 1. The fourth control point, P3, is moved
along a segment (the dotted line), which influences
only locally (over support [τ3, τ8) the curve’s shape
(light gray curves) and the union of convex hulls
containing them (dashed light gray contours).

The point of practical importance is that, once
the parameters of the B-spline basis functions are
fixed, the resulting B-spline curve depends only on
its control points. Thus, the trajectory planning
problem is reduced to finding the optimal coordi-
nates of the control points.

2.2. Knot refinement for B-splines

Introducing a new time instant λ into the original
knot vector ξ is called knot insertion. The resulting
refined knot vector becomes ξ̄ = {τ0 < . . . < τ j < λ <

Figure 1: Consequence of the displacement of one control
point on the B-spline curve. The convex hulls composed of
d + 1 consecutive control points are bounding the B-spline
curve.

τ j+1 < . . . < τm} and if the control points correspond-
ing to the refined family of B-splines {B̄k,d,ξ̄(t)}k=1,...,n̄,
induced by ξ̄, are chosen as

Qi
k = αkPi

k + (1 − αk)Pi
k−1 (8)

with αk =

1, k ≤ j − d,
λ − τk

τk+d − τk
, j − d + 1 ≤ k ≤ j,

0, k ≥ j + 1,
the original B-spline curve (1) composed of n con-
trol points may also be expressed in function of
n̄ = n + 1 control points:

zi(t) =
n−1∑
k=0

Pi
kBk,d,ξ(t) =

ñ−1∑
k=0

Qi
k B̄k,d,ξ̄(t), ∀t ∈ [0,T f].

(9)
The advantage of increasing the number of con-

trol points is that the union of convex hulls bound-
ing the curve is guaranteed to become tighter [22,
Corollary 1] at a reasonable increase in complexity
(more control points are considered but they de-
pend linearly on the initial ones, i.e., the number
of decision variables in a subsequent optimization
problem does not increase).

An illustration of this idea is shown in Figure 2
where a knot refinement (repeated knot insertion)
procedure is employed.

2.3. Multicopter model
The quadcopter model has been fully described

in [23]. The absolute linear position of the quad-

4

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4812277

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x (m)

y
(m

)

Convex hull without
knot refinement
Convex hull with
knot refinement
B-spline curve
Refined Control Point
Initial Control Point

Figure 2: Impact of knot refinement on the the conservative-
ness of the convex hull property. The same curve (in red)
is defined by 11 control points (blue) and 18 control points
(green).

copter is defined in the inertial frame x, y, z-axis
with ξ =

[
x y z

]⊤
. The attitude is defined in

the same inertial frame with the three Euler angles
η =

[
ϕ θ ψ

]⊤
. In the body frame, the angular

velocities are denoted by ω =
[
p q r

]⊤
. The ro-

tation matrix from the body frame to the inertial
frame RW

B is composed of 3 columns denoted as xB,
yB and zB. The transformation matrix for angular
velocities from the inertial frame to the body frame
is N(η).

N(η) =

1 0 −sθ
0 cϕ sϕcθ
0 −sϕ cϕcθ

 , (10a)

RW
B =

cθcψ sϕsθcψ − cθsψ cϕsθcψ + sϕsψ
cθsψ sϕsθsψ + cθcψ cϕsθsψ − sϕcψ
−sθ cθsϕ cθcϕ

 .
(10b)

where c stands for cos and s stands for sin.
Taking T the normalized thrust, g the gravitational
acceleration and zw =

[
0 0 1

]⊤
the world frame’s

z-axis, the following relations stand:

ξ̈ = TzB − gzw, (11a)
η̇ = N−1(η)ω. (11b)

The model considered in terms of in-
puts u =

[
T p q r

]⊤
and states x =

[
x y z ϕ θ ψ ẋ ẏ ż

]⊤
is taken from [18]

as a nine-state quadcopter model that neglects
aerodynamic effects and external disturbances.

2.4. Optimal trajectories generation

The constrained optimization problem for trajec-
tory generation for quadcopter dynamics such as in
(11) is usually formulated as follows. Similar con-
structions appear in the literature [24].

min
z(t)

∫ T f

0
E(z(t))dt (12a)

s.t. zi(t) ⊂ Kp, 0 ≤ t ≤ T f , ∀i, (12b)
vi(t) ≤ vmax, 0 ≤ t ≤ T f , ∀i, (12c)
|ϕi(t)| ≤ ϵ, |θi(t)| ≤ ϵ, 0 ≤ t ≤ T f , ∀i, (12d)
Tmin ≤ Ti(t) ≤ Tmax, 0 ≤ t ≤ T f , ∀i, (12e)
|pi(t)| ≤ ωmax, |qi(t)| ≤ ωmax, 0 ≤ t ≤ T f ,∀i,

(12f)
pi(0) = pi

0, vi(0) = 03×1, ai(0) = 03×1, ∀i, (12g)
pi(T f) = pi

f , vi(T f) = 03×1, ai(T f) = 03×1, ∀i,
(12h)

∥z1(tℓ) − pwp
ℓ
∥2 ≤ dwp, ℓ = 1, . . . ,NWP, (12i)

z j(t) − zi(t) = ∆i j,h, th
0 ≤ t ≤ th

f , ∀i, j, h (12j)
di j(t) ≤ ρ, ∀(i, j) ∈ L, 0 ≤ t ≤ T f , (12k)
zi(t) < ∪Obs, 0 ≤ t ≤ T f , ∀i, (12l)

where:

• (12a) corresponds to a cost function to min-
imize (trajectory length, the energy spent or
the time to achieve a mission);

• (12b) and (12c) describe the position (the tra-
jectories have to stay in a bounded box Kp rep-
resenting the indoor environment) and velocity
constraints;

• (12d) and (12f) consider the angle and angular
velocity constraints;

• (12e) denotes the thrust constraint;

• (12g) and (12h) define initial and terminal re-
strictions;

• (12i) describes the waypoint constraint and
(12l) is the obstacle avoidance constraint;

5

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4812277

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed

• (12j) define the formation configuration con-
straints: the position difference on each axis
between agents i and j is ∆i j,h, i.e. the position
difference corresponding to the h-th formation
configuration during its associated time inter-
val [th

0, t
h
f];

• (12k) govern communication constraints (the
distance between the agents in the pairs (i, j)
from L (all the desired pairs of agents that have
to communicate) must be inferior to the com-
munication range ρ).

All the functions (many of which might be non-
linear) appearing in (12) will be expressed in terms
of the multicopter trajectory and its derivatives.
Taking the trajectory as a B-spline curve (1),
a priori fixing the knot vector and the degree
of the basis functions and, where needed, using
over-approximations such as P5), the continuous-
time (and hence, infinite dimensional) optimization
problem (12) is recast into a finite-dimensional, sub-
optimal optimization problem which depends only
on the control points.

Unfortunately, while tools such as Yalmip [25]
to pre-process the problem and solvers such as
MOSEK [26] to retrieve the solution exist and are
quite mature, the underlying issues of nonlinear-
ity in either/both the cost and constraints remain.
The question arises whether expensively searching
for an optimal solution is worth the hassle in the
first place. In practice we would be content with
a sub-optimal solution if it can be obtained signif-
icantly faster and if additional post-processing can
show it is feasible to the original problem.

An approach that allows to handle efficiently the
constraints and objective functions even when non-
linear, is population algorithms like Particle Swarm
Optimization (PSO), [27, 28, 29] or Differential
Evolution (DE), [30]. Both of them are minimiz-
ing a global objective function that takes into ac-
count the constraints as penalty terms. The general
idea of these population algorithms is to compute
many trajectories (candidate solutions), compute
their associated cost and update them iteratively
until a threshold (number of iteration, convergence
to a local minimum) is achieved, at which point,
the best candidate is selected as the solution. Be-
yond the variations of a particular method, the ba-
sic idea is to penalize constraint violation such as to
‘push’ the solution towards (at least) a local mini-
mum. The disadvantage, as with all constraint re-
laxation methods is that there is no guarantee that

the end result is feasible. Still, the solution can be
checked in a post processing step and the entire pro-
cedure can be repeated for a different tuning of the
parameters. Since computation time strongly de-
pends on population size and choices made in the
constraint description, the user has much leeway in
deciding what is the best strategy in obtaining a
‘good-enough’ solution. Lastly, it should be stated
that it is surprisingly easy to arrive to an optimiza-
tion which is prohibitively-difficult to solve by clas-
sical methods and that heuristic methods such as
PSO or DE may prove to be the only option.

3. Connectivity maintenance problem

The motion planning scheme for a formation
composed of a leader and its followers is twofold:

i) First, an optimal trajectory for the leader
is generated while respecting the dynamical,
space, waypoint, the initial and final con-
straints of (12) using the differential evolution
algorithm.
Once the leader’s trajectory is obtained, we
carry a knot refinement procedure to increase
the degrees of liberty for the trajectories of the
followers. Note, that the leader’s trajectory re-
mains unchanged, it is the followers that have
to adapt.

ii) Second, for the followers, we keep the above
constraints (except the waypoint constraint,
since their movement is relative to the afore-
computed leader’s trajectory) while, addition-
ally, satisfying formation configuration and
communication constraints.

Both problems of the motion planning mechanism
are using a differential evolution algorithm, as men-
tioned in Section 2.

3.1. Trajectory planning for the leader

The objective function is given as a sum of
weighted penalty terms, each of them expressed in
function of variable X =

[
P1

0 P1
1 . . . P1

n−1

]
which

gathers the control points (subsequently denoted by
upper script ‘1’) defining the leader’s trajectory as
in (1):

FL(X) =
7∑

q=0

γqFq(X), (13)

6

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4812277

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed

where F0(X) penalizes the input effort, F1(X) the
position, F2(X) the velocity, F3(X) the roll and pitch
angles, F4(X) the thrust, F5(X) the angular veloc-
ity, F6(X) the collision with the obstacles, F7(X)
the distances between the waypoints and the posi-
tion of the leader at the waypoints times and with
γ0, . . . , γ7 the weights associated to each of these
penalties.

We detail now the expression of each of these
penalties corresponding to the constraints (12b)–
(12i). As mentioned earlier, we are exploiting B-
spline constructions and their properties to arrive at
expressions which involve the control points. The
reader is invited to take a look to [18] for the proofs
to obtain constraints on position, velocity, angle,
thrust, angular velocity and waypoint passing. We
will obtain less conservative expressions for the an-
gular and angular velocity constraints (proofs in
Appendices 6.1 and 6.2) and convert all the con-
straints in penalty terms that will penalize a tra-
jectory if the constraint is not satisfied.

There are multiple ways in which the penalty may
be enforced. Hereinafter we propose to define σ:
Rn → R+ such that

σ(x) =
n∑

i=1

max(0, xi). (14)

Noting that any of the considered constraints may
be put into form h(x) ≤ 0, the ramp function σ(h(x))
returns zero whenever the constraint is verified and
the 1-norm of the constraint violation components
(those terms hi(xi) ≥ 0), when not.

3.1.1. Minimizing the input effort
The objective (12a) of the optimization problem

is to minimize the input effort which corresponds to
the trajectory’s snap (its fourth-order derivative).
Using P3), the derivative property of the B-spline
functions, the trajectory’s snap may be expressed
in terms of control points:

F0(X) = min
z1(t)

∫ T f

0

∥∥∥z(4)
1 (t)

∥∥∥2

2 dt

=

∫ T f

0

∥∥∥∥∥∥∥
n−5∑
k=0

(XMd,d−4)kBk,d−4,ξ(t)

∥∥∥∥∥∥∥
2

2

dt. (15)

Remark 2. Through standard manipulations [21],
(15) may be brought into a quadratic form where
only control points appear. Furthermore, in the
particular case of B-splines of degree 4, the snap

function becomes a step function of amplitude
(XMd,d−4)k and constant time step T f /(n−d). Thus,
the cost associated to the snap of the trajectory be-
comes in this case simply

F0(X) =
T f

n − d

n−1∑
k=0

∥(XMd,d−4)k∥22.

♦

3.1.2. Space constraints penalization
As we are working in an indoor environment, the

space is limited and restricted to a box Kp with
lower and upper bounds on each axis, as per (12b).
The convexity property of the B-spline curves im-
plies that restricting the control points to be in-
side this box guarantees that the trajectory will be
inside this box. Thus, the position penalty is ex-
pressed as

F1(X) =
n−1∑
k=0

σ
(
xmin − P1

k

)
+ σ

(
P1

k − xmax

)
. (16)

3.1.3. Velocity constraints penalization
For the velocity penalty, the total velocity has to

be lower or equal to the maximum velocity vmax, as
per (12c). The same reasoning leads to the follow-
ing expression using the derivative control points.
We remind that the respective derivative control
points are obtained by multiplying the initial con-
trol points by the matrix appearing in property P3):
Ṗ1

k = (XMd,d−1)k, P̈1
k = (XMd,d−2)k,

...
P 1

k = (XMd,d−3)k.
Thus,

F2(X) =
n−2∑
k=0

σ
(
∥Ṗ1

k∥2 − vmax

)
. (17)

3.1.4. Roll and pitch constraints penalization
The roll and pitch angles should have a modulus

inferior to ϵ, as per (12d). The associated penalty
term is defined as (see the sufficient conditions (50),
derived in Appendix 6.1):

F3(X) =
n−3∑
k=0

n−3∑
i=0

σ
(
G(ϵ, i, k,P1)

)
(18)

with

G(ϵ, i, k,P) = cot2 ϵ P̈⊤i P̈k −
(
1 + cot2 ϵ

)
P̈⊤i zwz⊤wP̈k

− 2gz⊤wP̈k − g2. (19)

7

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4812277

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed

3.1.5. Thrust constraints penalization
The thrust has to stay between its bounds Tmin

and Tmax, as per (12e). The expression of the asso-
ciated penalty is:

F4(X) =
n−3∑
k=0

σ
(
∥P̈1

k + gzw∥2 − Tmax

)
+ σ

(
− zP̈1

k − g + Tmin

)
, (20)

as a reminder, zw =
[
0 0 1

]⊤
is the world frame’s

z-axis.

3.1.6. Angular velocity constraints penalization
The angular velocities’ magnitude should be

bounded by ωmax, as in (56). The constraints are
expressed using the second and third derivatives of
the control points (see the sufficient conditions (61),
derived in Appendix 6.2):

F5(X) =
n−d∑
ℓ=1

ℓ+d∑
k=ℓ+d−2

ℓ+d∑
i=ℓ+d−2

σ
(
S (ℓ, i, k,P1)

)
(21)

where

S (ℓ, i, k,P) = (
...
P Dℓ

d−3,d−2)⊤i (
...
P Dℓ

d−3,d−2)k

− ω2
max

(
P̈i + zwg

)⊤(
P̈k + zwg

)
. (22)

3.1.7. Initial and final conditions
The initial and final conditions (12g) and (12h)

are formulated for the position (p0 and p f), velocity
(v0 and v f) and acceleration (a0 and a f). With
Remark 1, the initial position and final position give
the values of the first and last control points:

P1
0 = p0 (23a)

P1
n−1 = p f (23b)

The same reasoning applies to the initial velocity
ż1(t = 0) = Ṗ1

0 = v0, where noting the dependence
between Ṗ1

0 and Pi, we have

d
τd+1

(P1
1 − P1

0) = v0 (24)

which allows to express

P1
1 = P1

0 +
τd+1

d
v0 = p0 +

τd+1

d
v0. (25)

A similar calculus starting from ż1(t = T f) = Ṗ1
n−2 =

v f leads to

P1
n−2 = P1

n−1 −
T f − τn−1

d
v f = p f −

T f − τn−1

d
v f . (26)

The same principle applied twice for the initial
z̈1(t = 0) = P̈1

0 = a0 and final z̈1(t = T f) = P̈1
n−3 = a f

acceleration is applied and results in:

d − 1
τd+1

d(P1
2 − P1

1)
τd+2

−
d(P1

1 − P1
0)

τd+1

 = a0,

(27a)
d − 1

T f − τn−1

d(P1
n−1 − P1

n−2)
T f − τn−1

−
d(P1

n−2 − P1
n−3)

T f − τn−2

 = a f ,

(27b)

which, after further manipulation give the expres-
sions of control points:

P1
2 =p0 +

τd+1 + τd+2

d
v0 +

τd+2τd+1

d(d − 1)
a0, (28a)

P1
n−3 =p f −

2T f − τn−2 − τn−1

d
v f

+
(T f − τn−2)(T f − τn−1)

d(d − 1)
a f . (28b)

Note that (23)–(28) are not simply penalties to be
added in (13). It is meaningless to compute tra-
jectories that are not respecting the initial and fi-
nal conditions. These boundary constraints have
to be satisfied by all the particles at all iterations.
Hence, the algorithm takes random particles except
the first and last three control points of each parti-
cle which are imposed directly by (23), (25), (26),
(28). The other control points (the remaining n− 6
of them) are then optimized by the algorithm.

3.1.8. Obstacle collision penalization
The obstacle avoidance constraint (12l) is imple-

mented to protect the multicopters against colli-
sions. This requires to account for both the ob-
stacles’ shape, for tracking errors and for a safety
region around the multicopter1. All these elements
may be brought back to the original setting of gen-
erating the trajectory of an adimensional agent by
simply enlarging the initial obstacles with the nec-
essary offsets.

Next, the convexity property P5) is exploited:
the trajectory is designed to stay inside the union
of convex polytopes defined by the curve’s control
points. Since the property may be conservative we
may use the knot refinement to tighten the convex

1While the trajectory returned by (13) assumes pointwise
dimensions for the multicopter, in reality its dimensions can-
not always be ignored.

8

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4812277

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed

hulls as shown in Figure 2. To reduce the computa-
tional effort, the penalty for violating the constraint
is defined here as the count of non empty intersec-
tions between the convex hulls (noted CH

j (X)) and
the enlarged polyhedral obstacles (noted Obsi)

F6(X) =
NObs∑
i=1

ñ−d∑
j=1

δ(i, j,X), (29)

where δ(i, j,X) =

1, CH
j (X) ∩ Obsi , ∅

0, otherwise.

Remark 3. Knot refinement allows to tighten the
convex hulls in order to approximate less conser-
vatively the trajectory. [31] studies the distance
between a B-spline curve and its control polygon.
In particular, the distance is decreasing when us-
ing knot refinement and converging to 0 when the
number of control points goes to ∞. However, knot
refinement comes at a price: increasing the number
of control points will increase the number of con-
vex hulls, so the computational time will be higher
because more intersections between polytopes and
convex hulls will have to be checked. ♦

3.1.9. Waypoints conditions
The waypoint criteria imposes that the leader is,

at a specified time, near a specified position (the
waypoint), as per (12i). The constraint can be ei-
ther an equality or it may be relaxed to a small
neighborhood centered around the waypoint (e.g.,
a small sphere of radius dwp). Consequently, the ex-
pression taking into account all the waypoints be-
comes:

F7(X) =
NWP∑
l=1

σ

∥∥∥∥∥∥∥pwp

ℓ
−

n−1∑
k=0

P1
k Bk,d,ξ(tℓ)

∥∥∥∥∥∥∥
2

− dwp

 . (30)

3.2. Trajectories planning for the followers
While not strictly required, hereafter we assume

that the followers have the same number of control
points as the leader, subsequent to its knot refine-
ment procedure, i.e., ñ control points. Since the
trajectory (as defined by the control points) of the
leader has been already computed and remains un-
changed henceforth, it is natural to define the con-
trol points of the followers relatively to those of the
leader, thus, for the j-th follower we define the con-
trol point offsets:

∆
1 j
k = P j

k − P1
k , ∀k = 0, . . . , ñ − 1. (31)

Here, P j
k is the k-th absolute control point of agent

j and ∆1 j
k is its corresponding k-th relative (to the

k-th leader’s control points) control point.
As the degree, knot vector and basis functions

are fixed, the particles representing the followers’
trajectories gather all the offsets
Y :=

{
∆

1 j
k

}
j>1,k=0,...,ñ−1

to solve a new differential evo-
lution algorithm.
The control points of the leader after knot refine-
ment are an input of the optimization function
which allows to pass from the relative to the ab-
solute position of the control points as needed.

The objective function is given as a sum of
weighted penalty terms:

FF(Y) =
8∑

q=0

γqFq(Y), (32)

where F0(Y), . . . , F6(Y) are defined as in the list be-
low (13), but replacing n by ñ and the numerical
values and absolute control points corresponding
to the other agents. F7(Y) penalizes the forma-
tion tracking error and F8(Y) corresponds to the
communication loss penalization. γ0, . . . , γ8 are the
weights associated to each of these penalties. All
the particles are satisfying the initial and final con-
ditions at each iterations.

3.2.1. Formation tracking penalization
The objective (12j) is to minimize the formation

tracking error. The formation to be attained is a
priori known but may change along the trajectory.
It is defined in terms of relative positions between
the leader and its followers, i.e., position displace-
ment, as in [32].

Remark 4. The leader’s behavior is arguably sim-
pler to model (fewer penalty terms) and hence less
control points (n) suffice in providing a reasonable
trajectory whereas the followers have to avoid col-
lisions but communicate between themselves and
maintain and switch between formations, thus re-
quiring ñ > n control points. Knot refinement al-
lows to mesh together these elements: the leader’s
trajectory is reformulated with ñ control points de-
pending linearly on the original n control points
(hence, no increase in complexity) which allows to
express the followers’ trajectories through displace-
ments (31) and gives the additional flexibility of
working with ñ control points. ♦

9

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4812277

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed

Lemma 1. Let notation

∆
i j
s = ∆

1 j
k − ∆

1i
k , ∀k = s − d, . . . , s, (33)

denote a constant control point displacement be-
tween a pair of followers i , j for d + 1 consecutive
control points (those indexing from s − d to s).

Then, the interdistance di j(t) between these fol-
lowers remains constant over the sub-interval t ∈
[τs, τs+1).

Proof. Since any two followers i , j share the same
knot vector ζ, we may define their interdistance over
some sub-interval t ∈ [τs, τs+1) as

di j(t) = ∥z j(t) − zi(t)∥2

=

∥∥∥∥∥∥∥
s∑

k=s−d

P j
kBk,d,ξ(t) −

s∑
k=s−d

Pi
kBk,d,ξ(t)

∥∥∥∥∥∥∥
2

=

∥∥∥∥∥∥∥
s∑

k=s−d

(P j
k − Pi

k)Bk,d,ξ(t)

∥∥∥∥∥∥∥
2

=

∥∥∥∥∥∥∥
s∑

k=s−d

(
∆

1 j
k − ∆

1i
k

)
Bk,d,ξ(t)

∥∥∥∥∥∥∥
2

, (34)

where we used the local support property P1) and
(31). Introducing (33) in (34) leads, through prop-
erty P2), to

di j(t) =

∥∥∥∥∥∥∥
s∑

k=s−d

∆
i j
s Bk,d,ξ(t)

∥∥∥∥∥∥∥
2

=

∥∥∥∥∥∥∥∆i j
s

s∑
k=s−d

Bk,d,ξ(t)

∥∥∥∥∥∥∥
2

=
∥∥∥∥∆i j

s

∥∥∥∥
2
, (35)

thus proving that di j(t) remains constant for sub-
interval t ∈ [τs, τs+1).

Extending Lemma 1 to more agents provides suf-
ficient conditions for ensuring formation stability.
The idea is to penalize the error between the real
relative positions of the control points (∆1 j

k − ∆1i
k)

and the desired relative position corresponding to
the formation (∆i j

s). Once again the knot refine-
ment provided more control points to impose locally
the formation. The expression of the formation’s
penalty is:

F7(Y) =
∑
i> j

ñ−1∑
s=d

s∑
k=s−d

∥∥∥∥∆i j
s −

(
∆

1 j
k − ∆

1i
k

)∥∥∥∥
2
, (36)

which penalizes for all pairs of followers, for each
list of d+1 consecutive control points, the variation
from the desired inter-dosition.

Remark 5. Whenever the formation changes, terms
∆

i j
s which force its tracking as per (36) have to

change accordingly (from ∆i j,1
s to ∆i j,2

s). Via the lo-
cal support property P1), we have that if the change
occurs at a time tswitch, e.g., from ∆i j,1

s to ∆i j,2
s , it fol-

lows that

∆
i j
ℓ
← [∆i j,1

ℓ
, ∀ℓ ≤ s − d − 1 and ∆i j

ℓ
← [∆i j,2

ℓ
, ∀ℓ ≥ s + 1,

(37)
where s = arg maxℓ τℓ ≤ tswitch. Taking the first in-
equality we observe that the last term active for
the first formation has index s − d − 1 which means
that the last B-spline function active in the interdis-
tance description (34) is Bs−d−1,d,ζ(t) whose support
covers sub-interval [τs−d−1, τs), thus, earlier than the
switch time tswitch. A similar argument may be car-
ried for the second inequality where we note that
the ‘earliest’ a Bspline curve becomes active is at
τs+1 > tswitch. Conversely, indices s − d ≤ ℓ ≤ s
denote an intermediary period in which the control
points should ensure the transition from the first to
the second formation. One possible idea is to have
a linear interpolation for s − d ≤ ℓ ≤ s:

∆
i j
ℓ
← [(s + 1) − ℓ

d + 2
∆

i j,1
ℓ
+
ℓ − (s − d − 1)

d + 2
∆

i j,2
ℓ
. (38)

♦

3.2.2. Communication loss penalization
The communication loss, defined as per (12k) is

penalized by a sufficient formulation which penal-
izes the interdistance (34) between those followers
which have to communicate, i.e., the pairs (i, j) ∈ L.

Recalling (34), applying the triangle inequality
and making use of the positiveness property P2)
leads to an upper bound for the interdistance be-
tween any pair of followers over the sub-interval
[τs, τs+1):

di j(t) =

∥∥∥∥∥∥∥
s∑

k=s−d

(
∆

1 j
k − ∆

1i
k

)
Bk,d,ξ(t)

∥∥∥∥∥∥∥
2

≤
s∑

k=s−d

∥∥∥∥(∆1 j
k − ∆

1i
k

)∥∥∥∥
2

Bk,d,ξ(t). (39)

Since B-spline basis functions partition the unity
we arrive at:

di j(t) ≤ max
k=s−d,...,s

∥∥∥∥(∆1 j
k − ∆

1i
k

)∥∥∥∥
2
. (40)

Extending for all the knot’s sub-intervals we arrive
at a sufficient condition for the communication con-

10

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4812277

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed

straint (di j(t) ≤ ρ):

max
k=0,...,ñ−1

∥∥∥∥(∆1 j
k − ∆

1i
k

)∥∥∥∥
2
≤ ρ (41)

which is then penalized through objective compo-
nent

F8(Y) =
∑

(i, j)∈L
σ

(
max

k=0,...,ñ−1

∥∥∥∥(∆1 j
k − ∆

1i
k

)∥∥∥∥
2
− ρ

)
. (42)

3.3. Implementation procedure
Planning the trajectories of a hierarchical leader-

follower formation is detailed in Algorithm 1.
The algorithm can be decomposed in three main

steps:

i) Use differential evolution algorithm to obtain
the trajectory of the leader (the one passing
through the waypoints) defined by the n con-
trol points in Xbest minimizing the fitness func-
tion FL (in (13)) (from line 1 to 14).

ii) Apply knot refinement (in (9)) to increase the
number of control points defining the trajecto-
ries to add degrees of liberty for switching the
formation. (line 15).

iii) Use differential evolution algorithm (in (32))
to obtain the control points defining the tra-
jectories of the followers switching formation
and keeping the communication range (from
line 16 to 29).

4. Simulations, experiments and comparisons

With respect to our preliminary results presented
in [19], where we addressed the optimal trajectory
generation problem for a multicopter using Par-
ticle Swarm Optimization (PSO), this study ex-
tends our findings. Initially, we propose a compar-
ative scenario employing both PSO and Differen-
tial Evolution (DE) based on B-splines to demon-
strate the computational advantages of DE. Sub-
sequently, we exclusively employ DE in additional
scenarios, which highlight the benefits of our for-
mation optimization problem, incorporating obsta-
cle avoidance and inter-agent communication con-
straints. To summarize, we will begin by presenting
the numerical values employed in the simulations
and experiments. This will be followed by the enu-
meration and description of all scenarios. Subse-
quently, we will conduct a comprehensive analysis,
comparison, and discussion of the results.

Algorithm 1: Solving a motion planning
problem for a team of multicopters satisfy-
ing a given scenario.

