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Global stability of perturbed chemostat systems

C. Alvarez-Latuz∗, T. Bayen†, J. Coville‡

January 1, 2025

Abstract

This paper is devoted to the analysis of global stability of the chemostat system with a perturbation
term representing any type of exchange between species. This conversion term depends on species and
substrate concentrations but also on a positive perturbation parameter. After having written the invariant
manifold as a union of a family of compact subsets, our main result states that for each subset in this
family, there is a positive threshold for the perturbation parameter below which, the system is globally
asymptotically stable in the corresponding subset. Our approach relies on the Malkin-Gorshin Theorem
and on a Theorem by Smith and Waltman about perturbations of a globally stable steady state. Properties
of steady-states and numerical simulations of the system’s asymptotic behavior complete this study for
two types of perturbation term between species.

1 Introduction
General context. The so-called chemostat system allows to model thanks to ordinary differential equations,
the evolution of microbial species present in lakes or lagoons. In biotechnology, it can also be used to study
the behavior of microbial species, with the aim, for example, of controlling the production of molecules of
interest or reducing certain concentrations for water treatment [3, 13]. When the dilution rate is constant
(this parameter allows to regulate the input substrate concentration) and in the presence of a single limiting
substrate, the competitive exclusion principle (CEP) makes it possible to predict the asymptotical behavior
of species concentrations. When considering non-decreasing kinetics for the species (such as Monod’s kinetics
[20, 21]), the CEP asserts that, generically, only one species survives asymptotically [16, 26]. It is worth
mentioning that in the chemostat system with a single limiting substrate, the species do not interact directly
with each other but only indirectly through the substrate equation.

Main objective. The aim of this paper is to study stability properties of the chemostat system when an
exchange term1 between species is incorporated. This additional term in the system is quantified by a generally
low perturbation parameter and has several origins. It can represent, for example, mutation between species
(due to gene transfer) and in that case, the perturbation parameter can be seen as a mutation rate. To remain
general, we prefer to use in this paper the terminology perturbed chemostat system, to describe the resulting
dynamical system. In presence of this phenomenon, each species is able to convert into neighboring species.
Theoretical and numerical approaches to study the chemostat system with a perturbation term as well as
related questions can be found in [2, 4, 5, 7, 8, 10, 11, 14, 19, 22] (among others). In this paper, we are
interested in addressing the next question : what can we say about the asymptotic behavior of a perturbed
chemostat system particularly when the perturbation is “small2”? Depending on the data defining the system
(such as dilution rate, perturbation parameter, kinetics), we wish to know if there is an invariant subset of the
state space in which the perturbed system is globally asymptotically stable around a coexistence3 steady-state.
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Even if the system in question is close to the chemostat system (in a way that has yet to be quantified), this
question is not obvious. Indeed, it is well-known that the properties of a perturbed dynamical system can
differ significantly from those of the non-perturbed system, potentially resulting in the emergence of multiple
steady states or periodic orbits that would not exist without perturbation. It is worth mentioning that for the
chemostat system, previous studies (such as [4, 10]) indicate that the techniques for studying the asymptotical
behavior of a perturbed version of the chemostat system differ from the classical approaches for the chemostat
system (using for instance Lyapunov functions [15, 17, 26]).

Related results. In order to highlight the novelty of our work, we would like first to recall some results in
[4, 10]. First, the article [10] provides a first insight into the above question and it is as follows. Global stability
is proven provided that kinetics are in a sufficiently narrow bundle (the limiting case being that they are all
equal to a Monod type’s kinetics) and that all yield coefficients are close to each other (the limiting case being
that they are all equal to one). The paper [4] provides a similar global stability result provided that kinetics
are of Monod type and that the dilution rate is small enough (the limiting case being that the dilution rate is
zero). Additionally, the occurence of a single coexistence steady-state (apart the washout) is established which
differs from the chemostat system where (apart the washout) several steady states occur (the number of them
being equal to the number of species). This work in in line with the preceding studies, but, it is probably set
in the most natural case, i.e., when the kinetics are monotone (but arbitrarily), when the dilution rate is also
arbitrarily (which is more realistic than in [4] from an experimental point of view) and when the perturbation
parameter tends to zero. Furthermore, we also consider the case of a non-linear exchange term depending
both on the substrate and species concentrations and non-necessarily linear w.r.t. species concentrations as in
[4].

Main contribution. In order to study global stability of a general perturbed dynamical system (knowing that
the non perturbed system is globally asymptotically stable), Smith and Waltman introduced in [27, Theorem
2.2] (see also their Corollary 2.3) sufficient conditions on the system to guarantee that global stability is
preserved as the perturbation parameter tends to zero. In order to apply this fundamental result in our
setting, it is essential to verify one of the hypotheses which states that all trajectories of the perturbed system
should enter after a certain time into a (fixed) compact subset of the invariant manifold and remain in it. In
our setting, this hypothesis is not evident to verify. A good approach is to use the Malkin-Gorshin Theorem
[23] (see also [24, 25]). This result is part of the folklore and it allows to show that trajectories of the perturbed
system remain close to trajectories of the non-perturbed one provided that the perturbation parameter is small
enough. It is proved in [23] in the context of B-stability which in some sense is a weaker notion than local
stability. The B-stability of a differential system is verified if the original system is exponentially stable. Since
the chemostat system fulfills the latter condition, we shall not enter into the notion of B-stability throughout
this paper. In order to combine the Malkin-Gorshin Theorem and [27, Theorem 2.2], we need to introduce a
family of compact subsets of the invariant manifold (to apply the Malkin-Gorshin Theorem uniformly w.r.t. the
initial condition). Our main result states that for each subset in this family, there is a positive threshold for the
perturbation parameter below which, the system is globally asymptotically stable in the corresponding subset
(Theorem 2.2). We complete this study by analyzing steady-states when the perturbation term depends
on the substrate but is linear w.r.t. concentration species. