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ABSTRACT We study emission by a multiport antenna array (MAA) coupled to a multiport generator

having an internal impedance matrix that need not be diagonal, and reception by the MAA coupled to a
multiport load having an impedance matrix that need not be diagonal. This leads us to define 4 excitation-
dependent emission parameters (gains), 10 excitation-independent emission parameters, and 8 reception
parameters including two effective areas. We establish how these parameters can be computed and prove
many results about them. We use the parameters for emission and reception to obtain new generalizations
of the Friis transmission formula and other new transmission formulas.

INDEX TERMS Antenna array, partial absolute gain, absolute gain, partial reached gain, reached gain,

partial absolute effective area, absolute effective area, partial reached effective area, reached effective area,

MIMO, reciprocity, antenna theory, Friis transmission formula.

I. INTRODUCTION

The radiation intensity produced in a given direction by a
single-port antenna emitting at a given frequency is com-
pletely determined by the absolute gain of the antenna in
this direction and the average power received by the port of
the antenna [1]-[2]. Moreover, if this average power is not
known but the available power of a generator coupled to the
antenna is specified, the radiation intensity can be computed
using the absolute gain and the power transfer ratio between
the generator and the antenna [3].

The radiation intensity produced by a multiport antenna
array (MAA) used for emission is much more involved,
because, if the average power received by the ports of the
MAA is fixed, the radiation intensity and the polarization of
the radiated field also depend on the excitation applied to the
MAA, more precisely on the relative phases and amplitudes
of the signals at the ports of the MAA. Moreover, the power
transfer ratio between a multiport generator and the MAA
also depends on the excitation [4].

As regards reception at the given frequency, the available
power of a single-port antenna receiving a uniform plane
wave from a given direction depends on the polarization of
the plane wave in such a way that it has a minimum equal
to zero, and a maximum equal to the effective area of the
antenna in this direction times the power flux density of the
plane wave [1]-[2]. Moreover, the average power delivered
to a load coupled to the antenna has a minimum equal to
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zero and a maximum equal to the product of the maximum
available power and the power transfer ratio between the
antenna and the load.

The available power of an MAA used for reception is
more complicated, because the dependence of the available
power on the polarization of the incident plane wave need
not be similar to the one applicable to a single-port antenna.
Moreover, the power transfer ratio between the MAA and
a multiport load also depends on the polarization, so that
the polarization that maximizes the available power need not
correspond to the polarization that maximizes the average
power delivered to the multiport load.

The stated difficulties involving an MAA are not addressed
in the current IEC and IEEE standards defining the vo-
cabulary relating to antennas [1]-[2]. To investigate these
difficulties, we consider a linear time-invariant (LTI) MAA,
which need not be reciprocal. When it is used for emission,
the MAA is coupled to a multiport generator having an
internal impedance matrix that need not be diagonal, and
we investigate the radiation intensity produced by the MAA.
When it is used for reception, the MAA is coupled to a
multiport load having an impedance matrix that need not
be diagonal, and we investigate the available power and the
average power delivered by the ports of the MAA.

This work allows us to introduce suitable parameters
of the MAA, which address the above-mentioned difficul-
ties. Using configurations involving a remote antenna array
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TABLE 1. Excitation-dependent parameters for emission.

Quantity Symbol Section
partial absolute gain Gpa(upor) v
absolute gain Ga \
partial reached gain Gpr(uper) vl
reached gain Gy VIII
TABLE 2. Excitation-independent parameters for emission.
Quantity Symbol Section
maximum partial absolute gain Gpa MAX(upol) v
mean partial absolute gain GpaMEA (Upol) v
maximum absolute gain GaMAX v
mean absolute gain GaMEA VI
minimum absolute gain G MIN \%
maximum partial reached gain GprMmax (Upol) VII
mean partial reached gain Gpr MEA (Upol) VII
maximum reached gain Gy MAX VIII
mean reached gain Gy MEA X
minimum reached gain Gy MIN VIII
TABLE 3. Reception parameters.

Quantity Symbol Section
partial absolute effective area Apa(upol) v
absolute effective area Aa \%
mean absolute equivalent area Apeq MEA VI
minimum absolute equivalent area Ageq MIN VI
partial reached effective area Apr(upor) vl
reached effective area Ay VIII
mean reached equivalent area Areq MEA IX
minimum reached equivalent area Areq MIN IX

(RAA) and results disclosed in [5] and [6], we establish
important relationships among these parameters, which oc-
cur when the MAA is reciprocal and other conditions are
met. As regards emission, we study the excitation-dependent
parameters listed in Table 1 to obtain the wanted excitation-
independent parameters listed in Table 2. As regards recep-
tion, the wanted parameters listed in Table 3 are obtained
directly.

The article is organized as follows. Generalized Rayleigh
ratios are briefly introduced in Section II. Our assumptions,
notations, the definitions of the configurations comprising
the MAA and the RAA, and simple results about them
are provided in Section III. Sections IV to IX are used to
define the parameters listed in Table 2 and Table 3, and to
prove 8 relationships involving the reciprocity of the MAA.
Sections X to XII provide additional results, a generalization
and a simple example. In Section XIII and Section XIV, our
results are used to obtain new transmission formulas.

Il. GENERALIZED RAYLEIGH RATIO
Let v be a positive integer. The vector space of the complex
column vectors of size v is denoted by C”.

We use 1, to denote the identity matrix of size v by v.
Let M be a complex matrix. We use ker M to denote the
nullspace of M, rank M the rank of M, MT the transpose of

M, and M* the hermitian adjoint of M. If M is square, tr M
denotes the trace of M and H (M) denotes the hermitian part
of M given by

M 4 M~
=— - (D

Let A be a positive semidefinite matrix. We know [7,
Sec. 7.2.6] that there exists a unique positive semidefinite
matrix B such that B2 = A. The matrix B is referred to
as the unique positive semidefinite square root of A, and is
denoted by A'/2.If A is positive definite, A~ and A/? are
positive definite, and (A/2)~1 = (A~1)!/2, 5o that we can
write A71/2 = (AY/2)71 = (A1,

Let A be a hermitian matrix of size v by v. The expression
x*Ax/x*x, where x € C”, is known as a Rayleigh ratio,
or Rayleigh-Ritz ratio, or Rayleigh quotient [7, Sec. 4.2], [8,
Sec. 4.2]. In this article, this concept is extended as follows.
Let N and D be hermitian matrices of size v by v, D being
positive semidefinite. The generalized Rayleigh ratio of N to
D is a real-valued function  : C¥ — R such that, for any
x € C” satisfying x*Dx # 0, we have

x*Nx
r(x) = oD ()

Let A be a positive semidefinite matrix of size v by v. We
know [7, Sec. 7.1.6] that, for any x € C”, x* A x = 0 if and
only if x € ker A. In this article, we further assume that D is
positive definite, so that (x) is defined for any nonzero x.

Let ||x|]2 = v/x*x be the euclidian vector norm of an
arbitrary complex column vector x. We use S, to denote the
hypersphere of the unit vectors of C¥. It follows from (2)
that, for x # 0 and a fixed x/||x/|2, (x) does not depend on
||x||2. Thus, the set of the values of r(x) such that x # 0 is
equal to the set of the values of (x) such thatx € S,,.

H (M)

Theorem [6, Sec. I1], [9, Sec. II]). Let N and D be hermitian
matrices of size v by v, D being positive definite. Let r be
the generalized Rayleigh ratio of N to D. We define

M =D /2ND~ /2. (3)

M is of size v by v, and hermitian. Thus, its eigenvalues
are real. Let A\, be the largest eigenvalue of M and A,y
the smallest eigenvalue of M. For any x € C¥ satisfying
x £ 0, we have

. y*My y"My
hin SRy ST S AUy
Moreover,

C)

o the equality r(X) = Amax is satisfied if and only if
x = D~'/2y, where y is an eigenvector of M asso-
ciated with Ay

e the equality 7(x) = Apin is satisfied if and only if
x = D~/2y, where y is an eigenvector of M asso-
ciated with A;,; and

e M and ND~! are similar, so that the eigenvalues of
ND ! are real, A ax 18 the largest eigenvalue of ND !
and A, is the smallest eigenvalue of ND L.

Copyright ©2025 by Excem
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lll. ASSUMPTIONS, NOTATIONS, SIMPLE RESULTS
A. THE CONFIGURATIONS

The available power of an LTI device having one or more
ports is defined as the greatest average power that can be
drawn from the LTI device by an arbitrary LTI and passive
load. The reader is reminded that the available power need
not be equal to an incident power [9, Sec. V]. Noise power is
ignored throughout the article.

The MAA under study is LTI and lies in an isotropic,
homogeneous and lossless medium. In such a medium, reci-
procity holds [10, Sec. 13.06]. The MAA has N ports num-
bered from 1 to /N. The MAA operates in the harmonic steady
state, at a radian frequency w corresponding to a wavelength
A and a wave number £ in said medium.

A time factor e/ is assumed and suppressed throughout
the article. We use z to denote the complex conjugate of
a complex number z. We use M to denote the complex
conjugate of a complex matrix M, so that M* = M T,

We use E to denote the Euclidean vector space of di-
mension 3 associated with physical space. We use E° to
denote the complex vector space of dimension 3 containing
the vectors in the form x + jy, where x € Eand y € E.
Any basis of E is a basis of E°. For any v € E°, we use v
to denote the complex conjugate of v. An orthonormal basis
of E being implicitly or explicitly chosen, for any v € E°,
we use v to denote the column vector of the coordinates of
v in this basis. We have Vv - v = v*v, and the norm of v is
[I[vl| = V¥ - v. Appendix A provides detailed explanations
about the conjugate v of v, and on the notation x - y, where
x and y lie in E°.

The MAA is passive and may be used for emission and
reception at w, but it need not be reciprocal. We assume that
the MAA has an impedance matrix, denoted by Z 4, which is
of size N by V. This is equivalent to assuming that, for any
integer p € {1,..., N}, it is possible to inject an arbitrary
current into port p of the MAA while the other ports of the
MAA are left open-circuited, the voltage across each port
of the MAA being finite. The MAA being passive, H(Zy)
is positive semidefinite. We further assume that H(Zy) is
positive definite.

In physical space, we choose a right-handed rectangular
cartesian coordinate system (x,y, z) having its origin, de-
noted by O, close to the MAA. The associated spherical coor-
dinates system is (r, 6, ). We use (ug, u,, u) to denote the
right-handed orthonormal basis of the cartesian coordinate
system, and (u,,ug,u,) to denote the local orthonormal
basis of the spherical coordinate system.

To study the properties of the MAA, we use the RAA
mentioned in the introduction, which also lies in the isotropic,
homogeneous and lossless medium. The RAA is LTI and
has n ports numbered from 1 to n, where n € {1,2}. The
RAA can be used for reception and emission, and the RAA
is reciprocal. We assume that the RAA has an impedance
matrix, denoted by Zg, which is of size n by n. We assume
that H(Zg) is positive definite. The RAA is located near a
point R of coordinates (g, Or, ¢r) in the coordinate system
(r,0,¢). We assume that the distance OR = rg is much
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larger than the wavelength, the largest dimension of the MAA
and the largest dimension of the RAA.

In fact, we have not properly defined Z, and Zg. Strictly
speaking, we should have said that: there is an impedance
matrix of the MAA alone in said lossless medium, denoted
by Z,; an impedance matrix of the MAA in said lossless
medium, in the presence of the RAA, the ports of the RAA
being open-circuited, this matrix being denoted by Z/, ; and
an impedance matrix of the MAA in said lossless medium, in
the presence of the RAA, the ports of the RAA being coupled
to a device to be specified, this matrix being denoted by Z’; .
Likewise, we should have said that: there is an impedance
matrix of the RAA alone in said lossless medium, denoted
by Zg; an impedance matrix of the RAA in said lossless
medium, in the presence of the MAA, the ports of the MAA
being open-circuited, this matrix being denoted by Z%; and
an impedance matrix of the RAA in said lossless medium,
in the presence of the MAA, the ports of the MAA being
coupled to a device to be specified, this matrix being denoted
by Z;.

If the MAA is used for emission, the RAA is used for
measuring the electromagnetic field radiated by the MAA.
This is configuration A (CA). The distance rg is sufficiently
large to allow us to consider that:

e the RAA and the load connected to the RAA have no
significant effect on the currents flowing in the MAA,
so that we have Zy ~ Z/, ~Z/ ;

o Zp ~ 7} ~ 7} ;and

¢ the electromagnetic field incident on the RAA is almost
a uniform plane wave in the vicinity of the RAA.

If the MAA is used for reception, the RAA is used to
generate the electromagnetic field received by the MAA. This
is configuration B (CB). The distance R is sufficiently large
to allow us to consider that:

o Zyn~7\, ~77;

* the MAA and the load connected to the MAA have no
significant effect on the currents flowing in the RAA, so
that we have Zg ~ Z}; ~ Z[; ; and

¢ the electromagnetic field incident on the MAA is almost
a uniform plane wave in the vicinity of the MAA.

Clarifications about the assumption relating to the distance
rr and its consequences are provided in Appendix B.