Input: list of parameters in (13) and (32)
n, ñ, ωL, cL

r , n
L
part, n

L
iter, ω

F, cF
r , n

F
part, n

F
iter;

Output: Xbest and Ybest minimizing the
fitness functions FL (in (13)) and
FF (in (32));

1 Create nL
part random matrices of n control

points respecting the initial and final
conditions: X1, ...,XnL

part

2 for i=1:nL
iter do

3 for k=1:nL
part do

4 Choose randomly 3 particles
Xa,Xb,Xc;

5 Xd ← Xa + ω
L(Xb − Xc);

6 X∗k ← f (Xk,Xd, cL
r);

7 Compute FL(X∗k) in (13);
8 if FL(X∗k) < FL(Xk) do
9 Xk ← X∗k;

10 Store FL(X∗k);
11 end
12 end
13 end
14 Find Xbest = arg min

Xk
FL(Xk) ∀k ∈ {1, ..., nL

part}
15 X̃← KnotRe f inement(Xbest, ñ) (9)
16 Create nF

part random matrices of ñ control
points per follower respecting the initial
and final conditions: Y1, ...,YnF

part

17 for i=1:nF
iter do

18 for k=1:nF
part do

19 Choose randomly 3 particles
Ya,Yb,Yc;

20 Yd ← Ya + ω
F(Yb − Yc);

21 Y∗k ← f (Yk,Yd, cF
r);

22 Compute FF(Y∗k) in (32);
23 if FF(Y∗k) < FF(Yk) do
24 Yk ← Y∗k;
25 Store FF(Y∗k);
26 end
27 end
28 end
29 Find Ybest = arg min

Yk
FF(Yk) ∀k ∈ {1, ..., nF

part}

Table 1 briefly enumerates the scenarios further
detailed in this section.

The numerical parameters used and the results
obtained for the trajectory planning of each sce-

11

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4812277

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed

Table 1: Explanation of the scenarios.

Scenario Multicopters Bounds Waypoints Obstacles
1 PSO-spline vs DE-spline 1 Tightened 3 No
2 DE-spline vs MOSEK [18] 1 Tightened 8 No
3 Algorithm 1 4 Tightened 3 No
4 Experimentation 4 Standard 3 Yes

nario are listed in Table 2 and later in Table 6.
The B-splines used hereinafter have degree d = 4

and the simulation time is always set at T f = 30s.
The gravitational acceleration g is 9.81 m/s2. The
positions of all the multicopters must stay inside the
box defined by xmin =

[
−1.5 −1 0

]⊤
and xmax =[

1.5 1 1.5
]⊤

.
The way-points through which the trajectories

outputted by the various scenarios have to pass are
gathered in Tables 3 and 4.

The penalty weights used throughout the scenar-
ios are enumerated in Table 5.

The code implementing Algorithm 1 may be run
at https://github.com/marguetv/CEP.git and was
run in Matlab 2023a using its codegen option to
make a C-MEX variant of the Gilbert-Johnson-
Keerthi function [33] testing polyhedron intersec-
tions and CasADi [34] to generate the B-splines ba-
sis functions.

4.1. Scenario 1: Comparison between Particle
Swarm Optimization (PSO-spline) and Differ-
ential Evolution (DE-spline) with B-splines al-
gorithm

The simulation compares two algorithms imple-
menting evolutionary optimization over identical
parameters and test conditions. We take the same
number of particles npart, iterations niter and weights
γi for the objective function detailed in Table 5 and
provide those parameters specific to each algorithm:
for the DE-spline, the differential weight F is set to
0.15 and the crossover probability cr is set to 0.7,
and for the PSO-spline, the damping weight is set
to 1 and the learning coefficients are set to c1 = 1.2
for exploration and c2 = 1.5 for exploitation. All
these values were adjusted to optimize the perfor-
mance of the algorithms.

The test is defined as one multicopter passing
through the neighborhoods (defined as spheres of
radii dwp = 5cm) of the first three waypoints enu-
merated in Table 3 at pre-specified times and land-
ing back to the origin at T f = 30s, while respecting
the dynamical constraints detailed in this paper.

Due to the stochastic nature of the algorithms,
the trajectories may differ between successive runs.
Consequently, we run each algorithm 100 times and
average the outputs of interest (e.g., computational
time, trajectory cost, maximal distance between
waypoints and the leader’s position). The results
corresponding to one of the 100 simulations are
shown in Figures 3 and 4.

The two algorithms output trajectories that pass
near the waypoints (all the 100 simulations for both
algorithm output trajectories passing at less than
5cm of all the waypoints at the specified times)
(Figure 3) and respect the dynamical bounds (Fig-
ure 4). However, we found the DE-spline algorithm
to be, by small but measurable percentages, su-
perior to the PSO-spline algorithm. For example,
the computation time is slightly faster (1.23s with
a standard deviation of 0.06s for DE-spline versus
1.31s with a standard deviation of 0.04s for PSO-
spline) and the value of the objective function is
slightly lower for DE-spline (9.0× 10−3 with a stan-
dard deviation of 2.4 × 10−3 versus 1.19 × 10−2 with
a standard deviation of 4.1 × 10−3 for PSO-spline).

Considering also that the trajectory, velocity and
thrust are smoother for DE-spline (fewer and less
pronounced ‘spikes’ in higher order derivatives) we
will use hereinafter the DE-spline algorithm to run
the next scenarios.

4.2. Scenario 2: Applying our DE-spline approach
to the Example 1 from [18]

Again, a single multicopter is flying but this time
it passes near each of the eight waypoints from Ta-
ble 3. These values duplicate the scenario presented
in [18], except in the number of control points, de-
creased from 41 to 20, and in the spline degree,
decreased from 5 to 4. These modifications lead to
a faster convergence time and still provide a feasible
trajectory.

The resulted trajectory (and associated way-
points) for one simulation are shown in Figure 5 and
all the dynamical constraints are verified as shown
in Figure 6. As before, we have run 100 instances

12

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4812277

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed

Table 2: Numerical values of the bounds.

Bounds vmax [m/s] Tmin [m/s2] Tmax [m/s2] ϵ [◦] ωmax [◦/s]
Tightened 0.5 9.7 9.9 1.75 1.5
Standard 1 0 10.5 7 30

Table 3: Numerical values of the waypoints for the scenarios 1 and 2.

ℓ 1 2 3 4 5 6 7 8
-0.75 0.65 0.40 -0.15 0.65 -0.50 -0.60 0.25

pwp
ℓ

0.60 0.50 -0.40 0.25 -0.65 0.50 -0.60 0.25
0.50 0.25 0.40 0.25 0.25 0.75 0.50 0.25

tℓ[s] 7.8 15.3 24 4.5 12.6 18 21 27

Table 4: Numerical values of the waypoints for the scenarios
3 and 4.

ℓ 1 2 3
-1.0 0.2 0.5

pwp
ℓ

0.6 0.5 -0.5
0.6 0.8 0.4

tℓ[s] 13 17 24

and averaged the results to obtain the mean com-
putational time and mean penalty cost in Table 6.
We note that the mean of the largest neighborhood
around a way-point has a radius of 19.6cm.

The way-point radii may be decreased by either
increasing the number of particles and iterations
(more degrees of freedom) or by increasing the way-
point criteria’s weight associated to (30). Neither is
attractive: the first directly leads to higher compu-
tational time and the second gives less importance
to the other constraints. Furthermore, although
the degree and the number of control points are
fewer in our implementation, the velocity, thrust,
angle and angular velocity profiles are very sim-
ilar (see our Fig. 6 and 7 compared to Fig. 4
and Fig. 6 from [18]). This indicates that our ap-
proach is converging towards the solution produced
by the solver utilized in the alternative path plan-
ning method. Moreover, our method achieves this
convergence with fewer control points, offering the
flexibility to incorporate additional constraints of
any type, including non-convex constraints for ob-
stacle avoidance.

4.3. Scenario 3: Formation switching with 4 multi-
copters

In this scenario a team of four agents (one leader
and three followers) switch from a ”square” to a

−1
−0.5

0
0.5

1
1.5

−0.5

0

0.5

1

0

0.2

0.4

0.6

x [m]
y [m]

z
[m

]

Waypoint pwp
ℓ

Trajectory z(t) (DE)
Control Point P 1

k (DE)
Trajectory z(t) (PSO)
Control Point P 1

k (PSO)

(a) 3D view

−1 −0.5 0 0.5 1 1.5
−0.5

−0.25

0

0.25

0.5

0.75

1

1.25

x [m]

y
[m

]

(b) top view (x − y plane)

Figure 3: Trajectory generated with the parameters in
Table 3. We show the trajectories (continuous) and the
control points (connected circles) obtained with DE-spline
(black) and PSO-spline (blue) along with the waypoints (red
spheres) (Scenario 1).

”line” formation, and back again to the ”square”
formation to land at their initial positions. The
leader has to pass near the waypoints listed in Ta-

13

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4812277

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed

Table 5: Numerical values of the weights for the cost functions.

Scenario γ0 γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8

FL 1,2,3,4 1 1 4 × 104 40 8 × 104 5 × 103 106 5 × 104 −
FF 3 1 1 4 × 104 40 8 × 104 5 × 106 103 106 −
FF 4 1 1 4 × 104 40 8 × 104 5 × 103 103 106 106

0 10 20 30
0

0.2

0.4

0.6

Time t [s]

Ve
lo

ci
ty

v
[m

/s
]

Velocity constraint

0 10 20 30

9.7

9.8

9.9

Time t [s]

T
hr

us
t
T

[m
/s

2
]

Thrust constraint

0 10 20 30
−2

−1

0

1

2

Time t [s]

R
ol

lϕ
,P

itc
h
θ
[d
eg
] Angle constraints

θ ϕ bound

0 10 20 30
−2

−1

0

1

2

Time t [s]

q
an

d
p
[d
eg
/s
]

Angular velocity constraints

q p bound

Figure 4: Constraints satisfaction for the obtained trajecto-
ries obtained with DE-spline (black) and PSO-spline (blue)
(Scenario 1).

