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CONNECTED MCMULLEN-LIKE JULIA SETS IN A

CHEBYSHEV-HALLEY FAMILY

JORDI CANELA, ANTONIO GARIJO, AND PASCALE ROESCH

Abstract. In this paper we study a one parameter family of rational maps

obtained by applying the Chebyshev-Halley root finding algorithms. We show
that the dynamics near parameters where the family presents some degeneracy

might be understood from the point of view of singular perturbations. More

precisely, we relate the dynamics of those maps with the one of the McMullen
family Mλ(z) = z4 + λ/z2, using quasi-conformal surgery.

Introduction

The root finding algorithms are widely known as iterative dynamical systems.
On the chaotic part, the iterative method fails, so it is important to understand
the chaotic set and how it varies with the method.

The root finding algorithms applied to polynomials are rational maps and, in
this setting, there is a well defined dichotomy between the tame part, the Fatou set
denoted F(f), and the chaotic part, the Julia set denoted J (f). On the Fatou set
there is eventually some limiting behaviour since F(f) is the set of points z0 where
the family of iterates (fn)n∈N is normal if restricted to some neighbourhood of z0.

Among the rational cases, the quadratic polynomials—which are also the sim-
plest rational maps—have been well studied and proved to be universal. This
follows from the work of many authors including Douady, Hubbard [7], Lyubich
[8], and McMullen [11]. Roughly speaking, it means that the Julia sets of those
polynomials appear in a lot of families : the dynamics can be restricted so as to
look like quadratic. It is much more easy to recognize the Julia set when it is
connected, so the Mandelbrot set M = {c ∈ C | J (z2 + c) is connected} plays a
fundamental role in parameter spaces. Its boundary ∂M is the bifurcation locus
of the quadratic family: the place where the dynamics changes drastically. One of
the first appearances of the universality of the quadratic family was observed by
the presence of “copies” of the Mandelbrot set in the family of Newton’s method
applied to a cubic polynomial [7].

However, there are rational maps whose Julia set is not homeomorphic to any
quadratic Julia set. The family of rational maps Mn,d,λ(z) = zn + λ/zd firstly
introduced by C. McMullen [10] is an example of this phenomenon. Indeed, the
Julia set of Mn,d,λ could be a Cantor set of circles surrounding the origin or a
Sierpinski carpet, among others posisibilties [6]. These kind of Julia sets is not
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2 J. CANELA, A. GARIJO, AND P. ROESCH

occurring for polynomials since, in this case, there is no Fatou component whose
boundary is the whole Julia set. The family of maps Mn,d,λ is referred in the
literature as McMullen family.

In this article we show that one can find copies of the Julia set of maps in the
McMullen family as subsets of the Julia set of a family coming from Chebyshev-
Halley root finding algorithms.

The family of Chebyshev-Halley root finding algorithms is given by the recursive
sequence zn+1 = CHf

α(zn), where α is a complex parameter and

CHf
α(z) = z −

(
1 +

1

2

Lf (z)

1− αLf (z)

)
f (z)

f ′ (z)
with Lf (z) =

f (z) f ′′ (z)

(f ′ (z))
2 .

When this family is applied to the polynomial f(z) = z3 − 1 and using the new
parameter a = 5− 4α, one gets the rational map

Ra(z) =
2az6 + (15− a)z3 + 3− a

3z2(5− a+ (1 + a)z3)
.

For a = 0 the degree drops from 6 to 5. The goal of this work is to study this
family around the singular parameter a = 0. The main result is the following.

Theorem. There exists a neighbourhood Λ of 0 such that for a ∈ Λ \ {0} the map
R2
a is McMullen-like : the map R2

a is conjugated to a map in the McMullen family
in some annulus Aa.

Theorem A in the §2 is a more detailed statement of this result (see also Theo-
rem 18). Moreover, in §6 we prove that

Corollary. For parameters a ∈ Λ \ {0} the Julia set J (Ra) contains the image by
some homeomorphism of the Julia set of a map in the McMullen family. Moreover,
the three different types of escaping Julia sets of the McMullen family appear in Λ.

The paper goes as follows. In §1 we give a short introduction of the dynamics
of the Chebyshev-Halley family. In §2 we present the properties of the McMullen
family, present Theorem A in §2.1, and give a list of properties to guarantee that
a rational map of degree 6 is a McMullen map in §2.2. In §3 and §4 we discuss in
detail the dynamical properties of the rational maps R0 and Ra, respectively. Then,
§5 is mainly devoted to prove Theorem A, which is the content of Theorem 18. The
proof is based on a cut and paste quasiconformal surgery procedure (see [2]) relating
the dynamics of R2

a with the one ofMλ. Finally, in §6 we prove that the three types
of Julia sets described in the Escape Trichotomy Theorem of [6] can be found as
subset of the Julia set of Ra for different values of a. Furthermore, we remark
that the same ideas of this work could be applied to the Chebyshev-Halley method
applied to the polynomial zn − 1 with n > 3.

1. Chebyshev-Halley family

The family of Chebyshev-Halley root finding algorithms is given by the recursive
sequence zn+1 = CHf

α(zn),

zn+1 = zn −
(
1 +

1

2

Lf (zn)

1− αLf (xn)

)
f (zn)

f ′ (zn)
with Lf (z) =

f (z) f ′′ (z)

(f ′ (z))
2
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and α ∈ C. This family of root finding algorithms was introduced in [5]. In
contrast to Newton’s method, which has quadratic convergence for simple roots,
these algorithms have cubic convergence, i.e. every simple root of a polynomial is
a super-attracting fixed point of local degree 3 of CHf

α. This family contains some
well known root finding algorithms. For example, α = 0 corresponds to Chebyshev’s
method, α = 1/2 corresponds to Halley’s method, and as α tends to infinity the
family converges to Newton’s method.

In this paper, we focus on the Chebyshev-Halley method applied to the polyno-
mial f(z) = z3 − 1. It has the expression

CHf
α(z) =

2− 4α+ (−10− 4α)z3 + (−10 + 8α)z6

6z2(−2α+ (2α− 3)z3)
.

It can be simplified by considering the parameter a = 5− 4α. We obtain then the
following one parameter family of rational maps defined on the Riemann sphere Ĉ
and called Ra:

(1) Ra(z) =
2az6 + (15− a)z3 + 3− a

3z2(5− a+ (1 + a)z3)
, a ∈ C.

For a parameter a /∈ {0, 3}, the rational map Ra(z) exhibits 3 free critical points.
Let ζ = e2πi/3. Given a choice of a punctual determination of a cubic root, the
critical points are

(2) ca,j = ζj 3

√
15− 8a+ a2

a(a+ 1)
, where j = 0, 1, 2,

and the critical values va,j := Ra(ca,j) are

(3) va,j = ζj
(25− 6a+ a2)

(a− 5)2(a+ 1)
3

√
a2

15− 8a+ a2

a+ 1
.

Some basic properties of Ra are related to its symmetry. It is straightforward
to check that Ra(ξz) = ξRa(z) for any ξ ∈ U, where U = {ξ ∈ C | ξ3 = 1} is the
group of third roots of the unity generated by ζ = e2πi/3. As a consequence, this
symmetry provides a conjugacy in the dynamical plane. Note that the orbits of the
3 free critical points are symmetric with respect to multiplication by a third root
of the unity. We can conclude that the a−plane is the natural parameter plane of
the family Ra.

For the map Ra, the elements of U are super-attracting fixed points with local
degree 3 (since the Chebyshev-Halley methods have order of convergence 3). Hence,
to every ξ ∈ U is associated its basin of attraction

(4) Aa(ξ) = {z ∈ C |Rna (z) → ξ as n→ ∞}

and its immediate basin of attraction A∗
a(ξ) defined as a connected component of

Aa(ξ) containing ξ.

The rational map Ra has degree 6, except for a = 0 and a = 3. The parameter
a = 3 corresponds to Halley’s method, which is relatively simple to study since there
are no critical points other than the super-attracting fixed points which correspond
to the roots of the polynomial (see [4]).
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At the parameter a = 0 a singular perturbation happens. Indeed, if a = 0 the
dynamics at ∞ change drastically: the map is

(5) R0(z) =
15z3 + 3

3z2(5 + z3)

and has the points {0,∞} as a period two super-attracting cycle whereas for |a| ≠ 0
small enough ∞ is a repelling fixed point. More precisely, the point 0 is in both
cases critical and is mapped with degree 2 to ∞, but for a = 0 the point z = ∞
is sent back with degree 2 to 0 (see Figure 1 (left)), while for a ̸= 0 the point ∞
becomes a fixed point of multiplier 3(1 + a)/2a. Hence, infinity is a repelling fixed
point when a is close enough to 0, a ̸= 0.

Nonetheless, on the closure A0(ζk) (of the whole basin of attraction under R0),
one can notice similarities between the dynamical planes of R0 and part of that of

Ra (see Figure 1). This follows from the fact A0(ζk) is compact (all the iterates
of A0(ζ

k) are faraway from ∞) and also that the map Ra converges uniformly on
compact sets of C to R0 as a tends to 0. Indeed, it follows from the expression (1)
of Ra that can be rewritten as

Ra(z) =
15z3 + 3 + a(z3 − 1)(2z3 + 1)

3z2(z3 + 5) + a · 3z2(z3 − 1)
.

In fact we can construct a holomorphic motion of A0(ζk) (see Lemma 21 and
Figure 1). Since the concept of holomorphic motion appears often in this paper,
we recall it in the next definition.

Definition 1. A holomorphic motion of a set X ⊂ Ĉ parametrized by a domain

Λ ⊂ C is a map H : Λ×X → Ĉ such that

• H(0, z) = z ∀z ∈ X

·1
·

e
2πi
3

·
e
4πi
3

·1
·

e
2πi
3

·
e
4πi
3

Figure 1. Dynamical planes of Ra(z) for a = 0 (left) and a = 0.0001
(right). In both dynamical planes red points represent points converging
towards a third root of unity. For a = 0 (left) black points represent
points converging to the super-attracting cycle {0,∞}. We mark the

third roots of unity 1, e2πi/3, e4πi/3.
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• z 7→ H(λ, z) is injective for each λ ∈ Λ
• the map λ 7→ H(λ, z) is holomorphic for each z ∈ X.

2. McMullen family and main result

As mentioned before, singular perturbations where introduced by C. McMullen [10]
Mn,d,λ(z) = zn + λ/zd in order to prove the existence of buried Julia components,
i.e. connected components of the Julia set which do not intersect the boundary of
any Fatou component. More specifically, he provided the first example of ratio-
nal map whose Julia set is a Cantor set of quasicircles. Afterwards, R. Devaney,
D. Look, and D. Uminsky [6] provided the following classification for the Julia set
of McMullen maps when the orbit of all critical points tend to ∞ (see Figure 3).

Theorem (Escape Trichotomy, [6]). Assume that all critical points ofMn,d,λ belong
to AMn,d,λ

(∞). Then, exactly one of the following occurs.

• All critical points of Mn,d,λ belong to A∗
Mn,d,λ

(∞). Then, the Julia set

Mn,d,λ is a Cantor set of points.
• All critical points ofMn,d,λ are mapped in exactly two iterates into A∗

Mn,d,λ
(∞).

Then, the Julia set J (Mn,d,λ) is a Cantor set of circles.
• All critical points of Mn,d,λ are mapped in exactly m > 2 iterates into
A∗
Mn,d,λ

(∞). Then, the Julia set J (Mn,d,λ) is a Sierpinsky carpet.

2.1. The main result. The goal of this paper is to relate the dynamics of Ra with
the dynamics of the McMullen map

(6) Mλ(z) :=M4,2,λ(z) = z4 +
λ

z2

for parameters a close to 0. In Figure 3 we can observe that there appear structures
in J (Ra) similar to the Cantor sets of circles, the Sierpinski carpet and the Cantor
set of the family of maps Mλ. In Figure 2 we compare the parameter plane of Ra
near the origin and the parameter plane of Mλ.

Figure 2. In the left side we show the parameter plane of Mλ (6) and
in the right side the parameter plane of Ra (1) near a = 0.
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The main result of this work is the following theorem, which basically states
that for a in a neighbourhood of the origin (see Section 4 for details) the second
iterate of Ra (1) is conjugate to some Mλ (6) in a concrete annulus defined in the
dynamical plane. The result implies that a copy of the Julia set of Mλ is contained
in the Julia set of Ra.

Theorem A. There exists a neighbourhood Λ of 0 such that for a ∈ Λ \ {0} the
map R2

a is conjugated to a map in the McMullen family Mλ. More precisely, there

exists a quasiconformal map φa : Ĉ → Ĉ such that φa
(
R2
a(z)

)
=Mλ(a) (φa(z)) for

all z in some annulus Aa with φ−1
a (J (Mλ(a))) ⊂ Aa, where a 7→ λ(a) is a map

defined on Λ.

2.2. Rigidity of McMullen’s family.
The following proposition is a characterisation for a rational map to be linearly

conjugate to McMullen’s map Mλ(z) = z4 + λ
z2 (6).

Proposition 2. Let Q : Ĉ → Ĉ be a degree 6 rational map satisfying the following
properties:

a) The point z = ∞ is super-attracting of local degree 4;
b) The point z = 0 is a double preimage of z = ∞.
c) The map Q is symmetric with respect to multiplication by a third root of the

unity, i.e. Q(ξz) = ξQ(z) where ξ3 = 1.
d) The map Q has exactly 6 different simple critical points (other than z = 0 and

z = ∞) which are mapped under Q onto exactly 3 different critical values.

Then Q is linearly conjugate to

Mλ(z) = z4 +
λ

z2
.

Proof. It follows directly from a), b) and c) that the map Q can be written as

Q(z) =
az6 + b̃z3 + λ̃

z2
,

where a, b̃, λ̃ ∈ C and aλ̃ ̸= 0. This map is linearly conjugate to

Mb,λ(z) =
z6 + bz3 + λ

z2
,

where b, λ ∈ C, by the map z → z/ 3
√
a. We now use property d) to prove that

b = 0. The critical points of Mb,λ are solutions of

4z6 + bz3 − 2λ = 0.

Writing w = z3, we get the equation 4w2 + bw − 2λ = 0, whose solutions are

w± =
−b±

√
b2 + 32λ

8
.

By d) Mb,λ has 6 different simple critical points (other than z = 0 and z = ∞), we

conclude that ∆ :=
√
b2 + 32λ ̸= 0. Moreover, we have that w+ · w− = −λ/2.

Let ζ = e2πi/3. These 6 critical points of Mb,λ are labelled:

• c1,+ = 3
√
w+, c2,+ = ζ · c1,+, c3,+ = ζ2 · c1,+;

• c1,− = 3
√
w−, c2,− = ζ · c1,−, c3,− = ζ2 · c1,−;
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Figure 3. In the first column we show the dynamical plane of Mλ (6)
for λ = 0.005 (top) λ = −0.28 (middle) and λ = −0.455 (bottom). In
the second column the dynamical plane of Ra (see (1)) for a = −0.0003
(top) a = −0.0164 (middle) and a = −0.028 (bottom) with Re(z) ∈
(−0.245, 0.245) and Im(z) ∈ (−0.245, 0.245). In the dynamical plane of
Ra red points represent points converging to a third root of unity while
in the McMullen family Mλ red points represent points converging to
infinity.
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Notice that the labelling of the critical points depends on arbitrary choices of the
square and cubic roots, but this is not important since we find them all. By
hypothesis,Mb,λ maps this 6 critical points to exactly three different critical values.
Notice that ifMb,λ(cj,+) =Mb,λ(ck,+) with j ̸= k then, by symmetry, Mb,λ(c1,+) =
Mb,λ(c2,+) =Mb,λ(c3,+). It would then follow thatMb,λ maps the six critical points
to two critical values, which is not possible by hypothesis. We can conclude that
Mb,λ(cj,+) =Mb,λ(ck,−) for some j and k. For all critical points cj,± we have

Mb,λ(cj,±) = c4j,±+b·cj,±+
λ

c2j,±
= cj,±

(
c3j,± + b+

λ

c3j,±

)
= cj,±

(
w± + b+

λ

w±

)
=

= cj,± (w± + b− 2w∓) .

By taking the third power on both sides of the equality Mb,λ(cj,+) = Mb,λ(ck,−)
we obtain, independently of j and k, the equality:

w+ (w+ + b− 2w−)
3
= w− (w− + b− 2w+)

3
.

By using that w± = (−b±∆)/8, where ∆ :=
√
b2 + 32λ ̸= 0, simple computations

yield that the previous equation is equivalent to 432∆3b = 0. Since ∆ ̸= 0, we
conclude that b = 0, which finishes the proof. □

3. Dynamics of the map R0

In this section we study the dynamics of the unperturbed map R0. We start by
analyzing the relation of the repelling fixed points of R0 and the basins of attraction
A0(ζ

j), where j = 0, 1, 2 (see (4)). The maps Ra(z) have 3 fixed points in C other
that the third roots of the unity, given by

(7) xa,j = ζj 3

√
a− 3

a+ 3
, where ζ = e2πi/3 and j = 0, 1, 2.

In this case we take the determinacy of the third root such that 3
√
−1 = −1

(which is well defined for |a| small). Notice that for a = 0 these three fixed points
are given by x0,j = −ζj . Notice that the third roots of the unity are ζj with
j = 0, 1, 2.

Lemma 3. Each repelling fixed point x0,j of R0 belongs to the boundary of the

immediate basins of attraction A∗
a(ζ

k) and A∗
a(ζ

k′) where j, k, k′ ∈ {0, 1, 2} and
k′ ̸= j ̸= k ̸= k′.

Proof. If a = 0 the critical points are the roots of the unity and the points 0 and
∞, which form a super-attracting 2-cycle. Every root of the unity ζj is a super-
attracting fixed point of local degree 3. Since its immediate basin of attraction
A∗

0(ζ
j) cannot contain any free critical point, the Böttcher coordinate extends until

reaching the boundary of the immediate basin of attraction. It follows that the
fixed dynamical rays, of angles 0 and 1/2, land at ∂A∗

0(ζ
j). They either land at

two different fixed points or at a common fixed point.
If they land at different fixed points we are done. Indeed, since there are only 3

fixed points other than the roots of the unity, it follows from the symmetry in the
dynamical plane that every x0,j belongs to the boundary of exactly 2 immediate
basins of attraction.

To finish the proof we have to see that these fixed rays cannot land at a common
fixed point. We focus on the basin of attraction of the root ζ0 = 1. Since R0
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leaves the real line invariant, the map i(z) = z conjugates R0 with itself. We can
conclude that if a fixed ray lands at x0,j ∈ ∂A∗

0(1), then the other fixed ray lands
at x0,j ∈ ∂A∗

0(1). Since we are assuming that they land at the same point, we
can deduce that they both land at x0,0 = −1. Using the symmetry with respect
to rotation by a third root of the unity, we can conclude that −1 ∈ ∂A∗

0(1), that
−ζ ∈ ∂A∗

0(ζ), and that −ζ2 ∈ ∂A∗
0(ζ

2). However, this is impossible since then the
3 different basins of attraction would have a non-empty intersection. It also follows
from the previous argument that x0,0 /∈ ∂A∗

0(ζ
0). By symmetry we conclude that

x0,j /∈ ∂A∗
0(ζ

j), j = 0, 1, 2. □

We will construct a partition of the dynamical plane of R0 using dynamical
rays. The third roots of the unity are super-attracting fixed points of local degree
3 under the map R0. Since R0 has no free critical points, the Böttcher coordinate
extends to the whole immediate basin of attraction of each third root of the unity
ζj , j = 0, 1, 2. It follows that each A∗

0(ζ
j) contains two invariant rays, of angles 0

and 1/2, which land at two different fixed points on ∂A∗
0(ζ

j) by Lemma 3.
Let η denote the curve obtained by the union of these 6 fixed rays (2 fixed rays

for each one of the third root of the unity). It follows from Lemma 3 that η is
a simple closed curve which surrounds z = 0 and is invariant under rotation by
third roots of the unity (see Figure 4). Moreover, for each the root ζj , the curve η
separates it from its preimages. Indeed, the root 1 has two different real preimages,
one in the interval (−1, 0) and another one in the interval (−∞,−1). Notice that
η contains the repelling fixed point −1.

2:1

2:1

0

1
2

1
6

1
3

2
3

5
6

Int(η0)

η0

Ext(η∞)

η∞

Int(η)
η

Figure 4. Dynamical plane of R0 and sketch of the dynamical rays
involved in the construction

.
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The preimage of η under R0 consists of the union of 3 different simple closed
curves which intersect at the roots ζj (see Figure 4). One of the curves is η,

which is mapped with degree 1 onto itself. The other curves are η∞ ⊂ Ext(η) and

η0 ⊂ Int(η). By relabelling the external rays if necessary (for each A∗
0(ζ

j) we can
choose which fixed ray is 0 and which is 1/2), we can assume that η∞ contains the
rays of angles 1/6 and 1/3 and that η0 contains the rays of angles 2/3 and 5/6.
Besides those rays, the curve η∞ and η0 contain the preimages of the rays of angles
0 and 1/2 attached at the preimages of the roots of the unity contained in Ext(η)
and Int(η), respectively (see Figure 4). It follows that η∞ and η0 are simple closed
curves that surround z = 0 and are invariant under rotation by a third root of the
unity.

Lemma 4. R0 : Ext(η∞) → Int(η) and R0 : Int(η0) → Ext(η) are proper maps
of degree 2.

Proof. The open set Ext(η∞) contains no other preimage of z = 0 other than
z = ∞. Indeed, z = 0 only has three preimages under R0 other than z = ∞, which
are given by −ζj 3

√
1/5 for j = 0, 1, 2 and are contained in Int(η). It follows that

R0 : Ext(η∞) → Int(η) is a proper map. The degree of this proper map is 2 since
z = ∞ is mapped 2 to 1 onto z = 0 under R0. Analogously, R0 : Int(η0) → Ext(η)
is a proper map of degree 2. □

γ0γ1

γ2

γ3

Figure 5. Configuration of the dynamics of the curve γ0 and its preim-
ages up to γ3. the map R0 maps each curve γk onto γk−1 with degree 2
for k = 1, . . . , 4.

The curve η and its preimages are well defined for any parameter a close enough
to 0 (see next section). We want to use them to perform a cut and paste surgery
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(see [2]) to relate the dynamics of Ra with the one of z4 + λ/z2. However, these
curves always intersect at the roots of the unity. To avoid this problem we now
introduce a modified version of η (see Figure 5). This modified version uses the
equipotentials obtained from the Böttcher coordinates in the immediate basins of
attraction of the third roots of the unity.

Definition 5. Fix 0 < l0 < 1. We define γ0 to be the simple closed curve ob-
tained by cutting η near the roots of the unity by the equipotentials of level l0
and joining the cut points through these equipotentials so that Int(γ0) is an open
neighbourhood of z = 0 not containing the roots of the unity.

By construction γ0 is invariant with respect to rotation by a third root of the
unity. Notice that γ0 depends on the choice of the level l0. Notice also that
the rotation with respect to a third root of the unity maps the equipotentials of
level l0 amongst themselves. We can now use the maps R0|Ext(η∞) and R0|Int(η0)
(Lemma 4) to take preimages of γ0 (see Figure 5).

Lemma 6. Let γ1 be the preimage of γ0 contained in Ext(η∞), γ2 be the preimage
of γ1 contained in Int(η0), γ3 be the preimage of γ2 contained in Ext(η∞), and γ4
be the preimage of γ3 contained in Int(η0). Then the curves γk for k = 1, . . . , 4 are
simple closed curves which are invariant with respect to rotation by a third root of
the unity, surround the origin, and R0 : γk → γk−1 has degree 2 for k = 1, . . . , 4.
Moreover, we have the inclusions γ4 ⊂ Int(γ2), γ2 ⊂ Int(γ0), γ0 ⊂ Int(γ1), and
γ1 ⊂ Int(γ3).

Proof. These curves are well defined by the dynamics of R0|Ext(η∞) and R0|Int(η0)
(see Lemma 4). Their properties also come from the dynamics of R0|Ext(η∞) and
R0|Int(η0). Notice that γ1 coincides with η∞ except at the preimages of the subin-
tervals replaced by equipotential segments. □

The next remark describes properties of the curves γ1, γ2 and γ3 which will be
used in the next section. They follow from the dynamics of R0 (Lemma 4).

Remark 7. All preimages of γ2 under R0, other than γ3, are compactly contained
in Int(γ3). Moreover, the open set Int(γ1) contains all preimages of z = ∞ under
R0.

We continue with a lemma showing that the Fatou components of R0 are qua-
sidisks.

Lemma 8. ∂A∗
0(∞), ∂A∗

0(0) and ∂A
∗
0(ζ

j) for j = 0, 1, 2 are quasicircles.

Proof. We firstly consider the 2-cycle {0,∞} ofR0. The triple (R
2
0; Int(γ2), Int(γ0))

is a polynomial-like map of degree 4 whose Julia set coincides with the boundary
of A∗

0(0). Notice that z = 0 is a super-attracting fixed point of local degree 4 un-
der R2, so the polynomial-like map (R2

0, Int(γ2), Int(γ0)) is hybrid equivalent to a
polynomial of the form bz4, b ∈ C and the result follows.

We secondly consider the super-attracting fixed points located at ζj for j =
0, 1, 2. By symmetry it is enough to prove the result for ∂A∗

0(1). We construct a
curve γ which passes through the external rays of angles 1/4 and 3/4 in ∂A∗

0(ζ
1)

and ∂A∗
0(ζ

2). We continue this curves in the immediate basins of attraction of 0
and ∞ by following appropriate external rays and cutting by equipotentials so that
it surrounds z = 1 (see Figure 6). Moreover, γ is modified to follow equipotentials
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near ζ1 and ζ2 so that it does not contain any of the fixed points (see Figure 6).
Let V be the domain bounded by γ (which contains z = 1). It is not difficult
to show that, if the equipotentials in the basins of z = 0 and z = ∞ are chosen
appropriately, the connected component U of R−1

0 (V ) which contains ζ0 = 1 is
simply connected, is compactly contained in V and is mapped with degree 3 onto
V under R0. It follows that the triple (R0;U, V ) is a degree 3 polynomial-like
mapping. Since ζ0 = 1 is a super-attracting fixed point of local degree 3, it follows
that R0|U is quasiconformally conjugate to z3. This quasiconformal conjugacy maps
the immediate basin of attraction of z = 1 to the unit disk. Hence, we can conclude
that ∂A∗

0(1) is a quasicircle (see Figure 6). □

1
4

3
4

γ γ−1

Figure 6. Curves that delimit the polynomial-like mapping around
z = 1.

We finish this section by showing that the curve γ0 is a quasicircle. Since R0 has
no free critical points (all critical points of R0 are fixed points), it follows that all
preimages of R0 are also quasicircles.

Corollary 9. The curve γ0 is a quasicircle.

Proof. The curve γ0 is built by a finite union of analytic curves (dynamical rays of
angles 0 and 1/2 and equipotentials at the basins of attraction of the third roots
of the unity). In order to proof that γ0 is a quasicircle it is enough to show that
the analytic curves are joined forming positive angles. This is trivially true at the
points where dynamical rays are joined with equipotentials. The only problems
could happen at the union of the dynamical rays at the repelling fixed points x0,j .
Since ∂A∗

0(ζ
j), j = 0, 1, 2, are quasicircles (Lemma 8), it follows that the dynamical

rays land at the fixed points x0,j , where j = 0, 1, 2, with a positive angle.
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□

4. Dynamics of the map Ra

In the next section we present a surgery construction relating the rational map
R2
a (1) and the McMullen map Mλ (6). This construction is based on the fact

that the curves γ0, γ1, γ2, γ3, and γ4 (see Lemma 6) can be defined continuously
for |a| small enough keeping the same dynamics. We shall denote these continued
curves by γ0(a), γ1(a), γ2(a), γ3(a), and γ4(a). The goal of the next lemmas is
to introduce formally these curves. First, we introduce a lemma that allows us to
locate the critical values which are the images of the critical points that appear for
a ̸= 0.

Lemma 10. There exists a constant C1 > 0 that does not depend on a such that if

|a| is small enough, a ̸= 0, then |Ra(z)| < C1|a|2/3 for all z ∈ A
(

1
|a|1/3 ,

3
|a|1/3

)
.

Proof. Every point in A
(

1
|a|1/3 ,

3
|a|1/3

)
can be written as b

a1/3
, where 1 < |b| < 3.

We have

Ra

(
b

a1/3

)
=

2b6

a + 15b3

a − b3 + 3− a
3b2

a2/3
(5− a+ b3

a + b3)
=

(15b3 + 2b6)a2/3 + (3− b3)a5/3 − a8/3

3b5 + 3b2(5 + b3 − a)a
.

Therefore, we have ∣∣∣∣Ra( b

a1/3

)∣∣∣∣ = ∣∣∣∣15 + 2b3

3b2

∣∣∣∣ |a|2/3 + o(|a|2/3).

To finish the proof it is enough to take

C1 = 1 + max
1≤|b|≤3

∣∣∣∣15 + 2b3

3b2

∣∣∣∣ .
□

The curve γ0 is defined using the dynamical rays of angles 0 and 1/2 of ζj cut
through the equipotentials of level l0 so that ζj /∈ Int(γ0). The following lemma
establishes the necessary conditions so that this construction can be repeated for
a ̸= 0 and serves as definition of γ0(a).

Lemma 11. There exists Λ0 ⊂ C an open and simply connected set of parameters
containing a = 0 such that the following hold:

i) The critical points ca,j (see (2)) do not lie on the external rays of angles 0 or
1/2 or the equipotentials of level l0 of the immediate basins of attraction of ζj,
j = 0, 1, 2.

ii) The fixed points xa,j (see (7)) are repelling.

Moreover, for a ∈ Λ0, the curve γ0 admits a holomorphic motion whose image is
a Jordan curve γ0(a) formed by the dynamical rays of angles 0 and 1/2 and the
equipotentials of level l0. This curve γ0(a) is symmetric with respect to action of U
and is a quasi-circle as γ0.

Proof. The fact that γ0(a) is a Jordan curve that is well defined by dynamical
continuation of γ0 follows directly from i) and ii). Since the curve γ0(a) is defined
piecewise by dynamical objects that move holomorphically, it is a holomorphic



14 J. CANELA, A. GARIJO, AND P. ROESCH

motion of γ0. Since γ0 is a quasicircle (see Corollary 9) it follows from the λ-
Lemma (see [9]) that γ0(a) is also a quasicircle.

Notice that the xa,j collide at a = ±3 (see (7)). However, those parameters
do not belong to Λ0. On the one hand, for a = −3 the fixed points x−3,j are
parabolic. On the other hand, a = 3 is a singular parameter for which the degree
of Ra decreases to 4, the fixed points x3,j and the critical points c3,j collapse at
z = 0, and one of the fixed dynamical rays at the basin of attraction of each root of
the unity lands at z = ∞ (the other one lands at z = 0, which is a repelling fixed
point for this singular parameter). This last claim is also satisfied for |a− 3| small
enough, so a = 3 does not belong to ∂Λ0. □

Remark 12. The fixed points xa,j are repelling for parameters in the complement
of the closed disk of centre a = −5 and radius 2 (compare [4, Proposition 2.4]).

Once the curve γ0(a) is defined as a holomorphic motion of γ0 over a set of
parameters Λ0 (Lemma 11), we can define recursively γi(a) as a holomorphic motion
of γi, i = 1, 2, 3, 4. In the next lemma we introduce these curves and describe their
basic properties.

Lemma 13. Define γi(a), i = 1, 2, 3, 4, recursively as follows. Let Λi ⊂ Λi−1 be
an open simply connected set of parameters such that γi−1(a) does not contain any
critical value. Let γi(a) to be the connected component of R−1

a (γi−1(a)) which is a
holomorphic motion of γi(a). Then, the curves γi(a) satisfy the following properties:

i) They are quasicircles and are symmetric with respect to rotation by a third root
of the unity.

ii) The curve γi(a), i = 1, 2, 3, 4 is mapped 2 to 1 onto γi−1(a) under Ra.

Moreover, we have the inclusions γ4(a) ⊂ Int(γ2(a)), γ2(a) ⊂ Int(γ0(a)), γ0(a) ⊂
Int(γ1(a)), and γ1(a) ⊂ Int(γ3(a)).

Proof. Since the sets Λi are chosen so that the curves γi−1(a) do not contain crit-
ical values and γ0(a) is a quasicircle (Lemma 11) it follows that all connected
components of R−1

a (γi−1(a)) are quasicircles. The curves γi(a) are symmetric with
respect to rotation by a third root of the unity since γ0(a) also is and this property
is preserved by backwards iteration of Ra (as long as the set surrounds z = 0).

The fact that the curves γi(a), i = 1, 2, 3, 4 are mapped 2 to 1 onto γi−1(a)
follows from the fact that they are holomorphic motions of γi(a) and the curves
γi(a) satisfy the same property (see Lemma 6). The final inclusions also come from
the corresponding inclusions of the curves γi(a). □

Notice that in the previous lemma we have defined recursively the sets Λi. We
would like to point out that it was not strictly necessary to define all those sets
due to the inclusions of the curves. Indeed, by Lemma 10, since γ0(a) ⊂ Int(γ1(a))
it follows that we can take Λ1 = Λ2. Also, since γ2(a) ⊂ Int(γ3(a)) we can take
Λ3 = Λ4. Using the previous lemma we can now fix the set of parameters on which
we will perform the surgery construction, which actually corresponds to Λ4.

Definition 14. We define Λ := Λ4, i.e. Λ ⊂ C as an open simply connected set
of parameters containing a = 0 such that the holomorphic motion of γ2(a) is well
defined and γ2(a) contains no critical value.

Even though it is not the goal of this paper, it follows from standard results in
holomorphic dynamics that Λ can be taken as indicated in Figure 7. The set ∂Λ
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is chosen so that the critical values va,j (3) lie in γ2(a). Notice that the chosen
Λ is contained in the complement of the disk where the fixed points xa,j (7) are
non-repelling (see Remark 12).

Λ•aq

Figure 7. Sketch of the domain Λ. The parameters a are such that
Re(a) ∈ (−0.05, 0.05) and Im(a) ∈ (−0.05, 0.05).

We have proven that for a ∈ Λ the curves γj(a) are mapped 2 to 1 onto γj−1 for
j = 1, . . . , 4. In this sense, the dynamics of R0 is maintained after perturbation.
The dynamics of Ra restricted to the regions bounded by these curves is also main-
tained. However, after perturbation, the dynamics of Ra on the unbounded regions
delimited by these curves changes. This is described in the next proposition (see
Figure 8).

Proposition 15. Let a in Λ\{0}. Then, there exists a preimage γ′2(a) of γ2(a) un-
der Ra which is a simple closed curve that is mapped 1 to 1 onto γ2(a), is invariant
with respect to rotation by a third root of the unity, and satisfies γ3(a) ⊂ Int(γ′2(a)).
Moreover, the following holds.

i) The map Ra : Int(γ2(a)) → Ext(γ1(a)) is proper of degree 2.
ii) The map Ra : A(γ1(a), γ3(a)) → A(γ2(a), γ0(a)) is proper of degree 2.
iii) The map Ra : Ext(γ′2(a)) → Ext(γ2(a)) is proper of degree 1.
iv) The map Ra : A(γ′2(a), γ3(a)) → Int(γ2(a)) is proper of degree 3.

In particular, the annulus A(γ′2(a), γ3(a)) contains the 3 critical points and the 3
zeros that appear near z = ∞ after perturbation.

Proof. Statement i) follows from the fact that a ∈ Λ and, therefore, the dynamics
in the region bounded by γ2(a) remain unchanged. In particular, the only pole of
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γ0(a)

γ1(a)

γ2(a)

γ3(a)

γ′2(a)

γ′0(a)

1 : 1 2 : 1

3 : 1

1 : 1

Figure 8. Sketch of the dynamics described in Proposition 15. The
pink annulus contains three critical points and is mapped onto the green

disc.

Ra in Int(γ2(a)) is z = 0, which is a pole of order 2. Similarly, it is easy to see that
A(γ1(a), γ3(a)) is a connected component of R−1

a (A(γ2(a), γ0(a)) (notice that, by
construction, A(γ1(a), γ3(a)) cannot contain neither zeros nor poles). Therefore,
Ra : A(γ1(a), γ3(a)) → A(γ2(a), γ0(a)) is proper. By definition of Λ the annulus
A(γ2(a), γ0(a)) can contain no critical values. We conclude that the degree of the
proper map is achieved on the boundaries of the annulus, and so this degree is 2.
This proofs ii).

For a = 0, the curve γ3 is mapped with degree 2 onto γ2. Moreover, all other
preimages of γ2 lie in the region bounded by γ3 (see Remark 7). Recall that Λ
consists of the open connected set of parameters containing a = 0 such that no
critical values has reached γ2(a). Equivalently, Λ consists of the maximum set of
parameters for which all preimages of γ2 under R0 can be continued as preimages
of γ2(a) under Ra. In particular, all preimages of γ2(a) in Int(γ3(a)) correspond to
holomorphic motions of the preimages of γ2 under R0. Since R0 has degree 5 and
Ra has degree 6, it follows that there is a simple closed curve γ′2(a) ⊂ Ext(γ3(a)))
which is mapped 1 to 1 onto γ2(a) under Ra. Moreover, γ′2(a) is invariant under
rotation by a third root of the unity since γ2(a) is also invariant. We obtain that
γ3(a) ⊂ Int(γ′2(a)).

It follows from Remark 7 that Int(γ1(a)) contains all preimages of z = ∞ other
than itself. We can conclude that Ra : Ext(γ′2(a)) → Ext(γ2(a)) is proper of degree
1. This proves statement iii).

Since the curves γ′2(a) and γ3(a) are mapped onto γ2(a) with degree 1 and 2,
respectively, and the annulus A(γ′2(a), γ3(a)) contains no preimage of z = ∞, it
follows that Ra : A(γ′2(a), γ3(a)) → Int(γ2(a)) is proper of degree 3. This proves
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statement iv). The final claim follows from the Riemann-Hurwitz formula (see for
instance [12]) since 3 critical points, counting multiplicity, are required to map a
doubly connected domain onto a simply connected domain via a proper map of
degree 3. □

5. Surgery construction from R2
a to z4 + λ/z2

In this section we relate the dynamics of Ra with the one of z4 +λ/z2. To do so
we will perform a cut and paste surgery (see [2]). In this sense, the first step is to
build a ‘rational-like map’ which can be used to define the cut and paste surgery.
This rational-like configuration (see Figure 9) is defined for R2

a and is based on
the dynamics of Ra described in Proposition 15. However, in order to make the
main surgery construction easier to understand, we will introduce a new notation
for some of the curves so that it is easier to understand when looking at R2

a.

Proposition 16. Let a in Λ \ {0}. Then there exist quasicircles βin1 (a), βin2 (a),
βout0 (a), βout1 (a) and βout2 (a) which are analytic except on a finite set of point,
surround z = 0, and are invariant with respect to rotation by a third root of the
unity such that the following hold:

i) The curves βout1 (a) and βout2 (a) are mapped with degree 4, under R2
a, onto

βout0 (a) and βout1 (a), respectively.
ii) The curves βin1 (a) and βin2 (a) are mapped with degree 2, under R2

a, onto β
out
0 (a)

and βout1 (a), respectively.
iii) We have the inclusions

• βin1 (a) ⊂ Int(βin2 (a));
• βin2 (a) ⊂ Int(βout2 (a));
• βout2 (a) ⊂ Int(βout1 (a));
• βout1 (a) ⊂ Int(βout0 (a)).

iv) The map R2
a satisfy:

• R2
a : A(βin2 (a), βout2 (a)) → Int(βout1 (a)) is proper of degree 6.

• R2
a : A(βin1 (a), βout1 (a)) → Int(βout0 (a)) is proper of degree 6.

βin1 (a)

βin2 (a)

βout2 (a)

βout1 (a)

βout0 (a)

βout1 (a)

6 : 1

Figure 9. Sketch of the dynamics of the curves βin
1 (a), βout

2 (a),
βout
2 (a), and βout

1 (a).
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Proof. We define βout0 (a) := γ0(a), β
out
1 (a) := γ2(a), and β

out
2 (a) := γ4(a). Notice,

by definition, βout0 (a) is a quasicircle which is analytic except a finite set of points.
This property is also satisfied by all its iterated preimages (as long as they do
not contain a critical point). Statement i) follows directly from Lemma 13. By
Proposition 15 iii), there exists a simple closed curve γ′0(a) ⊂ Ext(γ′2(a)) that is
mapped with degree 1 onto βout0 (a) = γ0(a), separates γ

′
2(a) from z = ∞ and is

symmetric with respect to rotation by a third root of the unity (see Figure 8).
The curves βin1 (a) and βin2 (a) are obtained by Proposition 15 i) taking preimages

of γ′0(a) and γ
′
2(a), respectively, contained in Int(γ2(a)) = βout1 (a). Recall here that,

by Proposition 15 i) Ra : Int(γ2(a)) → Ext(γ1(a)) is proper of degree 2, so βin1 (a)
and βin2 (a) are mapped 2 to one onto βout0 (a) and βout1 (a), respectively, under R2

a.
Notice also that since γ3(a) separates γ′2(a) from γ1(a) and βout2 (a) = γ4(a) is a
preimage of γ3(a), we have that βin1 (a) ⊂ Int(βin2 (a)) and βin2 (a) ⊂ Int(βout2 (a)).
Together with Lemma 13, this finishes the proof of i), ii) and iii).

Finally, we prove iv). By Proposition 15 i) and iii) we have thatRa : Int(γ2(a)) →
Ext(γ1(a)) and Ra : A(γ′2(a), γ3(a)) → Int(γ2(a)) are proper maps of degree 2 and
3, respectively. Recall that βin2 (a) and βout2 (a) = γ4(a) are preimages of the curves
γ′2(a) and γ3(a)), respectively, which lie in Int(γ2(a)) = Int(βout1 (a)). conclude
that R2

a : A(βin2 (a), βout2 (a)) → Int(βout1 (a)) is proper of degree 6. This proper map
can be extended to a degree 6 proper map R2

a : A(βin1 (a), βout1 (a)) → Int(βout0 (a)).
This follows directly from Proposition 15. This finishes the proof.

□

Remark 17. It follows from the previous statement that A(βin1 (a), βout1 (a)) con-
tains exactly 6 critical points. Indeed, by Proposition 15 i), A(βin2 (a), βout2 (a))
is mapped 2 to 1 onto A(γ′2(a), γ3(a)), which contains the 3 critical points ca,j ,
j = 0, 1, 2, of Ra. We can conclude that if a ∈ Λ the maps R2

a|A(βin
1 (a),βout

1 (a)) have

exactly 6 different critical points which are mapped under iteration of R2
a onto ex-

actly 3 critical values. Notice that the 6 critical points cannot be mapped onto
exactly one critical value since such critical value would have 12 preimages under
R2
a|A(βin

1 (a),βout
1 (a)), counting multiplicity. This is impossible sinceR1

a|A(βin
1 (a),βout

1 (a))

is a degree 6 proper map.

Once we have the rational-like configuration (Proposition 16), we can proceed
to prove Theorem A. This is the content of Theorem 18. This theorem relates the
dynamics of the maps Ra with the one of the McMullen maps Mλ(z) = z4 + λ/z2

within the annulus A(βin2 (a), βout2 (a)).

Theorem 18. Let a in Λ \ {0}. Then, there exists a quasiconformal map φa :

Ĉ → Ĉ such that φa ◦ R2
a(z) = Mλ(a) ◦ φa(z) for all z ∈ A(βin2 (a), βout2 (a)), where

a 7→ λ(a) is a map defined on Λ. Moreover, φ−1
a (J (Mλ(a))) ⊂ A(βin2 (a), βout2 (a)).

Proof. The idea of the proof is to perform a cut and paste surgery (see [2]). More
specifically, we will build a model map that coincides withR2

a overA(β
in
2 (a), βout2 (a)),

has the dynamics of z4 and 1/z2 in Ext(βout1 ) and Int(βin1 ), respectively, and is
globally quasisymmetric. Finally, we will use the Measurable Riemann Mapping
Theorem ([2]) and Proposition 2 to conclude the model map is quasiconformaly to
a map of the family Mλ.

We first explain how to glue the dynamics of z4 in Ext(βout1 ) with the one of R2
a

in A(βin2 (a), βout2 (a)). Pick ρ > 1. Let
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Φout : Ext(β
out
1 (a)) → Ĉ \ Dρ4

be the Riemann map that has positive real derivative at z = ∞ and fixes it.
Since the curve βout1 (a) is invariant under rotation by a third root of the unity,
it follows that Φout(ξ · z) = ξ · Φout(z) for any third root of the unity ξ and
z ∈ Ext(βout1 (a)). Indeed, since the Riemann map fixing z = ∞ is unique up
to rotation and ξ−1Φout(ξ · z) also has positive real derivative at z = ∞, it follows
that ξ−1Φout(ξ · z) = Φout(z). This property is also satisfied by the power map
Φ4
out(z).
Since βout1 (a) is a quasicircle, the map Φout extends to the boundary as a qua-

sisymmetric map (see [2, Thm. 2.9]). Moreover, since βout1 (a) is a finite union
of analytic curves, this quasisymmetric maps is analytic except at a finite set of
points (see [2, Remark 2.12]). Let ψ1,out : β

out
1 (a) → S1ρ4 be the extension map.