In what follows, except in Appendix B, we will use the
symbol = instead of the symbol ~ for results based on one
of the formulas Zy ~ Z, ~ Z} or Zp ~ Zy ~ Z%,
because any desired accuracy in these results can be obtained
by selecting a sufficiently large value of 7.

Let us consider the (N + n)-port device whose ports are
ports 1 to NV of the MAA and ports 1 to n of the RAA, in this
order. This (/N + n)-port device is LTI and passive.

B. EMISSION IN CONFIGURATION A

If the MAA is used for emission, an LTI multiport generator
having N ports, called MGA, is coupled to the MAA. In
a setup comprising a transmitter having N antenna ports,
N feeders and a N-port antenna array, the feeders may be
regarded as parts of the MGA, or as parts of the MAA. The
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ports of the MGA are numbered from 1 to N, and, for any
integer p € {1,..., N}, port p of the MGA is connected
to port p of the MAA (positive terminal to positive terminal
and negative terminal to negative terminal). We assume that
the MGA has an internal impedance matrix Zg such that
H(Z¢) is positive definite, or equivalently that the MGA
has an admittance matrix Y such that H(Y¢) is positive
definite [9, Sec. IV].

In CA, the excitation of the MAA may be defined using the
column vector of the rms open-circuit voltages at ports 1 to
N of the MGA, denoted by V A1, as variable; or using other
suitable variables as explained in [9, Sec. V]. V 501 may take
on any value lying in CV. It follows from our assumptions
and the explanations provided in [9, Sec. V] and [9, Sec. VIII]
that: the matrix Zp + Zg is invertible; the column vector
of the rms currents flowing into ports 1 to N of the MAA,
denoted by I, can take on any value lying in CV and is
given by

In1 = (Za +Zc) ' Vaor; 5)

the available power of the MGA in CA, denoted by Paava,
is given by

Pasve =141 ZaavaoIar, (6)

where the impedance matrix

LH(Zg)™!

Zaavco = (Za + Zc) (Za +Zc) (D

is positive definite; and the average power received by the
ports of the MAA in CA, denoted by Pxrp1, is given by

Parp1 =13 H(Za)1a:. (8)

For any integer p € {1, ..., N}, we can consider a single-
port antenna called SPAO-p, obtained by using only port p of
the MAA alone in said medium, the other ports of the MAA
being left open-circuited. Let ha, be the vector effective
length of SPAO-p in a direction (6, ), as defined in [11]—
[12],[13, Sec. 5.2] and [14, Sec. 16.5] for emission, using the
origin O as reference point. We have ha, - u, = 0. Let E),
be the electric field radiated by SPAO-p used for emission,
in the direction (6, ¢). At a large distance r of the origin O,
E 4y is given by

IAlpke_jkT

Eap = jn 4rr

hAp 5 (9)
where 7 is the intrinsic impedance in the medium, and 141
is a current flowing into the port of SPAO-p.

If we now use all ports of the MAA, the linearity of the
MAA entails that the electric field radiated by the MAA used
for emission in the direction (6, ), denoted by E,, is given
by

. kefjk:r N

Ex=jn——— > ITaiphay, (10)
p=1

where Ia11,...,1a1n are the rms currents flowing into

ports 1 to IV of the MAA, that is to say, the entries of I ;.

In the derivation of (10), we have used a superposition of
SPAO-1 to SPAO-N excited by the currents Ia;; to Ia; n,

respectively. This is possible because I5; may take on any
value lying in CV. It follows that
—jkr

halag, (11)

where h, is the matrix of size 3 by N whose column vectors
are ha; to hay, in this order. Since each column vector
of the matrix h lies in a plane orthogonal to u,, we have
rank h < 2. It follows that

rankhy < min{N,2}. (12)

Note that Ex and haq, ..., han are vectors of E° in (10).
In contrast, in (11), EA is a column vector and hp is a 3 by
N matrix, both depending on the choice of an orthonormal
basis of IE. If the chosen basis is (u,, ug, u,), then all entries
of the first row of h s are zero.

Ex =jn -

C. RECEPTION IN CONFIGURATION B

If the MAA is used for reception, an LTI multiport load
having N ports, called MLA, is coupled to the MAA. The
ports of the MLA are numbered from 1 to NV, and, for any
integer p € {1,..., N}, port p of the MLA is connected to
port p of the MAA (positive terminal to positive terminal and
negative terminal to negative terminal). We assume that the
MLA has an impedance matrix, equal to Z¢.

For any integer p € {1,..., N}, let hg, be the vector
effective length of SPAO-p in a direction (0, ¢), as defined in
[15, Sec. 2.15] for reception, using the origin O as reference
point (the effective length defined in [1]-[2] is related but
different). Let Eg be the electric field of an incident uniform
plane wave, and Ep( be Ep at the origin O. The open-circuit
voltage at port p of the MAA, denoted by Vo1 . is given by

VBo1p = hpp - Eno . (13)

Since (13) defines the vector effective length hp, for
reception and we have u, - Egp = 0 for any incident uniform
plane wave, hp,, - u, is a free parameter, and we assume that
th sy = 0.

Let Vo1 be the column vector of the rms open-circuit
voltages at ports 1 to N of the MAA during CB. It follows
from (13) that

Vio1 = hi Epg, (14)

where hp is the matrix of size 3 by N whose column vectors
are hp; to hpy, in this order. Since each column vector
of the matrix hp lies in a plane orthogonal to u,, we have
rank hg < 2. It follows that

rank hg < min{N, 2}. (15)

Note that Egg and hg, ..., hgy are vectors of E€ in (13).
In contrast, in (14), Epg is a column vector and hg is a 3
by N matrix, both depending on a choice of an orthonormal
basis of . If the chosen basis is (u,., ug, u,), then all entries
of the first row of hy are zero.

It follows from our assumptions that the column vector of
the rms currents flowing into ports 1 to N of the MAA used
for reception, denoted by Iy, is given by

Iy = —(Za +Zg) ' hi Ego; (16)
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and the average power delivered by the ports of the MAA in
CB, denoted by Pgpp1, is given by

Pgpp1 =15, H(Zc) I . (17)

It follows from our assumptions and the explanations
provided in [6, Sec. VI] that the available power of the MAA
in CB, denoted by Ppava, can be computed. The general
computation is involved, but we can use a simpler result
because we have assumed that H (Z, ) is invertible:

Peava = Iy; Zpavao Isi , (18)
where the impedance matrix

LH(Zy)™!

Zpavao = (Za + Zc) (Za+Zc) (19

is positive definite.

In a situation where the MAA is reciprocal, the vector
effective lengths for reception and emission coincide [11]-
[12], [13, Sec. 5.2]. Thus, in such a situation, in the direction
(0, ), we have: ha, = hp, for any integer p € {1,...,N};
and hp = hp using any orthonormal basis of [E.

During reception in CB, an electromagnetic field produced
by the RAA excites the MAA. This electromagnetic field
is regarded as a uniform plane wave, of electric field Eg,
propagating from point R, that is to say, from the direction
9:9Rand<p:<pR.

D. THE REMOTE ANTENNA ARRAY

We use (uTR,ugmu@R) to denote the local orthonormal
basis (u,,ug,u,) at point R. A right-handed rectangular
cartesian coordinate system (', y’, 2’) is such that: its origin
is point R and its basis is (u,r, ugr, uyr). The associated
spherical coordinates system is (1,0’ ¢'). In this spherical
coordinate system, the coordinates of the origin O of the
coordinate system (z,y, z) are (rg,7/2, 7).

For any integer ¢ € {1,...,n}, we can consider a single-
port antenna called SPBO-¢, obtained by using only port ¢
of the RAA alone in said medium, the other ports of the
RAA being left open-circuited. The RAA being reciprocal,
we can define hr, as the vector effective length of SPBO-¢
in a direction (', '), for emission and reception, using R
as reference point. In the direction ¢ = /2 and ¢’ = 7, we
have hg,-u,r = 0. An orthonormal basis of IE being chosen,
we use hy to denote the matrix of size 3 by n whose column
vectors are hr; to hg,,, in this order.

If n = 1, Zy is a scalar, denoted by Zr and having a
positive real part (because we previously assumed that Zg is
positive definite), and we further assume that, in the direction
0" = 7/2 and ¢’ = m, the antenna constituting the RAA is
such that the column vector hg = hg; is nonzero. Thus,
we have rank hg = 1. For instance, this antenna may be an
electrically short center-fed thin cylindrical dipole antenna,
positioned in such a way that the center of the antenna is R,
and that, in the direction 8/ = 7/2 and ¢’ = 7, we have
hr: = hrugr or hg, = hgu,r, where hg is a nonzero
complex number.

If n = 2, we assume that, in the direction § = 7/2 and

¢’ = 7, the two antennas constituting the RAA are such

Copyright ©2025 by Excem

that Zr = Zgr1s, and hgy; = hr uyr and hry = hr UyR,
where Zi and hy are nonzero complex numbers, Zy having
a positive real part (since we assumed that Zp is positive
definite). Thus, we have rank hg = 2. For instance, these
antennas may be electrically short center-fed thin cylindrical
dipole antennas, suitably positioned.

E. RECEPTION IN CONFIGURATION A

If the RAA is used for reception, an LTI multiport load
having n ports, called MLR, is coupled to the RAA. The
ports of the MLR are numbered from 1 to n, and, for any
integer ¢ € {1,...,n}, port g of the MLR is connected
to port ¢ of the RAA (positive terminal to positive terminal
and negative terminal to negative terminal). Let V 502 be the
column vector of the rms open-circuit voltages at ports 1 to n
of the RAA during CA. We find that

Vaoz = h Ear, (20)

where Ear is E4 at point R in CA.

We assume that the MLR has an impedance matrix, equal
to Z;. It follows that the column vector of the rms currents
flowing into ports 1 to n of the RAA used for reception,
denoted by Ixo, is given by

1
Ipo=—————htE 21
A2 Re(Zn) (R EAR: 2D
where Re(z) denotes the real part of a complex number z.
The average power delivered by the ports of the RAA in CA,
denoted by Pappo, and the available power of the RAA in
CA, denoted by Paavr, are equal and given by

Papp2 = Paavr = Re(Zr) I35Ia2 . (22)

In the case n = 1, since h}; EAr is a complex number
equal to hy; - Eagr, we get

1
Papp2 = Paavr = 1Re(Zn) lhi Earl>.  (23)
It follows that
hih
Papp2 = Paavr = ﬁ;})\) eol [[Ear|, (24)
where

|hr; - EAR|

€pol = T —— (25)
P [ [[Ear]]

is the polarization mismatch factor of the RAA [13, Sec.
5.2], [14, Sec. 16.5]. A known result on ey is derived in
Appendix A. By (24), in the case n = 1, PApp2 = Paavr 18
ameasure of e2 , [|[Ear||*.

In the case n = 2, since

-E
hT E _ h UgRr AR , 26
r EAR = IR (uwR Ean (26)
in the basis (u,gr, Ugr, UyR ), We get

|hg|?

——— ||[Earl? 27

Papp2 = Paavr =

so that Pappa = Paavr is a measure of ||Ear|[2.
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F. EMISSION IN CONFIGURATION B

If the RAA is used for emission, an LTI multiport generator
having n ports, called MGR, is coupled to the RAA. The
ports of the MGR are numbered from 1 to n, and, for any
integer ¢ € {1,...,n}, port ¢ of the MGR is connected to
port g of the RAA (positive terminal to positive terminal and
negative terminal to negative terminal). We assume that the
MGR has an internal impedance matrix, equal to Zp,.

In CB, the excitation of the RAA may be defined using the
column vector of the rms open-circuit voltages at ports 1 to
n of the MGR, denoted by Vpoq, as variable. Voo may
take on any value lying in C™. The column vector of the rms
currents flowing into ports 1 to n of the RAA, denoted by
Io, can take on any value lying in C™ and is given by

1
QRG(ZR)
The available power of the MGR in CB, denoted by

Ppavea, and the average power received by the ports of the
RAA in CB, denoted by Pgrpe, are equal and given by

= Re(Zp) Iy Ino . (29)

Ip, = Vpo2. (28)

Psave = Pere2
The linearity of the RAA entails that

ke —jkrr - ™

Bro = jn— - — ZIBQthq, (30)
where Ips1,...,Ig2, are the entries of Igy, and where
hgi,...,hg, are considered in the direction ' = 7/2
and ¢’ = . In the derivation of (30), we have used a

superposition of SPBO-1 to SPBO-n excited by the currents
Ip21 to Ipa,, respectively. This is possible because Igo may
take on any value lying in C”. It follows that

ke Ik
Epo = ‘77747 hrlp:, (€1Y)
r
in which hg is considered in the direction ' = 7/2 and

¢’ = 7. Note that Egg and hgy, . . ., hg,, are vectors of E° in
(30). In contrast, in (31), Ep is a column vector and hy isa 3
by n matrix, both depending on the choice of an orthonormal
basis of E. If the chosen basis is (u,gr, Ugr, U, r), then all
entries of the first row of hy are zero.

If we consider CB in the case n = 2, we can use the basis
(urR, UpR, UeR) in (31), to obtain

ke dkR 0 0
Epo = Ay — hr 0 | Ipz, (32)
TTrR 0 hR

which shows that all nonzero Igy € C2 cover all possible
polarizations of Epy.

IV. PARTIAL ABSOLUTE GAIN AND

PARTIAL ABSOLUTE EFFECTIVE AREA

The partial gain of a single-port antenna, in a given direction,
for a given wave polarization, is the ratio of a part of the
radiation intensity produced by the antenna in the given
direction to the radiation intensity that would be obtained if
the (average) power accepted by the antenna were radiated

equally in all directions, said part corresponding to the given
polarization [1]-[2]. Consequently, we define the partial ab-
solute gain of the MAA, in a given direction, for a given wave
polarization and a specified nonzero excitation, as the ratio
of a part of the radiation intensity produced by the MAA
in the given direction to the radiation intensity that would
be obtained if the average power received by the N ports
of the MAA were radiated equally in all directions, said
part corresponding to the given wave polarization. The given
wave polarization is normally specified by a polarization
vector, which is a dimensionless unit vector of E€ of the
given wave polarization (so that the polarization vector is
orthogonal to the given direction).

It follows that the partial absolute gain of the MAA in the
direction § = 6y and ¢ = g for a polarization vector up,)
and the specified nonzero excitation, denoted by Gpa(upol),
is given by

47T7"% \upol . EAR|2

Gpa(upol) - 77PARP1 (33)

If we consider CA in the case n = 1, we can assume that
the RAA is such that

hg,
Upol = o (34)
P g |
so that (25) leads us to
dmr?
Gpa =R 2 ||Ear|*. 35
pa(Upol) 1 Parpr €pol [[Earl| (35)
It follows from (24) and (35) that
16773 Re(ZR)
Gpa(upol) ﬁ gAUuU1L , (36)

where gau is the unnamed power gain Pyayr/Parpi in
CA in the case n = 1, for the excitation defined by I;.

The partial effective area of a single-port antenna, in a
given direction, for a given wave polarization, is the ratio of
the available power at the terminals of the antenna used for
reception to the power flux density of a (uniform) plane wave
of the given polarization incident on the antenna from the
given direction [1]—[2] . This definition may be used without
adaptation for the MAA: the partial absolute effective area of
the MAA, in a given direction, for a given wave polarization,
is the ratio of the available power at the IV ports of the MAA
used for reception to the power flux density of a uniform
plane wave of the given polarization incident on the MAA
from the given direction.

The given polarization being defined by a polarization
vector upe, we consider CB in the case n = 1, and assume
that the RAA is such that (34) is satisfied, so that the partial
absolute effective area of the MAA in the direction § = g
and ¢ = g for a polarization vector u.j, denoted by
Apa(upor), is given by

Ppava
Apa(upol) n E*BOEBO . (37)

Using (31) in (37) and the same assumptions, we get

AN*rg Ppava

A a(u 01) = ” * )
P P n IB2 thR Ipo

(38)
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where Ip, is a nonzero scalar because n = 1. Thus, using
(29), we obtain

40?72 Re(ZR)

39
7 hihn gBU1 , (39)

Apa(upol) =
where gpy1 is the unnamed power gain Pzava /Psrp2 in CB
in the case n = 1.

We observe that: (36) provides a connection between
Gpa(upol) and gayi, which are both determined for the
specified nonzero excitation; and (39) provides a connection
between A, (upo1) and ggui, which do not depend on an
excitation. This will now allow us to obtain a relationship
between Gpa(upo1) and Ap, (upo1), Without computation.

If N = 1, that is, if the MAA is a single-port antenna,
Gpa(upor) does not depend on an arbitrary nonzero In;.
Furthermore, if N = 1 and the MAA is a reciprocal single-
port antenna, we have gauy1 = ¢gpu: according to [3, Sec.
IV.G], and it follows from (36) and (39) that

2

A
Apa(upol) = EGpa(upol)a (40)

which is a well-known result of antenna theory.
For any N > 1, we can observe that

Gpa(upol) _ 16773 Re(ZRr)
gau1 hihg 7
is a positive real number, and use Theorem 29 of [6] and

the explanations of Appendix B to assert that, in a given
direction:

(41)

(a) the set of the values of Gpa(upe), obtained for all
nonzero I, or equivalently for all nonzero VA1, has a
least element referred to as “minimum partial absolute
gain” and denoted by Gpamin(Upol), and a greatest
element referred to as “maximum partial absolute gain”
and denoted by GpaMmax (Upor); and

(b) if the MAA is reciprocal, then

2

A
Apa(Upol) = EGpa MAX (Upol) - (42)

For practical computations of Apa(upol), we can use (16)
and (18)—(19) in (37) to get
1 Ejohp H(Zs) 'hi Epo
A = - 43
pa(upol) 4 E‘EOEBO ) ( )

where (34) is assumed to be satisfied, so that (31) leads us to

Apa(Wpor) = & whoihip H(Za) 'hE Wy (44)
For practical computations of Gpanmax (Upol) in a context
where the MAA is reciprocal, the simplest formula is

™ . — _

Gpa MAX(upol) = )\7727 Llpo1hA H(ZA) th Upol » (45)
which directly follows from (42), (44) and hg = hj.

For other computations relating to Gpa(upl), and in a
context where the MAA need not be reciprocal, we can use
(8) and (11) in (33) to get

[y o (halan)?

Conltol) = 30T H(Z) Tar (40

Copyright ©2025 by Excem

This is a convenient expression to compute Gpa(up,1) for
a given Ixq. To obtain Gpamax(Upor) and Gpa v (Upol)s
we write

Iy Nap(upor) Iag

Gpa(upol) = —== 47
p ( P 1) IA1 H(ZA)IAI
where the NV by /N matrix
/B
Nap(upol) = )\72 hA‘JpolggolhA (48)
is positive semidefinite because |1N1;fol(hAIA1)\ is nonneg-

ative for any In; € C¥. Here, since H(Zya) is positive
definite, Gpa(upo1) is written as a generalized Rayleigh
ratio of Nap(upor) to H(Zy), in the variable Ixq. It fol-
lows that we can use the theorem of Section II to ob-
tain Gpamax(Upol) and Gpamin(Upor). Accordingly, the
eigenvalues of Nap(upo1) H(Za)™! are real and nonnega-
tive, Gpamax (Upor) is the largest of these eigenvalues, and
Gpamin(Upor) is the least of these eigenvalues.

We observe that upoiuy, is a matrix of rank 1 because
uy,.1 is nonzero. This fact and (48) lead us to

rank Nap(upo) < 1. (49)

It follows from (49) that rank (N ap (upo1) H(Za) ™1 < 1,
so that (47) and the theorem of Section II lead us to

(N =1) = (Gpamin(tpo1) = Gpamax(po1))  (50)

and
(N > 1) = (GpaMIN(upol) = O) . (51)

Consequently, Gpanmin(Upol) is not an interesting charac-
teristic of the MAA, and was therefore not listed in Table 2.

It also follows from (47), (49) and the theorem of Section IT
that a mean value of G, (up01) over a number N of linearly
independent excitations is given by

Gpa MAX (upol)
N
and referred to as “mean partial absolute gain”.

Gpa MEA(upol) = (52)

V. ABSOLUTE GAIN AND
ABSOLUTE EFFECTIVE AREA
The absolute gain of a single-port antenna is the ratio of
the radiation intensity produced in a given direction by the
antenna to the radiation intensity that would be obtained if
the (average) power accepted by the antenna were radiated
equally in all directions [1]-[2]. Consequently, we define the
absolute gain of the MAA, in a given direction, for a specified
nonzero excitation, as the ratio of the radiation intensity
produced by the MAA in the given direction to the radiation
intensity that would be obtained if the average power received
by the N ports of the MAA were radiated equally in all
directions.

It follows that the absolute gain of the MAA in the direc-
tion § = 6y and p = R for the specified nonzero excitation,
denoted by G, is given by

2
drry

Ga = |[Ear|®. (53)

1 PArP1
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If we consider CA in the case n = 2, using (27), we get
16773 Re(ZRr)
|hr[*n
where gauso is the unnamed power gain Paayvr/Parpi in

CA in the case n = 2, for the excitation defined by I4;.

The effective area (also called total effective area) of a
single-port antenna, in a given direction, is the ratio of the
available power at the terminals of the antenna used for
reception to the power flux density of a plane wave incident
on the antenna from the given direction, the wave being
polarization-matched to the antenna [1]-[2]. This definition
cannot be directly adapted to the MAA, because it need not
be possible to assign a polarization to the MAA, so that the
requirement “polarization-matched” is meaningless in this
context. However, we may consider that, for a single-port an-
tenna, the requirement “polarization-matched” corresponds
to a polarization that maximizes the available power at the
port of the antenna. Consequently, we define the absolute
effective area of the MAA, in a given direction, as the ratio
of the available power at the N ports of the MAA used
for reception to the power flux density of a uniform plane
wave incident on the MAA from the given direction, the
polarization of the uniform plane wave being such that it
maximizes this available power.

This particular polarization being defined by a polarization
vector u,,, we consider CB in the case n = 2. Since
Uam - U,r = 0, it follows from (32) that there exists a value
Ig2am of Ipo that produces an incident field for which the
polarization vector is u,y,, that is to say, such that

Ego
Uam = 77+ > (55)
[Epol|
a suitable Ipy .y being, if we use the basis (u,r, ugr, UuR),

given by

Ga = gau2, (54

0 1 0
Igsam = IB20 (0 0 1) Uam , (56)

where Ips( is an arbitrary nonzero complex current, for
instance equal to 1 A.

Thus, if Igo = Ipoam, the absolute effective area of the
MAA in the direction § = 0r and ¢ = g, denoted by A,,
is given by

Ay =1 Pgava '
EpoEno

For a practical computation of A,, we can use the basis

(urr, UgR, Uyr), (16), (18)~(19) and (32) in (57) to obtain

— Q IE? de*EH(ZA)_lhg PIB2 am

(57)

Aa 4 I*B2 amIB2 am ’ (58)
where
0 0
P=|(1 0]. (59)
0 1

It follows that A, can be computed using Rayleigh’s the-
orem [7, Sec. 4.2.2], as the maximum value of the Rayleigh

ratio
I5,Ng, Ip2

(I =
ra(ls2) I, Ino

(60)

in the variable Ip,, where, using hp determined in the basis
(uyr, UgR, Uyr), NB, is a 2 by 2 matrix given by

Np, = 7 PThp H(Zy) 'hi P, 1)

which is positive semidefinite because H(Z)~! is positive
definite. Accordingly, the eigenvalues of Np, are real and
nonnegative, and A, is the largest of these eigenvalues.

By (15) and (61), we have

rank Np, < min{N, 2} . (62)
Using the basis (u,r, ugr, u,r), and (32) in (57), we get

- 4)\2 T% PBAVA

. , (63)
n |hR|2 IEQ am IB2 am
which, by (29) leads us to
AN%r2 Re(Z
Aa = R (2 R) 9gBU2am > (64)
1 |hR]|

where gu2 am i the unnamed power gain Pgaya /Perp2 in
CB in the case n = 2, if Igs = Igoam-

Let ggu2 be the unnamed power gain Pgaya/Pprp2 in
CB in the case n = 2, for a given Ip, that need not be
equal to Ips .. We observe that: (54) provides a connection
between G, and gaysz, which are both determined for a
specified nonzero excitation; and (64) provides a connection
between A, and ggy2 am, Which are both determined for an
excitation that maximizes ggye. This will now allow us to get
a relationship between G, and A,, without computation.

It follows from (54) and (64) that G,/gau2 and
Aa/gBU2 am are positive real numbers. We can therefore use
Theorem 29 of [6] and the explanations of Appendix B to
assert that, in a given direction:

(a) the set of the values of (G, obtained for all nonzero I51,
or equivalently for all nonzero V 501, has a least element
referred to as “minimum absolute gain” and denoted by
G, MIN, and a greatest element referred to as “maximum
absolute gain” and denoted by G, vax; and

(b) if the MAA is reciprocal, then

)\2

Aa = IGaMAX . (65)
™

If N =1, that is, if the MAA is a single-port antenna, G,
does not depend on an arbitrary nonzero I41. Furthermore, if
N = 1 and the MAA is a reciprocal single-port antenna, it
follows from (65) that we have

)\2

Aa = 7 _LUa,
e G (66)

which is a well-known result of antenna theory.
For any N > 1, in a context where the MAA need not be
reciprocal, we can use (8) and (11) to obtain

I Na Iag
G,= AL 22 67
I3, H(Za)Ian ©7
where the IV by /N matrix
™
N, = 7;’ hihy (68)
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is positive semidefinite by [7, Sec. 2.6.3] or [8, Sec. 7.3.1].
Here, since H(Zy) is positive definite, G, is written as a
generalized Rayleigh ratio of N s to H(Zy), in the variable
IA1. It follows that we can use the theorem of Section II
to obtain G, max and G, vin. Accordingly, the eigenvalues
of NAH(ZA)™ ! are real and nonnegative, G, ax is the
largest of these eigenvalues, and G, vy is the least of these
eigenvalues.
By (12) and (68), we have

rank Ny < min{N,2}. (69)
It follows that the theorem of Section II leads us to

(N>2)= (Gamin =0) . (70)

VI. MINIMUM ABSOLUTE EQUIVALENT AREA AND
MEAN ABSOLUTE EQUIVALENT AREA

We have discussed the partial absolute effective area of
the MAA, in Section IV, using the case n = 1, and we
have discussed the absolute effective area of the MAA, in
Section V, using the case n = 2. Let us now study the partial
absolute effective area of the MAA, in the case n = 2, for
an arbitrary polarization vector u,e. Since upe1 - u,g = 0, it
follows from (32) that there exists a value Ipz o1 of Igo that
produces an incident field for which the polarization vector
is up,1, that is to say, such that

Ego — oy
[Esoll 7

a suitable Igs o1 being, if we use the basis (u,r, Ugr, UpR),
given by

(71)

0O 1 0
Ig2p01 = IB20 <0 0 1) Upol (72)

where Ips is an arbitrary nonzero complex current, for
instance equal to 1 A. Thus, if Igy = Ips 01, We have

Peava
" B Ero
in the direction § = 0y and ¢ = ¢R.