−1 −0.5 0
0.5 1

−1

−0.5

0

0.5

1

0

0.4

0.8

x [m]

y [m]

z
[m

]

Waypoint pwp
l

Trajectory z(t)

Control Point P 1
k

Figure 5: Trajectories position generated with the param-
eters in Table 3. We show the position trajectory (black)
along with the waypoints (red spheres) and the control points
(dashed connected, blue circles) (Scenario 2).

ble 4 at the specified times. The three follow-
ers track it because they have to keep the inter-
multicopter position corresponding to the forma-
tion. In addition, the range (less than ρ = 0.75 m)
between communicating agents also has to be re-
spected. We assume the pairs in communication are
(1, 2), (2, 3) and (3, 4). The distance in the forma-

0 10 20 30
0

0.2

0.4

0.6

Time t [s]

Ve
lo

cit
y
v
[m

/s
]

Velocity constraint

0 10 20 30

9.7

9.8

9.9

Time t [s]

Th
ru

st
T

[m
/s

2
]

Thrust constraint

0 10 20 30
−2

−1

0

1

2

Time t [s]

Ro
ll
ϕ

,P
itc

h
θ
[d
eg
] Angle constraints

θ ϕ bound

0 10 20 30
−2

−1

0

1

2

Time t [s]

p
an

d
q
[d
eg
/s
]

Angular velocity constraints
q p bound

Figure 6: Constraints satisfaction for the obtained trajectory
(Scenario 2).

tions between the agents is 50cm for the line forma-
tion and also for the square side of the square forma-
tion. All the agents need to respect the dynamical
constraints. The trajectories of the leader and the
followers are obtained using Algorithm 1. The tra-
jectories obtained are illustrated in Figures 7 and
8. Each trajectory is represented by a color and we
can clearly see the formation switching along the
simulation (it happens at times tswitch,1 = 5s and
tswitch,2 = 20s).

The waypoints are also close to the trajectory of
the leader: all the 100 simulations output trajecto-
ries passing at less than 5cm of all the waypoints at
the specified times. We see in Figure 9 that all the
dynamical constraints stay inside the bounds.

Moreover, the formation switching and formation
tracking behavior can be observed in Figure 10.
That is, the distances between the multicopters re-
main almost constant, as they should be, whenever
the trajectories are far from the switching times and
agent inter-distances d12, d23 and d34 are always less
than ρ = 0.75m, i.e., the communication constraint
is satisfied.

14

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4812277

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

0

0.2

0.4

0.6

0.8

x [m]
y [m]

z
[m

]

Trajectory Leader z1(t) Trajectory Follower z2(t)
Trajectory Follower z3(t) Trajectory Follower z4(t)
Square Formation Line Formation
Waypoint pwp

ℓ

t = 0s

t = 6.57s

t = 10.47s

t = 23.97s

Figure 7: Trajectories generated with the parameters in Ta-
ble 3. We show the leader’s trajectory (black) passing near
the waypoints (magenta stars) and the followers’ trajectories
(blue, red, green) switching their formation. If not redefined
in the legends, the color associated to each agent will be kept
in all the remaining figures in particular for the constraints
satisfaction profiles (Scenario 3).

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

x [m]

y
[m

]

Trajectory Leader z1(t)
Trajectory Follower z2(t)
Trajectory Follower z3(t)
Trajectory Follower z4(t)
Square Formation
Line Formation
Waypoint pwp

ℓ

t = 0s

t = 6.57s

t = 10.47s

t = 23.97s

Figure 8: Top view of Fig. 7 (Scenario 3).

4.4. Scenario 4: Obstacle avoidance for 4 multi-
copters switching their formation

To the previous scenario, with changed physical
bounds (we take standard bounds for multicopter
experiments), as delineated in Table 2, we add two
obstacles that have to be avoided, as per (29). To
make the problem non-trivial, the obstacles block
the line of sight between successive waypoints. The
locations and dimensions of the inflated2 obstacles
appear in Figures 11 and 12.

2To the original obstacle shape, we add the dimension of
the drone and the tracking error bounds taken from [18].

0 10 20 30
0

0.2

0.4

0.6

Time t [s]

Ve
lo

ci
ty

v
[m

/s
]

Velocity constraint

0 10 20 30

9.7

9.8

9.9

Time t [s]

T
hr

us
t
T

[m
/s

2
]

Thrust constraint

0 10 20 30
−2

−1

0

1

2

Time t [s]

R
ol

lϕ
,P

itc
h
θ
[d
eg
] Angle constraints

θ ϕ bound

0 10 20 30
−2

−1

0

1

2

Time t [s]

p
an

d
q
[d
eg
/s
]

Angular velocity constraints
q p bound

Figure 9: Constraints satisfaction for the obtained trajecto-
ries (Scenario 3).

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Time t [s]

D
ist

an
ce

[m
]

Inter-UAV distance

d12
d13
d14
d23
d24
d34

Transition
Line

Transition
Square

Formation Formation

Figure 10: Distance between the agents. As a reminder,
penalties concerning the communication constraint are only
taken into-account for d12, d23 and d34 (Scenario 3).

The goal is then to generate a trajectory for the
leader that avoids collision with the obstacles and
satisfies all the dynamical constraints while being
as close as possible from the waypoints at the spec-
ified times. Also the other agents have to avoid
collision, satisfy the dynamical and communication
constraints and then be as close as possible from
the desired formation.

The simulation results are shown from Figures 11
to 14. We clearly see that the bounds are respected
for the constraints on velocity, thrust, angle and an-
gular velocity, the multicopters are switching their
formation while respecting the communication con-
straint.

Moreover, the leader is passing as close as possi-
ble from the waypoints (the mean, over 100 simu-
lations, of the maximum distance between the way-

15

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4812277

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed

−1
−0.5

0
0.5

1
1.5

−1
−0.5

0
0.5

0

0.2

0.4

0.6

0.8

1

x [m]y [m]

z
[m

]

Trajectory Leader z1(t) Trajectory Follower z2(t)
Trajectory Follower z3(t) Trajectory Follower z4(t)
Square Formation Line Formation
Waypoint pwp

ℓ
Extended Obstacle

t = 0s

t = 6.57s

t = 23.97s

t = 10.47s

Figure 11: Trajectories generated for Scenario 4. The
leader’s trajectory (black) passes near the waypoints (ma-
genta stars), the followers’ trajectories (blue, red, green)
switch their formation and avoid the obstacles (Scenario 4).

−1 −0.5 0 0.5 1 1.5

−1

−0.5

0

0.5

x [m]

y
[m

]

Trajectory Leader z1(t)
Trajectory Follower z2(t)
Trajectory Follower z3(t)
Trajectory Follower z4(t)
Square Formation
Line Formation
Waypoint pwp

ℓ
Extended Obstacle

t = 0s

t = 6.57s

t = 23.97s

t = 10.47s

Figure 12: Top view of Fig. 11 (Scenario 4).

points and the position of the leader at the asso-
ciated time is 7.6cm) while avoiding collision with
the obstacles. The communication constraint is sat-
isfied as the curves of Figure 14 representing the
distances between multicopter 1 and multicopter 2,
between multicopter 2 and multicopter 3 and be-
tween multicopter 3 and multicopter 4 are all al-
ways inferior to the communication range. All the
interdistances are kept almost constant outside of
the transition zones, meaning that the formation is
correctly tracked.

4.5. Experimental validation
The experiments are conducted with four nano-

drones in our Esisarium platform at LCIS labora-
tory presented in Figure 15. The dimensions of the
box covered by the maximum number of cameras

0 10 20 30
0

0.5

1

Time t [s]

Ve
lo

ci
ty

v
[m

/s
]

Velocity constraint

0 10 20 30
0

5

10

Time t [s]

T
hr

us
t
T

[m
/s

2
]

Thrust constraint

0 10 20 30

−5

0

5

Time t [s]

R
ol

lϕ
,P

itc
h
θ
[d
eg
] Angle constraints

θ ϕ bound

0 10 20 30

−20

0

20

Time t [s]

p
an

d
q
[d
eg
/s
]

Angular velocity constraints
q p bound

Figure 13: Constraints satisfaction for the obtained trajec-
tories (Scenario 4).

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Time t [s]

D
ist

an
ce

[m
]

Inter-UAV distance

d12
d13
d14
d23
d24
d34

Transition
Line

Transition
Square

Formation Formation

Figure 14: Distance between the agents. As a reminder,
penalties concerning the communication constraint are only
taken into-account for d12, d23 and d34 (Scenario 4).

Figure 15: Esisarium platform for algorithm testing.

are 3 × 2 × 2m. To fully utilize this volume, an ad-
ditional set of waypoints for scenarios 3 and 4, out-

16

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4812277

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed

Table 6: Simulations parameters and computational analysis associated (mean over 100 simulations). The a) and b) variants
that appears for Scenarios 3 and 4 show the parameters considered for the leader and, respectively, for the followers.

Simulation niter npart n Penalty Time [s]
Scenario 1 (DE-spline) 100 100 11 9.0 × 10−3 1.23

Scenario 1 (PSO-spline) 100 100 11 1.2 × 10−2 1.31
Scenario 2 (DE-spline) 200 500 20 1.9 × 104 26.9
Scenario 3a (DE-spline) 100 200 11 8.3 × 10−3 2.45
Scenario 3b (DE-spline) 300 300 18 9.4 × 106 39.2
Scenario 4a (DE-spline) 100 200 11 1.6 × 103 10.3
Scenario 4b (DE-spline) 300 300 18 1.5 × 106 143

lined in Table 4, was established. Their positions
are measured using passive markers on each drone:
the cameras emit infrared (IR) pulses of light whose
reflections on a marker are then gathered by the
cameras and used to triangulate the markers’ posi-
tion and, after further post-processing, the object’s
pose (its position and attitude).

−1 −0.5 0 0.5 1 1.5−0.5

0

0.5

0

0.5

1

1.5

x [m]

y [m]

z
[m

]

Trajectory tracking
Trajectory DroneE7 Reference DroneE7 Trajectory DroneE1
Reference DroneE1 Trajectory DroneE9 Reference DroneE9
Trajectory DroneE2 Reference DroneE2 Waypoint pwp

ℓ
Extended Obstacle

Figure 16: Trajectories planned (in dashed) and tracked
(in solid) with the parameters from Scenario 4, where the
leader’s trajectory (black) passes near the waypoints (ma-
genta stars), the followers’ trajectories (blue, red, green)
switch their formation and avoid the obstacles (Scenario 4).