Since ψ1,out ◦ R2
a|βout

2
(a) : βout2 (a) → S1ρ4 has degree 4, we can choose a qua-

sisymmetric lift ψ2,out : βout2 (a) → S1ρ which is analytic except in a finite set of

points so that ψ1,out(R
2
a(z)) = (ψ2,out(z))

4
. This lift ψ2,out can be chosen so that

ψ2,out(ξ ·z) = ξ ·ψ2,out(z) for any third root of the unity ξ. By [2, Proposition 2.30]
there exists a quasiconformal map

ψout : A(β
out
2 (a), βout1 (a)) → A(ρ, ρ4)

such that ψout|βout
2 (a) = ψ2,out and that ψout|βout

1 (a) = ψ1,out. Moreover ψout can be

chosen so that ψout(ξ · z) = ξ ·ψout(z) for any third root of the unity ξ. Indeed, [2,
Proposition 2.30] is based on [2, Proposition 2.28], which extends quasisymmetric
boundary maps on a straight annulus to a quasiconformal map on the annulus,
together with a uniformization map. It is not difficult to see that the quasiconformal
map built in [2, Proposition 2.28] is symmetry with respect to rotation by a third
root of the unity if the boundary maps are also symmetric. As is the case with the
Riemann map, the uniformization map sending a non straight annulus to a straight
annulus can also be chosen to be symmetric.

We can now define a quasiregular map in Ext(βin2 (a)) as:

Fa(z) =

 Φ−1
out

(
Φ4
out(z)

)
for z ∈ Ext(βout1 (a))

Φ−1
out

(
ψ4
out(z)

)
for z ∈ A(βout2 (a), βout1 (a))

R2
a(z) for z ∈ A(βin2 (a), βout2 (a)).

To complete the model we have to glue the dynamics of 1/z2 in Int(βin2 (a)). The
construction is completely analogous to the previous case, so we skip some details.
Let

Φin : Int(βin1 (a)) → D1/ρ4

be the Riemann map that has positive real derivative at z = 0 and fixes it. The map
Φin is symmetric with respect to rotation by a third root of the unity. Let ψ1,in :
βin1 (a) → S11/ρ4 be the quasisymmetric extension of Φin. Since ψ1,out ◦ R2

a|βin
2 (a) :

βin2 (a) → S1ρ4 has degree 2, there exists a quasisymmetric lift ψ2,in : βin2 (a) → S11/ρ2
such that ψ1,out(R

2
a(z)) = 1/(ψ2,in(z))

2. By [2, Proposition 2.30] there exists a
quasiconformal map

ψin : A(βin1 (a), βin2 (a)) → A(1/ρ4, 1/ρ2)
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such that ψin|βin
1 (a) = ψ1,in and that ψin|βin

2 (a) = ψ2,in. As before, ψin can be taken
to be symmetric with respect to rotation by a third root of the unity. Finally, we
can define our model map in the whole Riemann Sphere as:

Fa(z) =



Φ−1
out

(
Φ4
out(z)

)
for z ∈ Ext(βout1 (a))

Φ−1
out

(
ψ4
out(z)

)
for z ∈ A(βout2 (a), βout1 (a))

R2
a(z) for z ∈ A(βin2 (a), βout2 (a))

Φ−1
out

(
1

ψ2
in(z)

)
for z ∈ A(βin1 (a), βin2 (a))

Φ−1
out

(
1

Φ2
in(z)

)
for z ∈ Int(βin1 (a)),

The map Fa(z) is quasiregular, is symmetric with respect to rotation by a third
root of the unity, and has topological degree 6 by construction. Moreover, Fa
is holomorphic in Ĉ \ {A(βin1 (a), βin2 (a)) ∪ A(βout2 (a), βout1 (a))}. We continue by
defining an Fa-invariant complex structure σ. Notice that the orbit of a point
z can go at most once through A(βin1 (a), βin2 (a)) ∪ A(βout2 (a), βout1 (a)). Denote
An = {z | Fna (z) ∈ A(βin1 (a), βin2 (a)) ∪ A(βout2 (a), βout1 (a))}. Thus, it is enough to
define

σa =


ψ∗
∞σ0 for z ∈ A(βout2 (a), βout1 (a))

ψ∗
0σ0 for z ∈ A(βin1 (a), βin2 (a))

(Fna )
⊛σa for z ∈ An

σ0 elsewhere,

where σ0 denotes the standard complex structure and ∗ the pull-back operation.
By construction, F ∗

aσa = σa. Since Fa is holomorphic outside A(βin1 (a), βin2 (a)) ∪
A(βout2 (a), βout1 (a)), σ has bounded dilatation. Let ξ denote any third root of the
unity and let Oξ(z) = ξ · z. Since Fa satisfies Oξ ◦ Fa = Fa ◦ Oξ, and so do ψout
and ψin, we have that O∗

ξσa = σa. Let ϕa be the integrating map given by the

Measurable Riemann Mapping Theorem (see [1, p. 57] or [2, Theorem 1.28]) which
fixes z = 0 and z = ∞ and is tangent to the identity at z = ∞ (notice that
ϕa is holomorphic in a neighbourhood of z = ∞). Then, ϕ∗aσ0 = σa. It follows
from the unicity of the integrating map modulus post-composition with conformal

automorphisms of Ĉ that ϕa = O−1
ξ ◦ ϕa ◦Oξ since O−1

ξ ◦ ϕa ◦Oξ would satisfy the

same normalizations and (O−1
ξ ◦ ϕa ◦Oξ)∗σ0 = O∗

ξσa = σa.

Finally, define Ga = ϕa◦Fa◦ϕ−1
a . By construction, Ga is a rational map of degree

6. Given any third root of the unity ξ, the map Ga satisfies ξ · Ga(z) = Ga(ξ · z)
since both Fa and ϕa satisfy the same condition. By construction, Ga maps z = 0
to z = ∞ with local degree 2, the point z = ∞ is super-attracting of local degree
4 and Ga has 6 critical points which are mapped onto exactly 3 critical values
(compare Remark 17). By Proposition 2 we conclude that Ga is conjugated to the
map

Mλ(a)(z) = z4 +
λ(a)

z2
,

under a linear map La. To finish the proof it is enough to take φa = La ◦ϕa. Notice
that, by construction, Ext(βout2 ) and Int(βint2 ) belong to the basin of attraction of
z = ∞ under Fa. Therefore, φ

−1
a (J (Mλ(a))) ⊂ A(βin2 (a), βout2 (a)) □

Remark 19. The parameter λ(a) depends in a as well as in the level l0 of the
equipotentials chosen to define γ0 (Definition 5).
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6. Further results

In Theorem A we relate the dynamics of the map R2
a with the ones of a map

Mλ(a). The Escape Trichotomy Theorem (see section 2) states that if all critical
orbits of Mλ escape to ∞, then J (Mλ) is either a Cantor set, a Cantor set of
circles or a Sierpinski carpet. In this section we study the Julia set of the maps Ra,
justify that these three cases are achieved by the map Mλ(a) for different values of
a (compare Figure 3). The next two results help us to understand how the Julia
set moves for |a| small.

Let δ0(0) := ∂A∗
0(0) and δ∞(0) := ∂A∗

0(∞) be the boundaries of the immediate
basin of attraction of 0 and ∞ under R2

0. By Lemma 8, δ0(0) and δ∞(0) are
quasicircles. The next lemma states that there is a holomorphic motion of these
curves in a small neighbourhood of a = 0.

Lemma 20. There is a holomorphic motion H(a, ·) of δ0(0)∪ δ∞(0) parametrized

by a simply connected domain Λ̃ ⊂ Λ that is a neighbourhood of 0. In particular, for
all a ∈ Λ̃ the curves δ0(a) = H(a, δ0(0)) and δ∞(a) = H(a, δ∞(0)) are quasicircles.

Proof. The sets δ0(0) = ∂A∗
0(0) and δ∞(0) = ∂A∗

0(∞) are Jordan curves. Periodic
points are dense in those curves because they correspond to the rational angles in
the Böttcher parametrization. For a = 0 there is no parabolic points so that all the
aforementioned periodic points are repelling. We will prove that they stay repelling
for |a| small enough. Assuming this property, we get a common neighbourhood of
a = 0 on which we can follow each repelling periodic point (by implicit function
theorem). This defines a holomorphic motion of the set of periodic point in the
given curves. Note that the neighbourhood can be chosen simply connected. So, it
then follows from the λ−Lemma (see [9]) that δ0(0) and δ∞(0) admit a holomorphic
motion on this neighbourhood so that they are quasi-circles through the motion.