For a practical computation of A, (u,01), We can use the
basis (u,r,Ugr, Uer), (16), (18)=(19) and (32) in (73) to
obtain

Apa(Upor) = (73)

A(un) =" T po P D H(Za) ' hg Plg o
e 4 IE2 polI]32 pol

. (74)

It follows that, in this basis,

Apa(upol) = 7"a(IB2 pol) , (75)

where 7, is the Rayleigh ratio defined by (60).

We define the minimum absolute equivalent area of the
MAA, in a given direction, as the ratio of the available power
at the IV ports of the MAA used for reception to the power
flux density of a uniform plane wave incident on the MAA
from the given direction, the polarization of the uniform
plane wave being such that it minimizes this available power.

Thus, the minimum absolute equivalent area of the MAA
in the direction § = 0y and ¢ = @R, denoted by A,eq MIN,

Copyright ©2025 by Excem

is the minimum value of the Rayleigh ratio r,, which is the
least eigenvalue of N, according to Rayleigh’s theorem.

It follows from (62) that at most min{N, 2} eigenvalues
of N, are nonzero. The sum of these eigenvalues being
tr Np,, we define the mean absolute equivalent area of the
MAA, in a given direction, as

tr NBa Aa + Aaeq MIN

A = = , 76
qMEA 2 > (76)

because it follows from (32), (71) and (75) that this quantity
is a mean value of Apa(upol) over two orthogonal polariza-
tion vectors.

It follows from (62) that

A,
(N = 1) = (AaeqMEA = 7( and AaeqMIN = 0). 77)

Using the basis (u,r, Wsr, Upr), (32) in (73) and the
assumption that n = 2 and Ips = Ipa o1, We get

4)\21"2 PBAVA
Apa(upor) = ——— : (78)
pa(Upol) n1hel* I, 0 IB2pol
and using (29) leads us to
AN%r2 Re(Z,
Apa(upol) = Rhi(gR) 9gBU2 pol » (79)
7]\ R|

where gu2 pol is the unnamed power gain Pgava /Perp2 in
CB in the case n = 2, if Ipa = Igapol-

We noted in Section V that (54) provides a connection
between G, and gays, which are both determined for a
specified nonzero excitation. We now observe that (79) pro-
vides a connection between A, (Upo1) and ggys2 pol, Which is
determined for an excitation that is given by (72) as a function
of the arbitrary polarization vector upe1. This will now allow
us to obtain two results relating to G, and A, (upor), without
computation.

B)’ (54) and (79, Ga/QAUQ and Apa(upol)/gBUZ pol are
positive real numbers. It follows that we can use Theorem 29
of [6], (67), (75)—(76) and the explanations of Appendix B to
assert that, in a given direction:

(a) if M is given by the theorem of Section II applied to
the generalized Rayleigh ratio of Ny to H(Z,), in the
variable I51, a mean value of (G, over a number N of
linearly independent I is referred to as “mean absolute
gain” and given by

M tr (NAH(ZA)™')

G = 80
aMEA N N ; (80)
and
(b) if the MAA is reciprocal, then
N2
Aacq MEA — 87Ga MEA 81
s

and
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Vil. PARTIAL REACHED GAIN AND

PARTIAL REACHED EFFECTIVE AREA

We define the partial reached gain of the MAA, in a given di-
rection, for a given wave polarization and a specified nonzero
excitation, as the ratio of a part of the radiation intensity
produced by the MAA in the given direction to the radiation
intensity that would be obtained if the available power of the
multiport generator coupled to the IV ports of the MAA were
radiated equally in all directions, said part corresponding to
the given wave polarization.

It follows that the partial reached gain of the MAA in the
direction 0 = 6 and ¢ = g for a polarization vector up,|
and the specified nonzero excitation, denoted by Gy, (Upol),
is given by

4772 [upol - Earl?

Gpr(upol) = (83)

1 Paava

If we consider CA in the case n = 1, we can assume that
the RAA is such that (34) is satisfied, so that (25) leads us to

471'1"%{ 9 9
Gpl'(up01) = 77PAAVG epol ||EAR|| . (84)
It follows from (24) and (84) that
16772 Re(ZR)
Gpr(Upor) = ———5———= gar1 (85)
o) = PR g

where gari is the transducer power gain Pappa/Paave in
CA in the case n = 1, for the excitation defined by I4;.

We define the partial reached effective area of the MAA, in
a given direction, for a given wave polarization, as the ratio of
the average power delivered by the IV ports of the MAA used
for reception to the power flux density of a uniform plane
wave of the given polarization incident on the MAA from the
given direction.

The given polarization being defined by a polarization
vector uy,1, we consider CB in the case n = 1, and assume
that the RAA is such that (34) is satisfied, so that the partial
reached effective area of the MAA in the direction 8 = 0Oy
and ¢ = g for a polarization vector up., denoted by
Apr(uper), is given by

Pgpp;
Apr(Upol) =N = —— - (86)
or(oet) =1 5 B
Using (31) in (86) and the same assumptions, we get
4N2p2 P
Apr (o) = =R BDPL 87)

Ui IEQ hEhR IB2 ’
where Ip, is a nonzero scalar because n = 1. Thus, using
(29), we obtain

42%r3 Re(ZRr)

A (upo) =
P(pl) nthR

9BT1 , (88)
where gpr is the transducer power gain Pgpp1/Ppave in
CB in the case n = 1.

We observe that: (85) provides a connection between
Gpr(upo1) and gari, which are both determined for the
specified nonzero excitation; and (88) provides a connection
between A, (up01) and g1, which do not depend on an

10

excitation. This will now allow us to obtain a relationship
between Gp, (Upo1) and Ap, (upor), without computation.

If N = 1, that is, if the MAA is a single-port antenna,
Gpr(upor) does not depend on an arbitrary nonzero Ia;.
Furthermore, if N = 1 and the MAA is a reciprocal single-
port antenna, we have gar1 = gpT1 according to [3, Sec.
IV.C], and it follows from (85) and (88) that

/\2
Apr(Upor) = EGPT(UPOI) . (89)

For any N > 1, we can observe that

Gpr(upol) 1677 Re(ZR)

(90)
hl*ihR n

gAT1

is a positive real number, and use Theorem 4 of [5] or

Theorem 15 of [6] to assert that, in a given direction:

(a) the set of the values of Gp,(up), obtained for all
nonzero Ia1, or equivalently for all nonzero Vs01, has
a least element referred to as “minimum partial reached
gain” and denoted by Gprmin(upoer), and a greatest
element referred to as “maximum partial reached gain”
and denoted by G, max (Upol); and

(b) if the MAA is reciprocal and Z¢ is symmetric, then

2

A
Apr(Upol) = EGpr MAX (Upol) - oD

For practical computations of Apl.(upol), we can use (16)-
(17) in (86) to get
Ejohs YigH(Za)Yachg Eno

Apr(upol) =n E* EBO )
~'B0O~

92)

where Yaq = (Za + Zg)~t. Since (34) is assumed to be
satisfied, (31) leads us to

Apr(upol) = nuhohs YA H(Za)Yachg upar - (93)

For practical computations of Gy max (Upor) in @ context
where the MAA is reciprocal and Zg is symmetric, the
simplest formula is

Gprmax(Upol) = 41777 uloha YicgH(Za)Yach) upor,
(94)

which directly follows from (91), (93) and hg = hjx.
For other computations relating to Gp,(upor1), and in a
context where the MAA need not be reciprocal and/or Zg
need not be symmetric, we can use (6) and (11) in (83) to get

w1 [up o (halar)]?

Gpr(Upol) =

= , 95)
A4 Zaavao Ias (

which is convenient to compute Gpr(upol) for a given I4;.
To get Gprmax (Upol) and Gpr v (Upor ), We write

Ty Nap (upol) Ias

G r ol) =
pr (Upol) I\, Zaavco Ia:

(96)

where N ap, (up01) is given by (48).

Since Zaavco is positive definite, Gpr(upo1) is written
as a generalized Rayleigh ratio of Nap(upe1) to Zaavcos,
in the variable I;. Consequently, we can use the theorem
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of Section II to obtain G, max(Upol) and Gprmin (Upol)-
Thus, the eigenvalues of Nap,(upol) Z;}WGO are real and
nonnegative, G, max (Upol) is the largest of these eigenval-
ues, and G min (Upor) is the least of these eigenvalues.

It follows from (49) that rank (N ap, (Upol) Zx Avao) < 1,
so that (96) and the theorem of Section II lead us to

(N = 1) — (Gpr MIN(upol) = Gpr MAX(upol)) (97)

and
(N>1)= (GprMIN(upol) =0) . (98)

Consequently, Gpr min (Upol) is not an interesting charac-
teristic of the MAA, and was therefore not listed in Table 2.
It also follows from (49), (96) and the theorem of Section IT
that a mean value of G, (upe1) over a number N of linearly
independent excitations is given by
Gpr MAX (upol)

Gpr MEA(upol) = * (99)

and referred to as “mean partial reached gain”.

VIil. REACHED GAIN AND
REACHED EFFECTIVE AREA
We define the reached gain of the MAA, in a given direction,
for a specified nonzero excitation, as the ratio of the radiation
intensity produced by the MAA in the given direction to the
radiation intensity that would be obtained if the available
power of the multiport generator coupled to the N ports of
the MAA were radiated equally in all directions.

It follows that the reached gain of the MAA in the direction
@ = Or and @ = g for the specified nonzero excitation,
denoted by G, is given by

2
4mry

G, = —2 ||Ear]®. (100)
n Paave
If we consider CA in the case n = 2, using (27), we get
16772 Re(Z
G, = Riz(R)QAT% (101)
|hr|?n

where gaTs is the transducer power gain Pappa/Paave in
CA in the case n = 2, for the excitation defined by I4;.

We define the reached effective area of the MAA, in a
given direction, as the ratio of the average power delivered by
the NV ports of the MAA used for reception to the power flux
density of a uniform plane wave incident on the MAA from
the given direction, the polarization of the uniform plane
wave being such that it maximizes this average power.

This particular polarization being defined by a polarization
vector u,,, we consider CB in the case n = 2. Since
Urm - U,r = 0, it follows from (32) that there exists a value
Ipom of Ips that produces an incident field for which the
polarization vector is Uy, that is to say, such that

_ _Emo_
|[Egol|’

a suitable Igo ., being, if we use the basis (u,r, Ugr, UpR),
given by

(102)

urm

0 1 0
Ig2rm = IB20 <0 0 1> Urm , (103)
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where Ipso is an arbitrary nonzero complex current, for
instance equal to 1 A.

Thus, if Igo = Igo.m, the reached effective area of the
MAA in the direction § = 0 and ¢ = ¢g, denoted by A,
is given by

A Pgpp1

= 104
" EioEno (109

For a practical computation of A,, we can use the basis
(u,yR, UgR, UyR), (16)-(17) and (32) in (104) to obtain

=1 IEQ rmP*rBYZGH(ZG)YAth PIB2 rm

A, <
IB2 rmIBQ rm

. (105)

It follows that A, can be computed using Rayleigh’s theo-
rem, as the maximum value of the Rayleigh ratio

I5,Ng, I

T I =
e T

(106)
in the variable Ips, where, using hy determined in the basis
(urr, ugRr, Uyr), Np, is a 2 by 2 matrix given by

Ng; =P hg Y3 H(Zc)Yachg P, (107)

which is positive semidefinite because Y H (Zg)Yac is
positive definite. Thus, the eigenvalues of Ny, are real and
nonnegative, and A, is the largest of these eigenvalues.

By (15) and (107), we have
rank Np, < min{N, 2} . (108)

Using the basis (u,gr, Ugr, U,r ), and (32) in (104), we get

AN272 P
A, = TRQ _-BbPL (109)
n |hR‘ IB2 rm IB2 rm
which, by (29) leads us to
AN%r2 Re(Z,
Ar = R (2 R) 9gBT2rm > (110)
n|hr|

where gpro.m is the transducer power gain Pgpp1/Psava
in CB in the case n = 2, if Igs = Iporm.