We emphasize that this paper primarily ad-
dresses trajectory planning rather than trajectory
following. While various methods exist for track-
ing trajectories, such as Model Predictive Control
as in [35, 36], Sliding Mode Control as in [37], or
Disturbance Observer-based Control as in [38, 39]
we maintain consistency with [18], by implement-
ing the same feedback trajectory tracking mecha-

−1 −0.5 0 0.5 1 1.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

x [m]

y
[m

]

Trajectory DroneE7
Reference DroneE7
Trajectory DroneE1
Reference DroneE1
Trajectory DroneE9
Reference DroneE9
Trajectory DroneE2
Reference DroneE2
Waypoint pwp

ℓ
Extended Obstacle

Figure 17: Top view of Fig. 16 (Scenario 4).

nism. Specifically, we utilize a Linear Quadratic
Regulator (LQR) controller and a Control Barrier
Function-Quadratic Program (CBF-QP) with iden-
tical parameters (δ = 0.1, a1 = 6 and a2 = 8), to en-
sure comparability. Hence, using the measurements
data, a QP based on CBF is solved online to track
the trajectories. CBFs are used as a safety filter to
guarantee boundedness between the real trajectory
and the nominal safe trajectory that we obtained
with our algorithm. The results provided by CBF-
QP are added to the ones coming from LQR that
are localized at the ground station and used to com-
pute the new inputs of the multicopters, knowing
the reference trajectory and the real-time trajec-
tory. The inputs are then sent to the multicopters
using the antenna on the computer and the receiver
onboard. Every 100 ms, the new reference point of
the trajectory is updated.

For completeness, we recall here the optimization
problem that is solved online (for trajectory track-

17

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4812277

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed

ing) using the solver OSQP in Python in [18] and
in our experiments:

min
µ

∥Ψ(π(z)) − µ∥22 (43a)

s.t.
∣∣∣µx − ẍre f − a1(ẋre f − ẋ) − a2(xre f − x)

∣∣∣ ≤ a2δ,

(43b)∣∣∣µy − ÿre f − a1(ẏre f − ẏ) − a2(yre f − y)
∣∣∣ ≤ a2δ,

(43c)∣∣∣µz − z̈re f − a1(żre f − ż) − a2(zre f − z)
∣∣∣ ≤ a2δ,

(43d)

where µ = [µx µy µz]⊤ and Ψ(π(z)) yields the
nominal virtual inputs with π(z) a LQR controller
with parameters Q = diag(500I3, 250I3) and R =
10I3, taking the state vector as the positions and
velocities on each axis and the input vector as the
accelerations on each axis.

The objective of the experiment is to track the
4 references obtained with the algorithm presented
in this paper. The video of the experiment is avail-
able at https://tinyurl.com/CEPmarguetVID. In
experiments, we observe some ground effects ap-
pearing during the take off and landing part. To
circumvent the challenge of modeling these inher-
ently nonlinear interactions and to ensure conser-
vative bounds, the trajectories generated using our
approach are as follows:

• they commence after a seven-second take-off
phase, reaching an altitude of 80 cm, followed
by a one-second hovering phase at the same
location.

• they are tracked with an offset of 80 cm to
mitigate ground-induced perturbations.

• they include a preceding one-second hovering
phase and a subsequent five-second landing
phase.

In total, the experimental flights will last 44 sec-
onds (the actual 30 seconds of the simulated trajec-
tories and the ancillary 14 seconds for take-off, hov-
ering and landing). The multicopters 1, 2, 3 and 4
are associated respectively to the rigid bodies called
DroneE7, DroneE1, DroneE9 and DroneE2 and will
be plotted respectively in black, blue, red and green.
In the Figures 18 to 23 illustrating the experimental
results, the values are shown during the entire test
flights, but the first 8 and last 6 seconds are repre-
sented in a blue box as they are not the focus of the

experiments. We clearly see in Figures 16 and 17
that there is no collision with the obstacles. Figure
18 confirms that the multicopters are satying in the
allowed volume and Figure 20 shows that the veloc-
ity bounds are respected for all the multicopters.
The decomposition on each axis is shown in Figure
19. Figures 21 and 22 show that the thrust, roll an-
gle, pitch angle and their derivatives stayed inside
the bounds for all the multicopters. The center of
DroneE7, the leader, is always in a sphere of radius
inferior to 10cm centered in the waypoints at the
specified time.

Figure 23 confirms that the communication con-
straint is satisfied as the inter-multicopter distance
always stays inferior to the communication range.
Moreover, the inter-multicopter distance is not
varying excessively during the formation-tracking
stage.

Figure 24 shows the tracking performance ob-
tained via the “LQR with CBFQP” controller, used
in all four multicopters: all the curves stay positive
thus guaranteeing that the tracking error is inferior
to δ on each axis. In other words, all the trajectories
obtained are included in the square shaped corridor
of thickness 2δ centered in the reference trajectories.
However, during the additional parts of the trajec-
tories (take-off and landing), the constraint is not
satisfied on the z-axis due to the aforementioned
ground effect nonlinearities.

0 5 10 15 20 25 30 35 40
−2

−1

0

1

2

x
[m

]

DroneE7 DroneE1 DroneE9 DroneE2

0 5 10 15 20 25 30 35 40
−1

−0.5
0

0.5

1

y
[m

]

0 5 10 15 20 25 30 35 40
0

1

2

Time t [s]

z
[m

] Take Off
Hover

Hover
Land

Take Off
Hover

Hover
Land

Take Off
Hover

Hover
Land

Figure 18: Trajectories measured on each axis for each mul-
ticopter (Scenario 4).

18

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4812277

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed

0 5 10 15 20 25 30 35 40
−0.5

0

0.5

v x
[m

/s
]

DroneE7 DroneE1 DroneE9 DroneE2

0 5 10 15 20 25 30 35 40
−0.5

0

0.5

v y
[m

/s
]

0 5 10 15 20 25 30 35 40
−0.5

0

0.5

Time t [s]

v z
[m

/s
]

Take Off
Hover

Hover
Land

Take Off
Hover

Hover
Land

Take Off
Hover

Hover
Land

Figure 19: Velocities on each axis (Scenario 4).

0 5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

Time t [s]

Ve
lo

ci
ty

v
[m

/s
]

DroneE7 DroneE1 DroneE9 DroneE2

Take Off
Hover

Hover
Land

Figure 20: Velocities for each multicopter (Scenario 4).

5. Conclusion

This paper introduces an offline motion planning
algorithm designed to address the non-convex opti-
mization problem associated with generating trajec-
tories for multicopters. The algorithm employs B-
spline parametrizations with additional properties,
supplemented by a knot refinement step to incorpo-
rate various constraints. These constraints encom-
pass bounds on positions, velocities, angles, angu-
lar velocities, thrusts, obstacle avoidance, waypoint
passage, communication maintenance, and forma-
tion switching. The proposed algorithm enables the
adjustment of weight parameters to prioritize spe-
cific constraints over others, as well as the tuning
of the number of particles and iterations to balance
the trade-off between optimality and computation
time. Unlike existing solvers in the literature, this

0 5 10 15 20 25 30 35 40
0

5

10

T
[m

/s
2
]

DroneE7 DroneE1 DroneE9 DroneE2

0 5 10 15 20 25 30 35 40
−10

−5

0

5

10

ϕ
[d
eg
]

0 5 10 15 20 25 30 35 40
−10

−5

0

5

10

Time t [s]

θ
[d
eg
]

Take Off
Hover

Hover
Land

Take Off
Hover

Hover
Land

Take Off
Hover

Hover
Land

Figure 21: Thrust T , Roll ϕ and Pitch θ angles measured for
each multicopter (Scenario 4).

0 5 10 15 20 25 30 35 40
−40

−20

0

20

40

p
[d
eg
/s
]

DroneE7 DroneE1 DroneE9 DroneE2

0 5 10 15 20 25 30 35 40
−40

−20

0

20

40

Time t [s]

q
[d
eg
/s
]

Take Off
Hover

Hover
Land

Take Off
Hover

Hover
Land

Figure 22: Measured angular velocities (Scenario 4).

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time t [s]

D
ist

an
ce

[m
]

d12
d23
d34

Transition Line Transition Square
Formation Formation

Take Off
Hover

Hover
Land

Figure 23: Inter-multicopter distance measured for each
communication link that has to be kept (Scenario 4).

19

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4812277

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed

0 10 20 30 40

0

0.1

0.2
h
x̄
(z
)

0 10 20 30 40

0

0.1

0.2

Time t [s]

h
x
(z
)

0 10 20 30 40

0

0.1

0.2

h
ȳ
(z
)

0 10 20 30 40

0

0.1

0.2

Time t [s]

h
y
(z
)

0 10 20 30 40

0

0.1

0.2

h
z̄
(z
)

0 10 20 30 40

0

0.1

0.2

Time t [s]

h
z
(z
)

DroneE7 DroneE1 DroneE9 DroneE2

Figure 24: Tracking performance on each axis for each multicopter (Scenario 4).

method imposes no restrictions on constraint for-
mulation and provides complete visibility into the
optimization process. Additionally, experiments in-
volving multiple nanodrones were conducted to val-
idate the effectiveness of the designed trajectories.

Future work will explore the utilization of the
Schoenberg quasi-interpolant to streamline the
complexity of the B-spline functions, as demon-
strated in a previous study focusing on fixed-wing
aircraft applications [40]. Another avenue for re-
search involves enhancing computational efficiency
to enable online implementation of the algorithm.
For instance, this could entail decomposing the
trajectory optimization problem into smaller sub-
problems, facilitating quicker resolution.

6. Appendix

6.1. Non-conservative computation of angular
bounds

The angular constraints

∥Aϵ r̈(t)∥2 ≤ z⊤w r̈(t) + g, ∀t ∈ [0,T f], (44)

are expressed in terms of control points in [18] as∥∥∥Aϵ P̈k

∥∥∥
2 ≤ z⊤wP̈k + g ∀k = 0, . . . , n − 3, (45)

where3 Aϵ = diag(cot ϵ, cot ϵ, 0) and g is the gravita-
tional acceleration.

3cot is the notation for the cotangent

A less conservative expression is obtained if we re-
place in (44) the term r̈(t) with its corresponding
B-spline curve representation ∀t ∈ [0,T f],∥∥∥∥∥∥∥Aϵ

n−3∑
k=0

P̈kBk,d−2,ξ(t)

∥∥∥∥∥∥∥
2

≤ z⊤w
n−3∑
k=0

P̈kBk,d−2,ξ(t) + g, (46)

which, after squaring and regrouping the lhs and
rhs terms, leads to

cot2 ϵ
n−3∑
k=0

n−3∑
i=0

P̈⊤i P̈kBk,d−2,ξ(t)Bi,d−2,ξ(t)

≤ (1 + cot2 ϵ)
n−3∑
k=0

n−3∑
i=0

P̈⊤i zwz⊤wP̈kBk,d−2,ξ(t)Bi,d−2,ξ(t)

+ 2gz⊤w
n−3∑
k=0

P̈kBk,d−2,ξ(t) + g2, ∀t ∈ [0,T f]. (47)

Next, using the unit partitioning property of the
B-splines functions we may group the rhs of (47) to
arrive at

cot2 ϵ
n−3∑
k=0

n−3∑
i=0

P̈⊤i P̈kBk,d−2,ξ(t)Bi,d−2,ξ(t)

≤
n−3∑
k=0

n−3∑
i=0

[
(1 + cot2 ϵ)P̈⊤i zwz⊤wP̈k + 2gz⊤wP̈k + g2

]
.Bk,d−2,ξ(t)Bi,d−2,ξ(t), (48)

20

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4812277

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed

which, with notation (19), may be written com-
pactly as

n−3∑
k=0

n−3∑
i=0

G(ϵ, i, k,P)Bk,d−2,ξ(t)Bi,d−2,ξ(t) ≤ 0,∀t ∈ [0,T f].

(49)
Since the B-spline basis functions are positive (as
per Property P2)), we may now provide sufficient
conditions for (44) to hold, both

i) globally (over the entire horizon [0,T f]):

G(ϵ, i, k,P) ≤ 0, ∀k = 0, . . . , n − 3
and i = max(0, k+d−2), . . . ,min(n−3, k+d);

(50)

ii) or, locally, for some knot sub-interval [τs, τs+1):

∀k, i = max(0, s + d − 2), . . . ,min(n − 3, s + d),
G(ϵ, i, k,P) ≤ 0. (51)

For both (50) and (51) we made use of Property P1)
to assess for each pair of indices (i, k) whether the
product Bk,d−2,ξ(t)Bi,d−2,ξ(t) is empty or not, first on
the entire interval [0,T f], and second for the knot
sub-interval [τs, τs+1).

Lastly, recalling (19), we have that G(ϵ, k, k,P)

= cot2 ϵ P̈⊤k P̈k −
(
cot2 ϵ + 1

)
P̈⊤k zwz⊤wP̈k − 2gz⊤wP̈k − g2,

= P̈⊤k A⊤ϵ Aϵ P̈k −
(
P̈⊤k zwz⊤wP̈k + 2gz⊤wP̈k + g2

)
,

= ∥Aϵ P̈k∥22 −
(
z⊤wP̈k + g

)2
,

which shows that (50) is equivalent with (45) when-
ever i = k. This shows that (50) provides a less
conservative bounding of (44) since, in addition to
the conditions enumerated in (45), we augment the
constraint set with the cases for which i , k.

6.2. Non-conservative computation of angular ve-
locity bounds

The angular velocity constraints are expressed in
terms of control points in [18] as

z⊤wP̈k ≥ ζℓ−d+1 − g, ∀k = ℓ − d + 2, . . . , ℓ, (52a)∥∥∥ ...
P k

∥∥∥
2 ≤ ζℓ−d+1ωmax, ∀k = ℓ − d + 3, . . . , ℓ. (52b)

with ζ = (ζ1, . . . , ζn−d+1)⊤ a vector whose entries are
positive constants.

A less conservative expression is obtained by first
recalling the initial inequality from [18]

∥hω∥2 ≤
∥ ...r (t)∥2

T (t)
=

∥ ...r (t)∥2
∥r̈(t) + zwg∥2

≤ ωmax, (53)

where, since all terms are positive, we may put it
into form

∥ ...r (t)∥22 ≤ ω2
max ∥r̈(t) + zwg∥22 . (54)

Replacing with the B-spline curves associated with
r̈(t),

...r (t) we arrive at∥∥∥ ...
P Bd−3,ξ(t)

∥∥∥2
2 ≤ ω

2
max

∥∥∥P̈Bd−2,ξ(t) + zwg
∥∥∥2

2 . (55)

Further applying the partition of unity prop-
erty P2), we have∥∥∥ ...

P Bd−3,ξ(t)
∥∥∥2

2 ≤ ω
2
max

∥∥∥∥(P̈ + zwg11×(n−1)

)
Bd−2,ξ(t)

∥∥∥∥2

2
.

(56)
Since the lhs and lrs of (56) have different orders

of the B-splines (d − 3 and, respectively, d − 2), we
analyze the inequality over each knot vector sub-
interval and make use of Property P6) which allows
to express any d − 3 - order B-spline curve in terms
of d − 2 - order B-spline functions:

...
P Bd−3,ξ(t) =

...
P Dℓ

d−3,d−2Bd−2,ξ(t). (57)

Thus, on each knot sub-interval ℓ, the following re-
lation holds∥∥∥∥ ...

P Dℓ
d−3,d−2Bd−2,ξ(t)

∥∥∥∥2

2

≤ ω2
max

∥∥∥∥(P̈ + zwg11×(n−1)

)
Bd−2,ξ(t)

∥∥∥∥2

2
. (58)

Via the local support property P1), (58) simpli-
fies to involve only the non-zero (on the ℓ-th sub-
interval basis functions):

∥∥∥∥∥∥∥
ℓ+d∑

k=ℓ+d−2

(
...
P Dℓ

d−3,d−2)kBk,d−2,ξ(t)

∥∥∥∥∥∥∥
2

2

≤ ω2
max

∥∥∥∥∥∥∥
ℓ+d∑

k=ℓ+d−2

(
P̈k + zwg

)
Bk,d−2,ξ

∥∥∥∥∥∥∥
2

2

. (59)

With notation (22), (59) becomes

ℓ+d∑
k=ℓ+d−2

ℓ+d∑
i=ℓ+d−2

S (ℓ, i, k,P)B⊤i,d−2,ξ(t)Bk,d−2,ξ(t) ≤ 0. (60)

21

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4812277

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed

Since the B-spline basis functions are positive (as
per Property P2)), a sufficient condition for (53) to
hold on the sub-interval [τℓ, τℓ+1) is that

S (ℓ, i, k,P) ≤ 0, ∀i, k = ℓ + d − 2, . . . , ℓ + d. (61)

Lastly, recalling (22), we have that

S (ℓ, k, k,P) = (
...
P Dℓ

d−3,d−2)⊤k (
...
P Dℓ

d−3,d−2)k

− ω2
max

(
P̈k + zwg

)⊤(
P̈k + zwg

)
,

which, under assumption (61) and after the appli-
cation of the square root, may be written as

∥(
...
P Dℓ

d−3,d−2)k∥2
∥P̈k + zwg∥2

≤ ωmax,

which means that there exists some ζ such that

∥(
...
P Dℓ

d−3,d−2)k∥2 ≤ ζ̄ωmax, ∥P̈k + zwg∥2 ≥ ζ̄.

Since (
...
P Dℓ

d−3,d−2)k =
∑

j

...
P jDℓ

d−3,d−2(j, k) it follows

that ∥(
...
P Dℓ

d−3,d−2)k∥2 ≤
∑

j
∥

...
P j∥2 · |Dℓ

d−3,d−2(j, k)| holds.

Thus, whenever conditions (52) hold, we may take
ζ̄ which verifies simultaneously∑

j

(
max

j=ℓ−d+3,...,ℓ
ζℓ−d+1 · |Dℓ

d−3,d−2(j, k)|
)
≤ ζ̄,

ζ̄ ≥ max
j=ℓ−d+3,...,ℓ

ζℓ−d+1.

This shows that (52) is equivalent with (60) when-
ever i = k (after further manipulations, as discussed
in [18, Remark 2]). Hence, (60) provides a less con-
servative bounding of (53) since, in addition to the
conditions enumerated in (52), we augment the con-
straint set with the cases for which i , k. Not least,
it should be mentioned that our implementation
avoids the use of ancillary constants ζℓ, as done in
(52).

7. Acknowledgements

This work has been partially supported by the
LabEx PERSYVAL-Lab (ANR-11-LABX-0025-01)
funded by the French program Investissements
d’avenir, La Région Auvergne-Rhône-Alpes, Pack
Ambition Recherche 2021 - PlanMAV, RECPLA-
MALCIR, Ambition Internationale 2023, Horizon-
TA C7H-REG24A10, France, and by a grant from
the National Program for Research of the Na-
tional Association of Technical Universities - GNAC
ARUT 2023; Project ID: 207, UNSTPB, Romania.

References

[1] X. Li, Y. Zhao, J. Zhang, Y. Dong, A hybrid pso algo-
rithm based flight path optimization for multiple agri-
cultural uavs, in: 2016 IEEE 28th International Confer-
ence on Tools with Artificial Intelligence (ICTAI), 2016,
pp. 691–697. doi:10.1109/ICTAI.2016.0110.