We now prove the claim that there exists a neighbourhood of a = 0 on which the
periodic points of ∂A∗

0(0) stay repelling for |a| small enough (the proof is analogous
for ∂A∗

0(∞)). The idea is to perform a surgery which will eliminate all free critical
points and keep the dynamics of all periodic points coming from ∂A∗

0(0). Since
the surgery construction is analogous to the classical one proposed by Douady and
Hubbard [7] for polynomial-like mappings, we only explain on which curves the cut
and paste is done (see also [2, Theorem 7.4]). As in Theorem 18, we consider the
map R2

a. For a = 0, the point z = 0 is super-attracting of local degree 4. Let ς be a
geodesic at A∗

0(0), defined with the Böttcher coordinate. Let ς−1
0 be the preimage

of ς in A∗
0(0) under R

2
0. Then ς−1

0 is also a geodesic and is mapped 4 to 1 onto ς.
Since Ra converges uniformly on compact sets of C to R0, if |a| is small enough
then we can pick a connected component ς−1

a of R−2
a (ς) which is a continuation of

ς−1
0 . Then, we can use ς−1

a and ς and the curves βout1 (a) and βout0 (a) to perform a
cut and paste surgery in which we glue the dynamics of z4 near 0 and ∞ erasing
all free critical points while keeping the dynamics of R2

a in the annulus bounded by
βout1 (a) and ς−1

a . The resulting map is quasiconformally conjugate to z4. Since the
continuations of all periodic points of ∂A∗

0(0) and their orbits are contained in the
annulus bounded by βout1 (a) and ς−1

a , this surgery keeps their dynamics. Moreover,
since the resulting map does not have free critical points, we conclude that these
periodic points are repelling. □

The next lemma tells us that the previous holomorphic motion can actually be
extended to the adherence of the union of the basins of attraction of the roots under
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R0, A0(1) ∪ A0(ζ) ∪ A0(ζ2), for all a ∈ Λ̃. This explains why for |a| we can see
copies of these basins of attraction on the dynamical plane (see Figure 1).

Lemma 21. There exists a holomorphic motion of A0(1) ∪ A0(ζ) ∪ A0(ζ2) which

is parametrized by Λ̃ with H(a,A0(ζk)) ⊂ Aa(ζk) for a ∈ Λ̃ and k = 0, 1, 2.

Proof. Let ϕa be the Böttcher map of Ra around the super-attracting fixed point
1. It is well defined for a ∈ Λ̃ on A∗

a(1), the whole immediate basin of attraction of
1, since A∗

a(1) is contained in the annulus Aδa bounded by δ0(a) and δ∞(a), which
contains no free critical point (by Lemma 20). The map H(a, z) = ϕa(ϕ

−1
0 (z)) is a

holomorphic motion of the immediate basin of 1, A∗
0(1). It can be pulled back to

every connected component of the basin of attraction of 1 whose orbit never exits
the annulus Aδa since Aδa does not contain any free critical point. As a consequence,

the holomorphic motion H extends to the closure A0(1) and one easily sees that

H(a,A0(1)) ⊂ Aa(1). The argument is exactly the same for A0(ζ) and A0(ζ2). □

After some Lemmas in order to understand how the Julia set moves with a, we
show next that all cases of the Escape Trichotomy Theorem can be achieved and
correspond to maps Mλ(a). First we introduce a technical lemma which will be
useful to study the case of the Cantor se of quasicircles. Its proof is analogous to
Lemma 10.

Lemma 22. Let C > 0. There exists a C′ > 0 such that if |a| is small enough,
a ̸= 0, then |R2

a(z)| > C′ 1
|a|1/3 for all z such that |z| < C|a|2/3.

In the next proposition we study the case of Cantor set of quasicircles.

Proposition 23. If |a| is small enough, a ̸= 0, then J (Mλ(a)) is a Cantor set of
quasicircles.

Proof. By Proposition 16 iv) and the Riemann-Hurwitz formula, we know that the
annulus A(βin2 (a), βout2 (a)) contains 6 critical points and 6 zeros of R2

a. Recall that,

for |a| small enough, the annulus A
(

1
|a|1/3 ,

3
|a|1/3

)
contains the 3 free critical points

of Ra together with the 3 zeros that appear after the singular perturbation. Recall
also that, by definition, βout2 (a) = γ4(a), β

out
1 (a) = γ2(a), and that βout0 (a) = γ0(a).

Furthermore, there exists a connected componentA0(a) ofR
−1
a

(
A
(

1
|a|1/3 ,

3
|a|1/3

))
which is a doubly connected set contained in Int(γ2(a)) that is mapped with de-

gree 2 onto A
(

1
|a|1/3 ,

3
|a|1/3

)
under Ra, by Proposition 15 i). It follows that A0(a)

contains 6 critical points and 6 zeros of R2
a, which correspond precisely to the 6

critical points and 6 zeros of R2
a in A(γ′′0 (a), γ2(a)) (notice that, by Proposition 15

i), there is no other preimage of critical points of Ra in A(βin2 (a), βout2 (a))).
In application of Lemma 10, there exists a C1 > 0 such that for |a| small enough

the set R2
a(A0(a)) is contained in a disk of radius C1|a|2/3. Since A(βin1 (a), βin2 (a)) is

mapped ontoA(βout1 (a), βout0 (a)) underR2
a, it follows thatA0(a) ⊂ A(βin(a), δ0(a)).

Notice that, for |a| small enough, the disk of radius C1|a|2/3 is contained in the re-
gion bounded by δ0(a). Moreover, by Lemma 22, for |a| small enough the set A0 is
mapped under 2 iterates of R2

a onto Ext(γ0(a)).
We can conclude that the critical points of Mλ(a) are mapped under exactly

2 iterates of Mλ(a) onto A∗
Mλ(a)

(∞). It follows from the Escape Trichotomy that

J (Mλ(a)) is a Cantor set of quasicircles.
□
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Proposition 23 gives us a condition so that the Julia set of Mλ(a) is a Cantor
set of quasicircles. We would like to also understand the structure of the Julia
set of the corresponding map Ra. The connectedness of the Julia set of the maps
On,α obtained when applying Chebyshev-Halley methods when applied to zn + c,
c ∈ C is studied in [4]. It is proven that these maps cannot have Herman rings.
Moreover, the following characterization for the connectivity of J (On,α) is provided.
This characterization depends on whether the immediate basin of attraction of 1,
A∗
On,α

(1), contains extra critical points.

Theorem 24 ([4], Theorem 3.9). For fixed n ≥ 2 and α ∈ C, the Julia set J (On,α)
is disconnected if and only if A∗

On,α
(1) contains a critical point c ̸= 1 and no

preimage of z = 1 other than itself.

Notice that Ra corresponds to O3,α with a = 5 − 4α. It is not difficult to see
that if a is such that J (Mλ(a)) is a Cantor set of quasicircles, then no free critical
point of Ra can belong to the immediate basin of attraction of 1. It then follows
from Theorem 24 that J (Ra) is connected. Moreover, from Proposition 23 we know
that J (R2

a) contains an invariant Cantor set of quasicircles (which separate 0 from
∞). The image under Ra of this Cantor set of quasicircles is another Cantor set of
quasicircles which also separate 0 from ∞. From all the previous facts we obtain
the next corollary.

Corollary 25. If a ∈ Λ and J (Mλ(a)) is a Cantor set of quasicircles, then J (Ra)
is connected and contains an invariant Cantor set of quasicircles which separate 0
from ∞.

Next we study the case of the Cantor set of points. Recall that Λ (see Defini-
tion 14) is defined as an open simply connected set containing a = 0 such that γ2(a)
can be continued and contains no critical value (and, hence, γ4(a) is well defined).
Since the set of parameters for which the fixed points xa,j does not surround a = 0
(see Remark 12) we can choose Λ to contain parameters a such that the critical
values lie in γ4(a). It would follow directly that the critical values of Mλ(a) lie in
A∗
Mλ(a)

and, by the Escape Trichotomy, J (Mλ(a)) is a Cantor set of points. More

specifically, we can prove the following.

Proposition 26. Let a ∈ Λ \ {0}. Let A0 := A(γ2(a), γ0(a)) and let A1 :=
A(γ4(a), γ2(a)). Define recursively An+1 as the connected component of R−2

a (An)
which separates 0 and ∞ and shares a boundary component with An. Then, J (Mλ(a))

is a Cantor set of points if, and only if, the critical values of Ra belong to An for
some n ≥ 1.

Proof. First we will mention why this sets are well defined. The fact that given An

there exists a connected component of R−2
a (An) satisfying follows inductively from

the fact that A0 and A1 satisfy these conditions. Notice that 0 cannot belong to
any An since it is mapped under R−2

a to ∞.
It is not difficult to see that the sets An are send to A∗

Mλ(a)
(∞) under the surgery

construction that defines Mλ(a). Moreover, the critical values of Ra coincide with

the image under R2
a of the 6 critical points of R2

a which appear near 0 (and are
preserved by the surgery construction. Therefore, if the critical values of Ra lie in
An for some n ≥ 1 we obtain that the critical values of Mλ(a) lie in A

∗
Mλ(a)

(∞). By

the Escape Trichotomy we can conclude that J (Mλ(a)) is a Cantor set of points
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Assume that there is no n such that the critical values of Ra belong to An. Then,
by the Riemann-Hurwitz Formula, the sets An are doubly connected. Moreover
∂An ∩ ∂An+1 is a quasicircle and An+1 lies in the bounded component of C \
An. Notice also that for all n > 1 we have An ⊂ A(βin2 (a), βout2 (a)) (compare
Proposition 16). In the limit, the sets An need to accumulate on an invariant curve

δ̂a ⊂ A(βin2 (a), βout2 (a)) which belongs to the Julia set of Ra. A quasiconformal copy
of this curve will belong to J (Mλ(a)). Therefore, J (Mλ(a)) cannot be a Cantor set
of points.

We would like to point out that if δ̂a contains no critical point, then it coincides
with the δ0(a) introduced in Lemma 20.

□

Finally, we study the case of the Sierpinski carpet case.

Proposition 27. There exists a∗ ∈ Λ ∩ R− such that J (Mλ(a∗)) is a Sierpinski
carpet.

Proof. It follows from the Escape Trichotomy Theorem that J (Mλ) is a Sierpinski
carpet if, and only if, all critical points of Mλ are mapped into A∗

Mλ
(∞) in m > 2

iterates. Therefore, in order to prove the existence of a parameter a∗ for which
J (Mλ(a

∗)) is a Sierpinski carpet it is enough to prove that the 6 critical points of
R2
a∗ which lie in A(βin2 (a∗), βout2 (a∗)) (see Proposition 16 iv), c.f. Proposition 23)

are mapped in exactly 2 iterates of R2
a∗ onto z = 0 and thus they are mapped in

3 iterates onto z = ∞. It can easily be shown that in this case the origin is not
contained in A∗

Mλ
(∞).

Let a ∈ Λ. Let us denote the 6 critical points of R2
a which lie in A(βin2 (a), βout2 (a))

by c̃a,k, k = 0, · · · , 5. The critical points c̃a,k of R2
a are precisely the preimages in

A(βin2 (a), βout2 (a)) of the critical points ca,j , j = 0, 1, 2 (see (2)). In particular, the
images under R2

a of c̃a,k coincides with the images under Ra of ca,j , that is, the
critical values va,j (see (3)). Therefore, we need to prove that there exists a∗ ∈ Λ
such that R2

a∗(va∗,j) = 0.
Hereafter we restrict to real parameters a ∈ (−1, 0). As we mention before, the 3

free critical points of Ra are denoted by ca,j (see (2)) and the corresponding critical
values by va,j = Ra(ca,j) (see (3)). It is easy to check that ca,0 is real and negative
and va,0 is real and positive for −1 < a < 0.

Since all attracting and parabolic cycles must contain a critical point in their
immediate basins of attraction, it follows that the real map Ra, a ∈ (−1, 0), cannot
have any attracting or parabolic cycle completely contained in R+. Indeed, if such
a cycle exists, the critical point ca,0 ∈ R− would belong to the immediate basin
of attraction A∗(y) of an attracting or parabolic periodic point y ∈ R+. However,
this is impossible since, by symmetry with respect to rotation by a third root of
the unity, the critical points ca,1 = ζca,0 and ca,2 = ζ2ca,0 would belong to the

immediate basins of attraction A∗(ζy) and A∗(ζ2y), where ζ = e2πi/3. Also by
symmetry, the Fatou components A∗(y), A∗(ζy), and A∗(ζ2y) would have non-
empty intersection, which is impossible.

If a = 0 the map R0|R+ is strictly decreasing and satisfies limx→0+ R0(x) = +∞
and limx→+∞R0(x) = 0 (notice that x = 1 is super-attracting of local degree 3
and that there are no free critical points). It follows that the intersection of the
immediate basin of attraction of 1, A∗

0(1), with the real line consists of a period
two cycle {q0, q∞} such that 0 < q0 < 1 < q∞. It is not difficult to see that q0 is
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precisely the intersection of the curve δ0(0) = ∂A∗
0(0) (compare Lemma 20) with

R+. After perturbation, for |a| small, there is a holomorphic motion of the periodic
point q0(a) (as well as the curve δ0(a)). Moreover, since for a ∈ (−1, 0) there can
be no parabolic cycle completely contained in R+, the holomorphic motion of q0(a)
(and q∞(a)) is well defined for all a ∈ (0, 1) and we have 0 < q0(a) < 1 < q∞(a).
Notice that when we move a from 0 up to −1 the critical value va,0 moves from
0 up to +∞. Therefore, we can define aq as the parameter in (−1, 0) such that
0 < va,0 < q0(a) if aq < a < 0 and vaq,0 = q0(aq).

The periodic point q0(a) and the parameter aq are important because they gives
us a dynamical condition that we can control in order to ensure that a parameter
a ∈ (−1, 0) is in the set Λ. Indeed, before perturbation the point q0 lies between
x = 0 and γ2 ∩ R+ (compare Figure 5). The set of parameters Λ is defined as an
open simply connected set of parameters such that the holomorphic motion γ2(a) is
well defined and γ2(a) contains no critical value (see Definition 14). Since the fixed
points xa,j are repelling in the complement of the closed disk of centre -5 and radius
2 (see Remark 12), it follows that Λ can be chosen to include a neighbourhood of
the interval (aq, 0) (see Figure 7).

Now we can easily prove the existence of the parameter a∗. If a ∈ (−1, 0)
the function Ra|R+ is monotonous decreasing (it has no other critical point than
x = 1). When x increases from 0 to 1, Ra(x) decreases from +∞ down to 1. When x
increases from 1 to +∞, Ra(x) decreases from 1 down to −∞. Since va,0 tends to 0
when a tends to 0, it is not difficult to show that Ra(va, 0) → +∞ and R2

a(va, 0) →
−∞ when a tends to 0 (compare with Lemma 22 and proof of Proposition 23).
Since for aq we have that vaq,0 = q0(aq) and, hence, R2

aq (vaq,0) = q0(aq) > 0, we

conclude that there is a parameter a∗ ∈ (aq, 0) ⊂ Λ such that R2
a∗(va∗,0) = 0. This

finishes the proof.
□

Following the proof of Proposition 27, in Figure 3 we show numerical examples of
the three cases of the Escape Trichotomy with a ∈ (−1, 0). First we take a negative
and small enough (a = −0.0003) to show an example of a Cantor set of quasicircles.
Then we take a = −0.0164, which is close to the a∗, to show the Sierpinski carpet
case. Finally, we take a = −0.028, which is slightly smaller than the aq, to show the
Cantor set case (compare Figure 7). Notice that the parameter aq is precisely the
limit until which the holomorphic motion δ0(a) of the immediate basin of attraction
of 0 for a = 0 is well defined (see Lemma 20). Indeed, for aq the critical value vaq,0
coincides with the periodic point y0(aq) (see proof of Proposition 27).

6.1. Chebyshev-Halley methods applied to zn−1. We finish the paper with a
remark. We have done the study of the Chebyshev-Halley methods applied to z3−1.
However, similar singular perturbations can be observed when these methods are
applied to zn − 1 with n ≥ 3. The operator obtained when applying Chebyshev-
Halley methods to zn − 1 is given by the degree 2n rational map

On,α(z) = z − (zn − 1)((−1 + 2α+ n− 2αn) + (1− 2α− 3n+ 2αn)zn)

2nzn−1(α(n− 1)(zn − 1)− nzn)
=

=
(1− 2α)(n− 1) + (2− 4α− 4n+ 6αn− 2αn2)zn + (n− 1)(1− 2α− 2n+ 2αn)z2n

2nzn−1(α(1− n) + (−α− n+ αn)zn)
,

where α ∈ C. As in the degree 3 case, these maps are symmetric with respect
to nth roots of the unity and have a unique free critical orbit modulo symmetry
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Figure 10. In the left side we show the parameter plane of M9,3,λ and
in the right side the parameter plane of O4,α near α = 7/6.

(see [3, 4] for an introduction to the dynamics of these maps). The point z = 0
is mapped onto ∞ with degree n − 1 under On,α. If α ̸= (2n − 1)/(2n − 2), then
z = ∞ is a fixed point. However, if α = (2n− 1)/(2n− 2), then z = ∞ is mapped
onto z = 0 with degree n− 1. As we have done for n = 3, this can be studied from
the point of view of singular perturbations. If α = (2n − 1)/(2n − 2), the point
z = 0 is a super-attracting fixed point of local degree (n − 1)2 of O2

n,α. On the
other hand, if α ̸= (2n− 1)/(2n− 2) the point z = 0 is mapped with degree n− 1
onto z = ∞ under O2

n,α. It follows that, as we obtain for n = 3, the dynamics
near z = 0 for parameters close to α = (2n − 1)/(2n − 2) can be related with the

dynamics of the McMullen mapsM(n−1)2,n−1,λ(z) = z(n−1)2+λ/zn−1. In Figure 10

we show the parameter plane of O2
4,α near α = 7/6 and the parameter plane of the

corresponding McMullen map M9,3,λ.
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Päısos Catalans 26, Tarragona 43007, Spain

Email address: pascale.roesch@math.univ-toulouse.fr
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