Let g2 be the transducer power gain Pgpp1/Psave in
CB in the case n = 2, for a given Ip, that need not be
equal to Igs . We observe that: (101) provides a connection
between G, and gars, which are both determined for a
specified nonzero excitation; and (110) provides a connection
between A, and ggT2.m, Which are both determined for an
excitation that maximizes ggr2. This will now allow us to get
a relationship between G, and A,, without computation.

Since (101) and (110) entail that G, /gare and A, /9512 rm
are positive real numbers, we can use Theorem 4 of [5] or
Theorem 15 of [6] to assert that, in a given direction:

(a) the set of the values of GG, obtained for all nonzero Is1,
or equivalently for all nonzero V 501, has a least element
referred to as “minimum reached gain” and denoted by
G, MIN, and a greatest element referred to as “maximum
reached gain” and denoted by G, pax; and

(b) if the MAA is reciprocal and Z¢ is symmetric, then

)\2

Ar = 7GrMAX .

- (111)

11
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If N = 1, that is, if the MAA is a single-port antenna, G,
does not depend on an arbitrary nonzero I4;. Furthermore, if
N = 1 and the MAA is a reciprocal single-port antenna, it
follows from (111) that we have

)\2
A= i G, .

For any N > 1, in a context where the MAA need not be
reciprocal and/or Zg need not be symmetric, we can use (6),
(11) and (68) to obtain

(112)

¢ — taNala (113)
I3, Zaavco Iar
Here, since Za avgo is positive definite, G, is written as a

generalized Rayleigh ratio of Nz to Za avao, in the variable

IA;. It follows that we can use the theorem of Section II

to obtain G;yax and Gy yn. Accordingly, the eigenvalues

of NAZK}WGO are real and nonnegative, G,nax is the
largest of these eigenvalues, and G 1y is the least of these
eigenvalues.

It follows from (69) and (113) that the theorem of Sec-
tion II leads us to

(N > 2) - (GrMIN = O) . (114)
IX. MINIMUM REACHED EQUIVALENT AREA AND
MEAN REACHED EQUIVALENT AREA
We have discussed the partial reached effective area of the
MAA, in Section VII, using the case n = 1, and we
have discussed the reached effective area of the MAA, in
Section VIII, using the case n = 2. Let us now study the
partial reached effective area of the MAA, in the case n = 2,
for an arbitrary polarization vector upe1. In Section VI, we
have seen that there exists a value Ips 01 of Ig, that produces
an incident field for which the polarization vector is uy,1, that
is to say, such that (71) is satisfied.

Thus, if IB2 = IB2 pol, W€ have

. Prppy
E&oEo

in the direction 6 = 0y and ¢ = pRg.
For a practical computation of Ap,(upe1), we can use the
basis (urr, Ugr, UyR ), (16)—(17) and (32) in (115) to obtain

Apr(upol) =
I]EQ polP*hB YZGH(ZG)YAth Plp: pol
n .

Apr(upol) = (115)

* (116)
IB2 polIB2 pol
It follows that, in this basis,
Apr(upol) = Tr(IBQ pol) 5 (1 17)

where 7, is the Rayleigh ratio defined by (106).

We define the minimum reached equivalent area of the
MAA, in a given direction, as the ratio of the average power
delivered by the N ports of the MAA used for reception to
the power flux density of a uniform plane wave incident on
the MAA from the given direction, the polarization of the
uniform plane wave being such that it minimizes this average
power.

12

Thus, the minimum reached equivalent area of the MAA
in the direction § = 0r and ¢ = @R, denoted by A,cqMIN,
is the minimum value of the Rayleigh ratio 7, which is the
least eigenvalue of Np, according to Rayleigh’s theorem.

It follows from (108) that at most min{ N, 2} eigenvalues
of N, are nonzero. The sum of these eigenvalues being
tr Np;, we define the mean reached equivalent area of the
MAA, in a given direction, as

tr NBr Ar + Areq MIN

Areq MEA — 2 = 9 ’

because it follows from (32), (71) and (117) that this quantity
is a mean value of A, (upo1) over two orthogonal polariza-
tion vectors.

It follows from (108) that

(118)

Ay
(N = ].) = <ArchEA = 7 and ArchIN = 0> (119)

Using the basis (u,gr, ugr, u,r), (32) in (115) and the
assumption that n = 2 and Igy = Ipapo1, We get

4)\27’2 PBDPl
Apr(Upo) = —— , (120
pr(ttpol) nlhe* Iy o IB2pol
and using (29) leads us to
AN%r2 Re(Z,
Apr(upol) = Ri(gR) 9BT2pol » (121)
n \hR|

where g2 pol i the unnamed power gain Pyppq /Pgavg in
CB in the case n = 2, if Igo = Iz pol-

We noted in Section VIII that (101) provides a connection
between G, and gars, which are both determined for a
specified nonzero excitation. We now observe that (121) pro-
vides a connection between Ay, (upe1) and ggra pot, Which is
determined for an excitation that is given by (72) as a function
of the arbitrary polarization vector uy,). This will now allow
us to obtain two results relating to G, and A, (u,01), without
computation.

By (101) and (1 21), Gr/gAT2 and Apr (upol>/gBT2 pol are
positive real numbers. It follows that we can use Theorem 15
of [6], (113) and (117) to assert that, in a given direction:

(a) if M is given by the theorem of Section II applied to
the generalized Rayleigh ratio of Nz to Zaavco, in the
variable I5;, a mean value of GG, over a number N of
linearly independent I is referred to as “mean reached
gain” and given by

trM  tr (NAZK}WGO) .

G, = = ; 122
MEA N N (122)
and
(b) if the MAA is reciprocal and Z¢ is symmetric, then
N2
Arcq MEA = 7Gr MEA (123)
8
and

2

(N=2)= <AreqMIN = 471_GYrMIN) . (124)

Copyright ©2025 by Excem
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X. INVARIANCE OF THE PARAMETERS

We have frequently utilized the system described in Sec-
tion III, comprising the MAA and the RAA. This system
is now referred to as S. It has two configurations, CA and
CB, and two cases corresponding ton = 1 and n = 2. To
define S, we used the initial right-handed rectangular carte-
sian coordinate system (z,y, z) having its origin O close to
the MAA, the associated spherical coordinates system being
(r,0,¢), and the local orthonormal basis of the spherical
coordinate system being denoted by (u,,us,u,). We also
used a point R of coordinates (rg, Or, ¢r) in the coordinate
system (7,0, ), located close to the RAA and such that
OR = rg is much larger than the wavelength and the largest
dimension of the MAA. In S, we use Br = (U,R, Uor, UyR)
to denote the local orthonormal basis (u,, ug, u,) at point R.

We now want to look at what would have happened to the
parameters listed in Table 1 to Table 3 if, using the same
MAA at the same location, the same origin O and the same
point R, we had considered a new system Sy defined like
S, except that Sy would have been built using another right-
handed rectangular cartesian coordinate system of [E, denoted
by (zn, yn, 2x) and of origin O, in the place of the initial
coordinate system (z,y, z) of E used to build S.

In the case n = 1, the parameters listed in Table 1 to
Table 3 depend on the vector uy,, and we find in Section IV
and Section VII that this vector sufficiently determines the
vector hg;, which characterizes the RAA through (34). Thus,
in any direction and for any polarization vector u;, com-
patible with this direction, the parameters Gpamax (Upol)s
Gpa MEA (upol)a G(pr MAX(upol)a G(pr MEA(upol), Apa(upol)
and Ap, (uper) are invariant under the change from S to S
Likewise, for any given nonzero excitation, in any direction
and for any polarization vector u,, compatible with this
direction, the parameters G, (upo1) and Gpp(upo1) are in-
variant under the change from S to Sy.

The case n = 2 is more subtle, because the two antennas
constituting the RAA in § are such that hg; = hg upr and
hro = hgr ugyr, where hg is a nonzero complex number. It
follows that the RAA of S need not be the same as the RAA
of Sy, so that the change from S to Sy is not a mere change
of coordinates.

We observe that the definitions of h in Section III.B and
hp in Section III.C are directly applicable to Sy, and to
any orthonormal basis of E. It follows from this fact, and
from an adaptation of (67)—(68) and (113) to Sy, that G,
and G, are invariant under the change from S to Sy. Thus,
Gamax, Gamiea, Gavin, Grvax, Grvea and Grvin are
also invariant under the change from S to Sy.

To study the behavior of the remaining parameters of
Table 3, we will use said cartesian coordinate system
(N, YN, 2n) of E, the associated spherical coordinates
system, denoted by (rn,fn,@n), and the local orthonor-
mal basis of this spherical coordinate system, denoted by
(u,yN, UoN, UpN). We use (7NR, ONR, NR) to denote the co-
ordinates of R in the coordinate system (rx;, O, ¥n), and we
use Byr = (U,NR, UoNR, UpNR) to denote (U, Uon, Upn )
at R. We observe that ryg = 7r and u,NR = U,R.-

Copyright ©2025 by Excem

Since Br and Byg are each a right-handed orthonormal
basis of E, and since u,Nr = u,g, there exists £ € [0, 27)
such that the change of basis matrix from By to Byg, denoted
by K, is given by

1 0 0
K=10 cos¢ —sing
0 siné cosé

(125)

We now use hpgr to denote hp determined in Bg, and
hpnr to denote hp determined in Byg. Let Epg be the
column vector of the coordinate in Bygr of the incident
electric field, at the origin O, of an arbitrary uniform plane
wave incident from the specified direction. By (14), we have

hixg Ego = hir KEgo, (126)

where Epg is an arbitrary vector of the linear span of
{ugnr, u,nr ). All entries of the first row of hgr and hgngr
being zeros, it follows from (126) that, for any X € C? we
have hT X = hi; KX, so that

hiyg = hir K. (127)
We have

0 0 0

0] =hgg [cos¢ —sing
1

siné  cosé
T cos{ —sing
= hpP (sin§ cos&

hig KP = hiz K

o = O

) . (128)

It follows from (127)—(128) that

hi\ g P = hi PL, (129)
where L is the orthogonal matrix
_[cos§ —sing
L= (sin{ cos& > ‘ (130)

According to Section V and Section VI, A,, Ayeqnin and
AgeqMEa can be computed, in S, as the largest eigenvalue,
the least eigenvalue and the half trace of the positive semidef-
inite matrix Np, given by

Np, = ZPTTBRH(ZA)*lthP. (131)

It follows from the analysis of Section V and Section VI
adapted to the system Sy, that A,, Azeqnin and Ageq MEA
can be computed, in Sy, as the largest eigenvalue, the least
eigenvalue and the half trace of a positive semidefinite matrix
Nnypa given by

Nxpga = Z P hong H(Za) " 'hl P (132)
Using (129) in (132), we get
NxBa = ZL_lpT hBRH(ZA)_lthPL. (133)

A comparison of (131) and (133) shows that Nnp, and
N, are similar, and consequently have the same eigenvalues
and the same trace. Thus, A., Aseqmin and AaeqMEA are
invariant under the change from S to Sy.

13



F. Broyde and E. Clavelier: About the Gains and the Effective Areas of a Multiport Antenna Array

According to Section VIII and Section IX, A, AyeqmiN
and A,eqmea can be computed, in S, as the largest eigen-
value, the least eigenvalue and the half trace of the positive
semidefinite matrix N, given by

Ng, = nP T hpr YigH(Zc)Yachig P. (134)

It follows from the analysis of Section VIII and Section IX
adapted to the system S, that A, Aeqmin and Areq MEA
can be computed, in Sy, as the largest eigenvalue, the least
eigenvalue and the half trace of a positive semidefinite matrix
Nnp: given by

Nygr = 1P T hpng YigH(Za)Yachiyg P (135)
Using (129) in (135), we get
Nyg: = 7L 'PY hpr YicH(Zc)Yachgg PL. (136)

A comparison of (134) and (136) shows that Nyp, and
N, are similar, and consequently have the same eigenvalues
and the same trace. Thus, A;, Areqmin and Ayeqmea are
invariant under the change from S to Sy.

Xl. RANDOM POLARIZATION
A. SURFACE ELEMENT OF S,
Before considering the probability density of a random po-
larization, we need to study the surface element of S,.

A simple parametrization of So uses 3 real parameters X1,
¢ and ¢1, in such a way that an arbitrary element of S is

given by
% - sin x1 eJ"ﬁl ’
cos y1 elo
where x1 € [0,7/2], ¢o € [0,27) and ¢ € [0,2m). To
define a surface element and a surface area of So, we identify
S, with the unit hypersphere of R*, using an isometric
isomorphism Wy : C? — R*, where C2 is regarded as a

normed vector space over R, such that a parametric equation
of \IIQ (Sg) is

(137)

sin y1 cos ¢
sin y1 sin ¢
COS X1 COS (g
€os X1 Sin ¢g

M
I

(138)

where X denotes an arbitrary element of the unit hypersphere
of R*. Tt follows that the surface element of S is

dSs = cos x1 sin x1 dx1 d¢g dor , (139)
which leads us to the surface area of So:
= /// dSy = 272 (140)

X €Sy

Let v be a positive integer. Some authors use S, and
others S, 11, to denote the surface area of a hypersphere of
R¥*1, of unit radius. According to our notations, Sy is the
surface area of So, which is equal to the surface area of the
unit hypersphere of R*. Consequently, (140) is a well known
result [16, p. 877].
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B. PROBABILITY DENSITY
In CB, in the direction §# = 0 and ¢ = @R, and in the case
n = 2, we saw in Section VI that, for an arbitrary polarization
vector Uy, there exists a value Igo o1 of Ino that produces
an incident field for which the polarization vector is u.

Accordingly, to define a uniform plane wave incident from
the direction § = 0y and ¢ = @g, the plane wave having
a random polarization, we only need to define a random
nonzero Ig, € C2. In what follows, the random nonzero
Ig, € C? is denoted by x.

Let N be a hermitian matrix of size 2 by 2. Let r be the
Rayleigh ratio N

xX*xX

r(x) =

As regards r(x), the random nonzero x € C? is fully char-
acterized by the probability density of X = x/||x||2, which
lies in So, because 7(x) = r(X). We therefore introduce the
probability density f : S; — R of X = x/||x||2. Using (32)
and (71), we find that, in the basis (u,r, Usr, UyR ),

Ego
Upol = ——20 — —P%.

VEgoEno

Thus, f fully characterizes the random up.1, and may

therefore be referred to as the “probability density of the
random polarization”. It must satisfy

// F(R)dSs = 1.

X €Sy

(141)

(142)

(143)

The probability density of the random polarization may for
instance be a uniform probability density fy : So — R,
which does not depend on Y1, ¢g and ¢;. In this case, it
follows from (140) and (143) that, for any % € S?,

fu(®) = ! !

C. EXPECTED VALUE OF THE RAYLEIGH RATIO
The expected value of the Rayleigh ratio r for the probability
density f is

N = // f(X)r(%x)dS,. (145)
XESy
Thus,
(X)) = // f(X) X*N% dS; . (146)

X €Sa
N being hermitian, let A\; and A, be the real eigenvalues of
N, counting multiplicity, and let (u;, us) be an orthonormal
basis of C2 such that, for any p € {1, 2}, u,, is an eigenvector
of N associated with the eigenvalue Ap. We obtain

)= [ 1z ZA R,y dS2,

X €Sa

(147)

where, for any a and b lying in C2, (a,b) = b*a, in line
with the notations of Appendix A. This leads us to

f_iA //ffc %,u,)? dS, .

X ESy

(148)
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We now assume that f is the uniform probability density
fu. It follows from (144) and (148) that

(@) = 5 DN [ &) dse. ado)

p=l1 X €Sy

At this point, we need to compute the integral

I= // (%, )2 dSs .

XESa

(150)

for an arbitrary fixed u € Sy. Without loss of generality, we
can assume that u = (0, 1)T. Using (137) and (139), we get

I = /// | cos x1 ej¢>o‘2 cos x1 sin x1 dx1 dpg dpy, (151)

XESy
and then
I = /// cos® 1 sin x1 dx1 doo dor (152)
XES2
so that
/2
I =(2m)? / cos® x1sin x1 dy; = 72 (153)

0

It follows from (149) and (153) that the expected value of
the Rayleigh ratio r for the probability density fy is

2
R 1 tr N
(r(%) s, = 5Z,\p = (154)
p=1
D. MEAN ABSOLUTE EQUIVALENT AREA
By (75), (76) and (154), we have
AaeqMEA - <Apa(up01)>fU . (155)

This result may be phrased by saying that the mean abso-
lute equivalent area of the MAA in a given direction is the
expected value of the partial absolute effective area of the
MAA in this direction, for a random polarization having a
uniform probability density.

To establish this result, we have used the system S, but we
can employ the results of Section X relating to the invariance
of Apa(uper) and Aueqvpa to assert that (155) is invariant
under the change from S to Sy.

E. MEAN REACHED EQUIVALENT AREA
By (117), (118) and (154), we have

AreqMEA = <Apr(upol)>fU . (156)

This result may be phrased by saying that the mean
reached equivalent area of the MAA in a given direction is
the expected value of the partial reached effective area of the
MAA in this direction, for a random polarization having a
uniform probability density.

To establish this result, we have used the system S, but we
can employ the results of Section X relating to the invariance
of Apr(Upo1) and Aeqmia to assert that (156) is invariant
under the change from S to Sy.

Copyright ©2025 by Excem

Xll. GENERALIZATION, COMMENTS AND EXAMPLE
A. GENERALIZATION OF “ABSOLUTE” PARAMETERS
It follows from their definitions using the concept of available
power that A,, Aseqmra and Aueqmin do not depend on
what is connected to the MAA during reception. For the same
reason, Ap,(upo1) does not depend on what is connected to
the MAA during reception, for any polarization vector uy,].
This is why Y and Z¢ do not appear in the formulas (44)
and (60)—(61) relating to the computation of A,, AseqMEA,
Ageqmin and Ap,(uper). This also means that all our as-
sumptions regarding the MLA are irrelevant to the definitions
and the values of A,, Aseq MEA> AaeqMin and Ap, (Uper).
Since we have used I; as the variable defining the
excitation when the MAA is used for emission, GG, and
Gpa(upel) depend on I5q but not otherwise on the MGA.
Thus, Gamax, Gamea and Gavin do not depend on the
MGA, and Gpanax(Upol) and Gpamea (Upor) do not de-
pend on the MGA for any polarization vector upe1. This
is why Yg and Zg do not appear in the formulas (47)-
(48) and (67)—(68) relating to the computation of G, naX,
Gamia, Gamin, Gpamax (Upor) and Gpanvea (Upor). This
also means that all our assumptions regarding the MGA,
except its ability to cause the wanted I, are irrelevant to
the definitions and the values of Ga, Gpa(Upel), Gamax,
GamiAs Gamin, Gpamax (Upor) and Gpamea (Upol)-
Thus, the definitions of the 11 parameters of Table 1 to
Table 3 that include “absolute” in their names do not depend
on the characteristics of the device connected to the MAA,
provided that, in the case of the 7 parameters concerning
emission, this device can cause the assumed excitation.

B. MAXIMUM AND MINIMUM EMISSION PARAMETERS
The 4 emission parameters Ganax, Gpamax(Upol)s
Grmax and Gprmax (upor) that include “maximum” in their
names have been defined as the greatest elements of the
sets of the values of Ga, Gpa(Upoel), Gr and Gpr(Upol),
respectively, obtained for all nonzero I, or equivalently for
all nonzero V 501. However, it follows from a basic prop-
erty mentioned in Section II that Gamax. Gpamax (Upol)s
Grmax and Gy max (uper) are also the greatest elements of
the sets of the values of G, Gpa(Uper), Gy and Gy (Upol),
respectively, obtained for all I5; € Sy, or equivalently for
all Vao1 € Sy.

The 2 emission parameters G, nin and Gy that in-
clude “minimum” in their names have been defined as the
least elements of the sets of the values of G, and G,,
respectively, obtained for all nonzero I,;, or equivalently
for all nonzero V 501. However, G, yviin and Gy are also
the least elements of the sets of the values of G, and G,,
respectively, obtained for all I5; € Sy, or equivalently for
all Vaor € Sn.

C. EXAMPLE
We consider an arrangement of three perfectly conducting
parallel cylindrical center-fed dipole antennas lying in free

space, forming an MAA. The total length of each antenna is
£ = 0.94X/2, and their spacing is D = \/2. All antennas
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have the same wire diameter ¢/50. The coordinates of the
end points of Antenna 1 are (—D, —¢\/2/4, —(~/2/4) and
(=D, ¢\/2/4,0+/2/4). The coordinates of the end points of
Antenna 2 are (0,—¢/2,0) and (0,¢/2,0). The coordinates
of the end points of Antenna 3 are (D, —(/2/4, {+/2/4) and
(D, 0\/2/4,—0+/2/4). Thus, no two of these antennas are
parallel.

Using NEC-2D, we can directly compute Y = le and
the matrix

e—jkr
Fa=jn haYa, (157)
2\
in several directions. The computed values are
125-0.7 25+28j —0241.1j
Yo~ | 25+28 1234045 25+28j | mS (158)
—0241.15 254285 12.5-0.7j
and
FA ~

0 0 0
0.148 +0.4015 —0.209 — 0.568;  0.148 + 0.402j (159)
0.050 + 0.5565 0 —0.050 — 0.556

in the basis (u,, u,, u,) and the direction of u,. This leads
us to

hA = hB >~
A 0 0 0
— | —2.31-0.135 0 2.31+0.13j (160)
10\ 24140075 —341-011; 2.41+0.07j

in the basis (u,r, Usr, Uyr) and the direction § = 7/2 and
¢ = 0. In this direction, we define one of the two possible
circular polarizations by the vector of coordinates

1 0
Hpol = 75 ;

in the basis (u,r, Ugr, UyR)-

As regards the corresponding partial absolute param-
eters, we obtain the values Gpamax(Upo) =~ 2.22,
Gpamia (Upo1) = 0.740 and Ap,(uper) ~ 0.177 A%, which
are compatible with (42).

As regards the other absolute parameters, we get
GaMAX ~ 2.80, GaMEA >~ 1.48, GaMIN >~ 0.00, Aa ~
0.223 )\2, AaeqMEA ~ 0.177 /\2 and AaeqMIN ~ (0.130 /\2,
which are compatible with (65), (70) and (81).

Assuming

754+35 =2 0
Zc = —2j 75425 =25 |,

0 2§ 754 3§

(161)

(162)

which is symmetric and has a positive definite hermitian part,
we can investigate the reached parameters.

As regards the partial reached parameters for the cir-
cular polarization defined by (161), we obtain the values
Gpr MAx(upol) ~ 2.10, Gpr MEA(upol) ~ 0.700 and
Apr(upor) ~ 0.167 A%, which are compatible with (91).

As regards the other reached parameters, we get G, vax ~
258, Gr MEA = 1.40, Gr MIN = 000, Ar ~ 0.205 /\2,
Areqmea ~ 0.167 A2 and Aregmin ~ 0.129 A2, which are
compatible with (111), (114) and (123).
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Xlll. RESULTS RELATED TO THE FRIIS FORMULA
Two generalizations of the Friis transmission formula to radio
transmission between reciprocal, passive and LTI MAAs
have recently been proposed [17]-[19]. They use the concept
of unnamed power gain for LTI multiports [6, Sec. IX],
and are applicable at any distance, in an arbitrary reciprocal
and passive LTI environment. Moreover, the generalization
investigated in [17] is based on Theorem 29 of [6] and the
analysis of [6, Sec. XIII].

We are going to establish a new generalization of the Friis
transmission formula to two passive and LTI MAAs, called
MAA 1 and MAA 2, lying in the isotropic, homogeneous
and lossless passive medium of Section III.A, the distance
between the MAAs, denoted by d, being much larger than
the wavelength and their largest dimensions. MAA 1 has [V;
ports numbered from 1 to N7, and MAA 2 has N, ports
numbered from 1 to No. We assume that MAA 1 has an
impedance matrix, denoted by Z; and of size Ny by Ny,
and that H(Z ) is positive definite. We assume that MAA 2
has an impedance matrix, denoted by Z - and of size N by
No, and that H(Z A») is positive definite.

For a specified nonzero excitation applied to the ports
of MAA 1 used for emission, let Gay be the unnamed
power gain between MAA 1 and MAA 2 used for reception,
that is to say, the ratio of the available power at the ports
of MAA 2 to the average power received by the ports of
MAA 1. For a specified nonzero excitation applied to the
ports of MAA 2 used for emission, let Ggy be the unnamed
power gain between MAA 2 and MAA 1 used for reception,
that is to say, the ratio of the available power at the ports
of MAA 1 to the average power received by the ports of
MAA 2. By Theorem 29 of [6], Gay has a maximum value
for all nonzero excitations applied to MAA 1, denoted by
Gaumax, and Gy has a maximum value for all nonzero
excitations applied to MAA 2, denoted by Gpu max-

Let G, 1 Mmax be the maximum absolute gain, and A, ; the
absolute effective area, of MAA 1 in the direction of MAA 2.
Let G,2nmax be the maximum absolute gain, and A, o the
absolute effective area, of MAA 2 in the direction of MAA 1.
It follows from the definitions that:

Ga1Max Aas

i &2 (109

Gaumax <
and
Gaamax Aat

164
47 d? (164)

GpuMAX <

Let G,1 be the absolute gain for a specified nonzero
excitation, and Ap,1(upo1) a partial absolute effective area,
of MAA 1 in the direction of MAA 2. Let G, » be the absolute
gain for a specified nonzero excitation, and A, 2(upol1) @
partial absolute effective area, of MAA 2 in the direction of
MAA 1.

If we assume that there exists an excitation of MAA 1 for
which G,1 = Ga1wmax in the direction of MAA 2, this
excitation producing, at a large distance in the direction of
MAA 2, a uniform incident plane wave of polarization vector
Upol 1 such that A, o = Apag(upol 1), then:
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(a) for this excitation, we have

GalMAX Aa2 .

Gau = T (165)
(b) it follows from (163) and (165) that
Ga Aa
Gaumax = 21 MAX a2 (166)

4 d2 ’
(c) if MAA 2 is reciprocal, it follows from (65) and (166)
that

y 2
Gaunvax = Gaimax Gaomax | — ) 5 (167)
4 d

and
(d) if MAA 1 is reciprocal, it follows from (65) and (166)
that
: Aa 1 Aa 2
GAauMAX = —E (168)

Likewise, if there exists an excitation of MAA 2 for which
Gao = Gaomax in the direction of MAA 1, this excitation
producing, at a large distance in the direction of MAA 1,
a uniform incident plane wave of polarization vector Upo12
such that A, 1 = Apa1(Upor2), then:

(e) for this excitation, we have

o GaZMAXAal .

47 d? ’ (169)
(f) it follows from (164) and (169) that
Ga A,
Gpumax = —22MAX Fal (170)

4 d? ’
(g) if MAA 1 is reciprocal, it follows from (65) and (170)
that

\ 2
Gumax = Gaimax Gaomax | — | 3 (171)
4 d

and
(h) if MAA 2 is reciprocal, it follows from (65) and (170)
that
Aaq Aa
GBUMAX =~ - (172)

We observe that we can also assert logical converses of the
statements (b) and (f), as follows:

(1) if (166) is satisfied, there exists an excitation of MAA 1

such that (165) is satisfied, this excitation being necessar-

ily such that G, 1 = G541 max in the direction of MAA 2,

and such that it produces, at a large distance in the

direction of MAA 2, an incident uniform plane wave of

polarization vector Upo1 1 such that A, o = Apa2(Upor);
and

(G) if (170) is satisfied, there exists an excitation of MAA 2

such that (169) is satisfied, this excitation being necessar-

ily such that G, 5 = G, 2 Mmax in the direction of MAA 1,

and such that it produces, at a large distance in the

direction of MAA 1, an incident uniform plane wave of

polarization vector upe) 2 such that A, 1 = Apa1(Upor2).

Consequently, if MAA 1 and MAA 2 are reciprocal, we

can assert that the statement S; = “there exists an excitation

of MAA 1 for which G517 = G,1Mmax in the direction

Copyright ©2025 by Excem

of MAA 2, this excitation producing, at a large distance in
the direction of MAA 2, a uniform incident plane wave of
polarization vector upei1 such that Ao = Apao(Uporn)”
and the statement Sy = “there exists an excitation of MAA 2
for which G,2 = G,2Mmax in the direction of MAA 1, this
excitation producing, at a large distance in the direction of
MAA 1, a uniform incident plane wave of polarization vector
Upoi2 such that A, 1 = Apa1(upor2)” are equivalent.

Proof: To show this, we can for instance assume that Sy is
true. Thus, (167) is true because MAA 2 is reciprocal. Since
MAA 1, MAA 2 and the medium surrounding them are re-
ciprocal, we can use Theorem 29 of [6] and the explanations
of Appendix B to assert that Gaynmax = GBuMax, SO that
(167) entails (171). Using (65), we find that (170) is true.
Using (j), we find that S, is true. O

The transmission formulas (166)—(168) subject to the con-
dition &7, the transmission formulas (170)—(172) subject to
the condition Ss, and the equivalence between S; and Ss if
MAA 1 and MAA 2 are reciprocal, form a new generalization
of the Friis transmission formula. In the special case where
N1 = Ny = 1, we have Gay = Gauwmax for any
nonzero excitation of MAA 1, and Gpy = Gpumax for any
nonzero excitation of MAA 2, so that (166)—(168) and (170)—
(172) exactly correspond to 3 traditional forms of the Friis
transmission formula for transmission between two antennas
[17, Sec. I], [20]-[21], [22, Sec. 4.4.2]. These 3 traditional
forms being subject to the condition that the antennas are
polarization matched, we see that this condition is replaced
with §; and S in our new generalization of the Friis formula
to transmission between two MAAs. We also note that this
generalization of the Friis transmission formula uses param-
eters that do not depend on the characteristics of the devices
connected to the MAAs, as explained in Section XIL.A.

XIV. OTHER TRANSMISSION FORMULAS

We are now going to consider other new transmission formu-
las, which are based on the properties of the transducer power
gain stated in Theorem 4 of [5] or Theorem 15 of [6], and use
parameters that depend on the characteristics of the devices
connected to the MAAs.

We consider the same passive and LTI MAAs as the
ones defined in Section XIII, in the same medium and the
same configuration. When MAA 1 is used for emission and
MAA 2 for reception, MAA 1 is connected to an LTT Ny -port
generator of internal impedance matrix Zgi, and MAA 2 is
connected to an LTI Ny-port load of impedance matrix Zgs.
When MAA 2 is used for emission and MAA 1 for reception,
MAA 1 is connected to an LTI N;-port load of impedance
matrix Zgi, and MAA 2 is connected to an LTI Ns-port
generator of internal impedance matrix Zgo. We assume that
H(Zgs1) and H(Zgs2) are positive definite.

For a specified nonzero excitation applied to the ports of
MAA 1 used for emission, let Gt be the transducer power
gain between MAA 1 and MAA 2 used for reception, that is
to say, the ratio of the average power delivered by the ports
of MAA 2 to the available power at the ports of the LTI
Nj-port generator connected to the ports of MAA 1. For a
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specified nonzero excitation applied to the ports of MAA 2
used for emission, let Gpr be the transducer power gain
between MAA 2 and MAA 1 used for reception, that is to
say, the ratio of the average power delivered by the ports of
MAA 1 to the available power at the ports of the LTI N»-port
generator connected to the ports of MAA 2. By Theorem 4 of
[5] or Theorem 15 of [6], GaT has a maximum value for all
nonzero excitations applied to MAA 1, denoted by G a1 maX,
and G'gr has a maximum value for all nonzero excitations
applied to MAA 2, denoted by Ggr max.

Let G} 1max be the maximum reached gain, and A, the
reached effective area, of MAA 1 in the direction of MAA 2.
Let G,2nmax be the maximum reached gain, and A,o the
reached effective area, of MAA 2 in the direction of MAA 1.
It follows from the definitions that:

Grimax Ao

1
A d? (173)

Garmax <

and
Gromax Art

47 d?

Let G;1 be the reached gain for a specified nonzero ex-
citation, and A, 1(upol) a partial reached effective area, of
MAA 1 in the direction of MAA 2. Let GG, 5 be the reached
gain for a specified nonzero excitation, and Apy2(Upol) a
partial reached effective area, of MAA 2 in the direction of
MAA 1.

If we assume that there exists an excitation of MAA 1
for which G,1 = G;1max in the direction of MAA 2, this
excitation producing, at a large distance in the direction of
MAA 2, a uniform incident plane wave of polarization vector
Upol1 such that A, o = Ay 2(upor 1), then:

GeTMAX < (174)

(a) for this excitation, we have

GrlMAXArQ A

Gar = 25 (175)
(b) it follows from (173) and (175) that
T AI‘
Garaax = rAx Az (176)

47 d? ’
(c) if MAA 2 is reciprocal and Zgs is symmetric, it follows
from (111) and (176) that

)\ 2
Garmvax = Grivax Grovax | — | 3 (A77)
47 d

and
(d) if MAA 1 is reciprocal and Zg; is symmetric, it follows
from (111) and (176) that
Ar 1 Ar 2
AP
Likewise, if there exists an excitation of MAA 2 for which
Gro = Gromax in the direction of MAA 1, this excitation
producing, at a large distance in the direction of MAA 1,
a uniform incident plane wave of polarization vector g2
such that A, 1 = Ap,r1(Upor2), then:

(e) for this excitation, we have

GaTMAX = (178)

GrQMAXArl .

Gpr = T 2 ;

(179)
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(f) it follows from (174) and (179) that

Gramax Ar1

1
drd®> (180)

GBTMAX =
(g) if MAA 1 is reciprocal and Zg; is symmetric, it follows
from (111) and (180) that

\ 2
GerMmax = Grivax Graomax | — ) ;3 (181)
47 d

and
(h) if MAA 2 is reciprocal and Zg- is symmetric, it follows
from (111) and (180) that

Ari A
GprMAX = 7d; 2 2, (182)
We observe that we can also assert logical converses of the
statements (b) and (f), as follows:

(1) if (176) is satisfied, there exists an excitation of MAA 1
such that (175) is satisfied, this excitation being necessar-
ily such that G} 1 = G, 1 Mmax in the direction of MAA 2,
and such that it produces, at a large distance in the
direction of MAA 2, an incident uniform plane wave of
polarization vector up11 such that A, 5 = Apro(Upor);
and

(G) if (180) is satisfied, there exists an excitation of MAA 2
such that (179) is satisfied, this excitation being necessar-
ily such that G, 5 = G, 2Max in the direction of MAA 1,
and such that it produces, at a large distance in the
direction of MAA 1, an incident uniform plane wave of
polarization vector up 2 such that A, 1 = Apy 1 (Upor2).

Consequently, if MAA 1 and MAA 2 are reciprocal and
if Zg; and Zgs are symmetric, we can assert that the
statement S3 = “there exists an excitation of MAA 1 for
which G;1 = G;1wmax in the direction of MAA 2, this
excitation producing, at a large distance in the direction
of MAA 2, a uniform incident plane wave of polarization
vector Upe11 such that A, = Apo(upeq)” and the state-
ment S, = “there exists an excitation of MAA 2 for which
Gro = Gromax in the direction of MAA 1, this excitation
producing, at a large distance in the direction of MAA 1,
a uniform incident plane wave of polarization vector upe2
such that A, = A, 1(upo12)” are equivalent.

Proof: To show this, we can for instance assume that S3
is true. Thus, (177) is true because MAA 2 is reciprocal and
Zg- is symmetric. Since MAA 1, MAA 2 and the medium
surrounding them are reciprocal, and since Zg; and Zgo are
symmetric, we can use Theorem 4 of [5] or Theorem 15 of
[6] to assert that GaT mvax = GBT MAX, SO that (177) entails
(181). Using (111), we find that (180) is true. Using (j), we
find that Sy is true. O

The transmission formulas (176)—(178) subject to the con-
dition S3, the transmission formulas (180)—(182) subject to
the condition Sy, and the equivalence between S3 and Sy
if MAA 1 and MAA 2 are reciprocal and if Zg; and Zgo
are symmetric, form a complete set of new transmission
formulas.
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TABLE 4. Results not based on the reciprocity of the MAA.

TABLE 5. Results based on the reciprocity of the MAA.

Equality No. Equality No.
_ Gpa MAX(upol) )\2
Gpamea (Upol) = —————— 62) Apa(tpol) = 2= Gpaniax (upor) “2)
(N >2) = (Gamix = 0) (70) \2
Aa Aa = —Gamax (65)
(N=1)= (Aaeq MEA = — and Ageq MIN = 0) () 4m
2 2
G (11 ) Aaeq MEA — &Ga MEA (81)
Gpr MEA(upol) = W (99) 8
)\2
(N >2) = (Grvin = 0) (114) (N=2)= (Aaeq MIN = EGaMIN> (82)
Ay A2
(N=1)= (ArchEA =5 and Apeq MIN = 0) (119) Apr(upel) = EGpr MAX (Upol) 1)
A = (Apa(uye (155) 2
weaMA = (Apa(tpol)) sy A = %GrMAX (1
Areq MEA — (Apr(up01)>fU (156) TI'N)\2
Areq MEA = ?Gr MEA (123)
)\2
XV. CONCLUSION (N=2)= (Areq MIN = EGr MIN) (124)
We have named and carefully defined the parameters for
emission listed in Table 1 (for excitation-dependent param-
eters) and Table 2 (for excitation-independent parameters), APPENDIX A

and the parameters for reception listed in Table 3. We have
also: established how these parameters can be computed;
proven the results listed in Table 4, which are not related to a
possible reciprocity of the MAA; and proven the results listed
in Table 5, which are based on the reciprocity of the MAA.

It is interesting to note that we had to introduce more
parameters for emission than for reception.

We have used the parameters for emission and reception to
obtain: new generalizations of the Friis transmission formula,
which are quite different from the ones proposed in [6, Sec.
XIII] and [17]-[19]; and other new transmission formulas.
These formulas and the results listed in Table 5 justify the
definitions of the parameters and prove that the difficulties
mentioned in Section I have been overcome.

We acknowledge that [23] and several of the references
listed in [19] are relevant to the subject matter of this article,
but we have not tried to compare our definitions and results
to others. It is nevertheless worth noting that we have ignored
the “partial realized gain” and “realized gain” defined in [2]
for a single-port antenna, the reference power used to obtain
these parameters being an incident power, presumably deter-
mined for a specified reference resistance ro. However, these
“partial realized gain” and “realized gain” are encompassed
in our more general concept of “partial reached gain” and
“reached gain”, for which the reference power is an available
power from a generator having, in the special case of a single-
port antenna, any impedance of positive real part.

In Section III.A, we have assumed (for the convenience of
presentation) that “the MAA is passive and may be used for
emission and reception at w”. However, if we now consider
an LTI MAA that does not satisfy this requirement but is
stable in the relevant configuration and complies with our
other assumptions, we see that: the parameters listed in
Table 1 and Table 2 may be defined if this MAA can be used
for emission at w; and the parameters listed in Table 3 may
be defined if this MAA can be used for reception at w.

Copyright ©2025 by Excem

In a complex vector space F, let f be a positive definite
hermitian sesquililear form f : E x E — C [24, Ch. 3],
[25, Sec. VL4]. It may be selected as the inner product of £
[24, Ch. 4], [25, Ch. VII]. In this case, for any x € E and
any y € E, the complex number f(x,y) may be denoted by
(x,y),and, forany x’ € E,y’ € E and o € C, we have:

(i) (x+x,y) = (xy) + &, y);

(i) (xy+y) =&y + &y
(iif) (ax,y) = alx,y);

(iv) (x,ay) =a(x,y);

) (y,x) = (x,y);

(vi) (x,x) € Rand (x,x) > 0; and
(vii) (x,x) = 0 if and only if x = 0.

For this inner product and a positive integer p, an orthonor-
mal family (uy, ..., u,) of vectors of F is by definition such
that (u;,u;) = §; ;, where ¢ and j lie in {1,...,p} and J; ;
is the Kronecker delta.

We now assume that £ is of finite dimension v, so
that (E, f) is called a hermitian space [24, Ch. 4]. Let
(uq,...,u,) be an orthonormal basis of this hermitian space.
Forany x € F andany y € FE, let X be the column vector of
the coordinates of x in this basis, and Y be the column vector
of the coordinates of y in this basis. By (i)—(v) we have

(x,y) =Y*X. (183)

Thus, Y*X does not depend on the choice of the or-
thonormal basis of (E, f). It also follows that the selection
of a hermitian sesquililear form as an inner product of E is
equivalent to the selection of a basis of E/ as an orthonormal
basis.

In Section III, we have defined the real vector space E
and the complex vector space [E¢. The latter is referred to
as the complexified of the real vector space E [24, Sec. 4.3],
[25, Sec. VI.2]. In electromagnetics, it is customary to use
a symmetric bilinear form g : E¢ x E¢ — C [24, Ch. 1],
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[25, Ch. II], such that, for any x € E¢ and any y € E°, the
complex number g(x,y) is denoted by x - y, and, for any
x' € E¢, y’ € E¢ and a € C, we have:

(viii) x+x) y=x-y+xy;

(ix) x-(y+y)=xy+xy;

() (ax) y=oa(xy);

(xi) x-(ay)=a(x-y);

(xii) y - Xx=x-y;
(xiii) ifxeE thenx-x€ Randx-x > 0; and
(xiv) if x € E, then x - x = 0 if and only if x = 0.

It follows from (viii)—(xiv) that this symmetric bilinear
form is a scalar product in E, so that (E, g) is an euclidean
space [24, Ch. 2]. Let B = (v, va, v3) be an orthonormal
basis of this euclidean space. For any x and y lying in E€, let
X be the real column vector of the coordinates of x in this
basis, and Y be the real column vector of the coordinates of
y in this basis. By (viii)—(xii) we have

x y=YTX. (184)

Thus, YTX does not depend on the choice of the orthonor-
mal basis B of (E, g).

For any x € [E°, let X be the column vector of the
coordinates of x in B. Recall that B was defined as an
orthonormal basis of (E, g). Let X € E° be such that the
column vector of the coordinates of X in B is X. The vector X
is called the conjugate of x. Let B’ = (v, v}, v§) be a basis
of E¢, in which the column vector of the coordinates of x is
denoted by X', and the column vector of the coordinates of
X is denoted by M'(X). Let C be the change of basis matrix
from B to B’. We have X = CX’ and X = CM' (%), so that

M) =C'CX . (185)
It follows that the proposition
H= (forany x € E°, M'(X) = f) (186)

is true if and only if C is a real matrix, that is to say, if and
only if ' is a basis of E.

Consequently, in any basis of [E the column vector of the
coordinates of X is the conjugate of the column vector of the
coordinates of x. It follows that the conjugate of a vector does
not depend on the basis of [E used to define it.

The symmetric bilinear form g does not satisfy (iv)—(vii),
so that it cannot be used as an inner product in [E°. However,
it is used to select a hermitian sesquililear form f as an inner
product of E°, by deciding that the orthonormal basis 55 of
(E, g) is an orthonormal basis of (E°, f).

Thus, for any x and y lying in E°, if X and Y are
the column vectors of the coordinates of x and y in B,
respectively, it follows from (183) that (x,y) = Y*X, and
from (184) that x - ¥ = y - x = Y *X. This leads us to the
vector equation

(xy)=x-y=¥ -x. (187)

We note that, for any x € E, we have X = x. Thus, it
follows from (187) that any basis of IE is an orthonormal basis
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of the euclidean space (EE, g) if and only if it is an orthonor-
mal basis of (E€, f). Consequently, the inner product in E€
does not depend on the orthonormal basis B of (E, g) used to
define it. It also follows that the wording “orthonormal basis
of [£” is not ambiguous.

An arbitrary orthonormal basis of [E being chosen, for any
v and w lying in E€, the coordinates of v and w in this basis
are now denoted by v and w, respectively. It follows from
(183) and (187) that

(V,W)=W'V=Vv- W=W-V.

(188)

Orthogonality in [E¢ and the norm in E¢ are defined with
respect to (E°, f). Accordingly, ||v|] = VV-V = VvV v,
and v and w are orthogonal if and only if v-w =W -v = 0.

The bilinear form ¢ is used in (187) and (188) to express
the inner product by utilizing a conjugate vector. We must
keep in mind that the bilinear form ¢ intrinsically does not
behave like an inner product in E°. For instance, if we
consider v = (1,7,0)T, we have v - v = 0. The bilinear
form is nevertheless used in the main body of this article, for
instance in the formula (13) defining vector effective heights
for reception, and in some formulas containing a polarization
vector, such as (33) and (83).

By the Cauchy-Schwarz inequality for positive definite
hermitian sesquililear forms [24, Sec. 3.3.2], [25, Sec. VL.8],
for any v € E€ and any w € E°, we have

(189)

with equality if and only if there exists (o, 3) € C? such that
av + Bw = 0. It follows that

(v, W) < (v, v){w,w),

(190)

with equality if and only if there exists (o, 3) € C? such that
av + W = 0. This result can be applied to the polarization
mismatch factor of the RAA, defined by (25) for Eag # 0
and hgr; # 0, to assert that

vewl < v [[wl],

€pol < ]-7 (191)

with equality if and only if there exists 4 € C such that we
have Eaxr = phgs.

APPENDIX B

This Appendix B provides clarifications about the assump-
tion of Section III. A regarding the distance g, and a proof of
the fact that the premises of Theorem 29 of [6] are satisfied.
To this end, we refer to the MAA, the RAA and said lossless
medium lying around the MAA and the RAA as the “device
under study” (DUS) having 2 sets of ports, referred to as port
set 1 and port set 2. Port set 1 consists of the N ports of
the MAA, and port set 2 consists of the n ports of the RAA.
We introduce a series-augmented multiport, as defined in [5,
Sec. II], composed of the DUS (as original multiport), of an
N-port load of impedance matrix Zg connected in series
with port set 1, and of an n-port load of impedance matrix
77, connected in series with port set 2. Here, the impedance
matrix of the added multiport is

Z 0
Zapp = ( OG Z*) .
R
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We have assumed that H(Zg) and H(Zg) are positive
definite (see sections IIL.A and IILB), so that H(Zapp)
is positive definite. By Theorem 2 of [5], the series-
augmented multiport has an admittance matrix Ygapy such
that H (Ysam) is positive semidefinite. The matrix Ygan is
of size (N + n) by (INV + n). It may be partitioned into four
submatrices, Yganmi1 of size N by N, Ysamie of size N
by n, Ysamer of size n by N and Yganee of size n by n,
which are such that

Ysamii
Ysam = (

193
Ysamzi (193)

Ysami2
Ysamzz2

Zy is symmetric since the RAA is reciprocal. Thus, by
Theorem 2 of [5], if Zg is symmetric and the MAA is
reciprocal, then Ygan is symmetric.

It follows from our assumptions that the DUS has an
impedance matrix Z, of size (N + n) by (N + n), which

is such that ,
7 Z\ 7
Zyy 7 )

where Z 2 is a matrix of size N by n and Zs; is a matrix of
size n by IN. It follows from (14) and (31) that we have

(194)

ke dkmr T

VAT ZJUW(hBhR‘FAH)» (195)
and from (11) and (20) that we have
ke dkmr T

Zy = JUW(thA + Qo) (196)

where hy and hg are considered in the direction § = g and
@ = g, where hg is considered in the opposite direction
0/ = 7/2 and ¢’ = w, where Aj5 is a matrix of size N
by n having the dimensions of area and representing a small
correction to h hy that accounts for the finite distance be-
tween the MAA and the RAA, and where As; is a matrix of
size n by IV having the dimensions of area and representing a
small correction to hi ha that accounts for the finite distance
between the MAA and the RAA.

If rr is considered as a variable, it follows from our
definitions that all entries of the matrices Zy —Z, Z, — Zg,
Aq5 and Ay tend to zero as rg becomes large.

Since H(Z) and H(Zg) are positive definite, each of
them has a smallest eigenvalue which is positive, by [7,
Sec. 7.2.1]. The eigenvalues of a square complex matrix
depending continuously on its entries [8, Appendix D], the
smallest eigenvalues of H(Z', ) and H(Z}) are also positive
if rg is sufficiently large. According to the assumption of
Section III.A regarding the distance 7R, this is indeed the
case. Consequently, we can use [7, Sec. 7.2.1] again to assert
that H(Z/,) and H(Z,) are positive definite.

It follows that H (Zp, + Z§;) and H(Z/, + Z¢) are positive
definite. By Lemma 1 of [5], it follows that Zj; + Z}; and
Z', + Z¢ are invertible. This fact and the structure of the

series-augmented multiport lead us to
N=Z\ —Z12(ZR + ZF) 2o (197)

and

=2k — Loy (Z\ +Zg) 21y (198)

Copyright ©2025 by Excem

We have assumed that the RAA is reciprocal and Zp is
symmetric. If we further assume that the MAA is reciprocal
and Z¢ is symmetric, then Za, Z/y, Z%;, Zapp and Z are
symmetric, and hy = hg. In this case, we consequently have
Ay = AT,

Since Z exists, it follows from Corollary 2 of [5] that:
Ysawm is invertible;

Ysiu =Z+ Zapp; (199)

and, if Zapp is symmetric, Ysan is symmetric if and only
if Z is symmetric.

Z being the impedance matrix of a passive system, H (Z)
is positive semidefinite. H(Zapp) being positive definite, it
follows from (199) that H(Yg,4,,) is positive definite. Thus,
H(Ysam) is positive definite by Lemma 1 of [5]. By [7,
Sec. 7.1.2], it follows that H(Ygsami1) is positive definite
and H(Ysam22) is positive definite.

Using again Lemma 1 of [5], we find that Ysani: and
Y samoo are invertible, so that propositions P; and Ps of [6],
defined in [6, Sec. VI.D], are true.

Since Ygami1 and Yganoo are invertible, it follows from
(197)—(198) and the structure of the series-augmented multi-
port, or from [7, Sec. 0.7.3], (192), (194) and (199), that

Yot = Zh + Zc — Zoo(Zi + Z5) 'Zo1  (200)
and
Yoane = Zi + Zf — Zo1(Z)y + Za) ' Z12. (201)
Consequently, we have
H(Ys_ziMn - ZG) =
H(Z}y) — H(Z1o(Z + ZR) " Za1)  (202)
and
H(Ys_,iMzz - ZE) =
H(ZR) — H(Zon (Z)y + Zg) ' Z12).  (203)

Since H(Z',) and H(Zy) are positive definite, each of
them has a smallest eigenvalue which is positive. The eigen-
values of a square complex matrix depending continuously
on its entries, it follows from (195)-(196) and (202)—(203)
that the least eigenvalue of H(Ygay,, — Zc) and the
least eigenvalue of H(Ygayeo — Zi) are positive if rg
is sufficiently large. According to the assumption of Sec-
tion III.A regarding the distance rg, this is indeed the case.
Thus, H(Ygan, — Za) and H (Y gayge — Z%) are positive
definite. It follows that propositions Ps and P4 of [6], defined
in [6, Sec. VI.D], are true.

In (i) of Theorem 29 of [6], the conditions for the applica-
bility of (298)-(302) include “if the DUS and both loads are
reciprocal devices”.

In Section IV above, it follows from (39), (41), (44) and
(47)—(48) that Apa(upol), gBu1. Gpa(Upor) and gaur do not
depend on Z¢. Accordingly, it follows from the definitions
of the MLR in Section IILE that the requirement “if the DUS
and both loads are reciprocal devices” can be replaced with
“if the MAA is reciprocal” in Section I'V.
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In Section V and Section VI above, it follows from (54),
(60)—(61), (67)~(68) and (79) that Apa(upol), gBU2 pols Ga
and gays do not depend on Z¢. Accordingly, it follows from
the definitions of the MLR in Section IIL.E that the require-
ment “if the DUS and both loads are reciprocal devices” can
be replaced with “if the MAA is reciprocal” in Section V and
Section VL.
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