[2] B. Bethke, M. Valenti, J. P. How, Experimental
demonstration of uav task assignment with integrated
health monitoring, IEEE Robotics automation maga-
zine march (2010).

[3] G. Rousseau, C. Stoica Maniu, S. Tebbani, M. Babel,
N. Martin, Minimum-time b-spline trajectories with
corridor constraints. application to cinematographic
quadrotor flight plans, Control Engineering Prac-
tice 89 (2019) 190–203. doi:https://doi.org/10.1016/j.
conengprac.2019.05.022.

[4] P. Chen, F. Ouyang, Y. Zhang, Y. Lan, Preliminary
evaluation of spraying quality of multi-unmanned aerial
vehicle (uav) close formation spraying, Agriculture 12
(2022) 1149.

[5] J. Fu, G. Wen, X. Yu, Z.-G. Wu, Distributed forma-
tion navigation of constrained second-order multiagent
systems with collision avoidance and connectivity main-
tenance, IEEE Transactions on Cybernetics 52 (2020)
2149–2162.

[6] S. Vargas, H. M. Becerra, J.-B. Hayet, Mpc-based dis-
tributed formation control of multiple quadcopters with
obstacle avoidance and connectivity maintenance, Con-
trol Engineering Practice 121 (2022) 105054.

[7] A. Caregnato-Neto, M. R. Maximo, R. J. Afonso, A
line of sight constraint based on intermediary points
for connectivity maintenance of multiagent systems us-
ing mixed-integer programming, European Journal of
Control 68 (2022) 100671.

[8] L. Zhu, C. Ma, J. Li, Y. Lu, Q. Yang, Connectivity-
maintenance uav formation control in complex environ-
ment, Drones 7 (2023) 229.

[9] B. Zhou, F. Gao, L. Wang, C. Liu, S. Shen, Ro-
bust and efficient quadrotor trajectory generation for
fast autonomous flight, IEEE Robotics and Automa-
tion Letters 4 (2019) 3529–3536. doi:10.1109/LRA.
2019.2927938.

[10] Z. Shiller, Off-line and on-line trajectory planning, Mo-
tion and Operation Planning of Robotic Systems: Back-
ground and Practical Approaches (2015) 29–62.

[11] M. T. R. Khan, M. Muhammad Saad, Y. Ru, J. Seo,
D. Kim, Aspects of unmanned aerial vehicles path plan-
ning: Overview and applications, International Journal
of Communication Systems 34 (2021) e4827.

[12] A. Pekarovskiy, T. Nierhoff, S. Hirche, M. Buss, Dy-
namically consistent online adaptation of fast mo-
tions for robotic manipulators, IEEE Transactions
on Robotics 34 (2018) 166–182. doi:10.1109/TRO.2017.
2765666.

[13] B. Sabetghadam, R. Cunha, A. Pascoal, Real-time
trajectory generation for multiple drones using bézier
curves, IFAC-PapersOnLine 53 (2020) 9276–9281.

[14] T. Lyche, C. Manni, H. Speleers, Foundations of spline
theory: B-splines, spline approximation, and hierarchi-
cal refinement, in: Splines and PDEs: From Approxi-
mation Theory to Numerical Linear Algebra, Springer,
2018, pp. 1–76.

[15] L. Wang, Y. Guo, Speed adaptive robot trajectory gen-
eration based on derivative property of b-spline curve,

22

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4812277

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed

IEEE Robotics and Automation Letters 8 (2023) 1905–
1911. doi:10.1109/LRA.2023.3241812.

[16] R. T. Rodrigues, N. Tsiogkas, A. Pascoal, A. P. Aguiar,
Online range-based slam using b-spline surfaces, IEEE
Robotics and Automation Letters 6 (2021) 1958–1965.
doi:10.1109/LRA.2021.3060672.

[17] N. T. Nguyen, P. T. Gangavarapu, N. F. Kompe,
G. Schildbach, F. Ernst, Navigation with polytopes: A
toolbox for optimal path planning with polytope maps
and b-spline curves, Sensors 23 (2023). doi:10.3390/
s23073532.

[18] V. Freire, X. Xu, Flatness-based quadcopter trajectory
planning and tracking with continuous-time safety guar-
antees, IEEE Transactions on Control Systems Tech-
nology 31 (2023) 2319–2334. doi:10.1109/TCST.2023.
3250954.

[19] V. Marguet, C. K. Dinh, I. Prodan, F. Stoican, Con-
strained PSO-splines trajectory generation for an indoor
nanodrone, in: 2024 International Conference on Un-
manned Aircraft Systems, ICUAS ’24, Chania Crète,
Greece, 2024. URL: https://hal.science/hal-04544687.

[20] S. S. Mansouri, C. Kanellakis, E. Fresk, D. Kominiak,
G. Nikolakopoulos, Cooperative coverage path planning
for visual inspection, Control Engineering Practice 74
(2018) 118–131.

[21] F. Stoican, I. Prodan, D. Popescu, L. Ichim, Con-
strained trajectory generation for uav systems using a
b-spline parametrization, in: 2017 25th Mediterranean
Conference on Control and Automation (MED), 2017,
pp. 613–618. doi:10.1109/MED.2017.7984185.

[22] F. Stoican, A. Postolache, I. Prodan, Nurbs-based tra-
jectory design for motion planning in a multi-obstacle
environment, in: 2021 European Control Conference
(ECC), 2021, pp. 2014–2019. doi:10.23919/ECC54610.
2021.9654974.

[23] T. Luukkonen, Modelling and control of quadcopter,
Independent research project in applied mathematics,
Espoo 22 (2011).

[24] N. T. Nguyen, I. Prodan, L. Lefèvre, Flat trajectory
design and tracking with saturation guarantees: a nano-
drone application, International Journal of Control 93
(2020) 1266–1279.

[25] J. Löfberg, Yalmip : A toolbox for modeling and opti-
mization in matlab, in: In Proceedings of the CACSD
Conference, Taipei, Taiwan, 2004.

[26] M. ApS, The MOSEK optimization toolbox for MAT-
LAB manual. Version 9.0., 2019. URL: http://docs.
mosek.com/9.0/toolbox/index.html.

[27] B. Salamat, A. M. Tonello, Stochastic trajectory gener-
ation using particle swarm optimization for quadrotor
unmanned aerial vehicles (uavs), Aerospace 4 (2017)
27.

[28] B. P. Duisterhof, S. Li, J. Burgués, V. J. Reddi, G. C.
de Croon, Sniffy bug: A fully autonomous swarm of gas-
seeking nano quadcopters in cluttered environments, in:
2021 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), IEEE, 2021, pp. 9099–
9106.

[29] N. Naidja, S. Font, M. Revilloud, G. Sandou, An inter-
active game theory-pso based comprehensive framework
for autonomous vehicle decision making and trajectory
planning, in: IFAC World Congress-22nd WC 2023,
2023.

[30] X. Yu, C. Li, J. Zhou, A constrained differential evo-
lution algorithm to solve uav path planning in disas-
ter scenarios, Knowledge-Based Systems 204 (2020)
106209.

[31] D. Lutterkort, J. Peters, Tight linear bounds on the dis-
tance between a spline and its b-spline control polygon
(1999).

[32] O. Mechali, L. Xu, X. Xie, J. Iqbal, Theory and
practice for autonomous formation flight of quadrotors
via distributed robust sliding mode control protocol
with fixed-time stability guarantee, Control Engineer-
ing Practice 123 (2022) 105150. doi:https://doi.org/10.
1016/j.conengprac.2022.105150.

[33] M. Sheen, Fast 3d collision detection – gjk algo-
rithm, GitHub project, 2023. URL: https://github.
com/mws262/MATLAB-GJK-Collision-Detection.

[34] J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawl-
ings, M. Diehl, CasADi – A software framework for
nonlinear optimization and optimal control, Math-
ematical Programming Computation 11 (2019) 1–36.
doi:10.1007/s12532-018-0139-4.

[35] I. Prodan, S. Olaru, R. Bencatel, J. Borges de Sousa,
C. Stoica, S.-I. Niculescu, Receding horizon flight con-
trol for trajectory tracking of autonomous aerial vehi-
cles, Control Engineering Practice 21 (2013) 1334–1349.
doi:https://doi.org/10.1016/j.conengprac.2013.05.010.

[36] H.-T. Do, I. Prodan, Indoor experimental validation
of mpc-based trajectory tracking for a quadcopter via
a flat mapping approach, in: 2023 European Con-
trol Conference (ECC), 2023, pp. 1–6. doi:10.23919/
ECC57647.2023.10178260.

[37] R. Falcón, H. Ríos, A. Dzul, Comparative analy-
sis of continuous sliding-modes control strategies for
quad-rotor robust tracking, Control Engineering Prac-
tice 90 (2019) 241–256. doi:https://doi.org/10.1016/j.
conengprac.2019.06.013.

[38] A. Castillo, R. Sanz, P. Garcia, W. Qiu, H. Wang,
C. Xu, Disturbance observer-based quadrotor atti-
tude tracking control for aggressive maneuvers, Con-
trol Engineering Practice 82 (2019) 14–23. doi:https:
//doi.org/10.1016/j.conengprac.2018.09.016.

[39] K. Guo, J. Jia, X. Yu, L. Guo, L. Xie, Multiple ob-
servers based anti-disturbance control for a quadro-
tor uav against payload and wind disturbances, Con-
trol Engineering Practice 102 (2020) 104560. doi:https:
//doi.org/10.1016/j.conengprac.2020.104560.

[40] V. Marguet, F. Stoican, I. Prodan, On the appli-
cation of the schoenberg quasi-interpolant for com-
plexity reduction in trajectory generation, in: 2023
European Control Conference (ECC), 2023, pp. 1–6.
doi:10.23919/ECC57647.2023.10178175.

23

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4812277

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed

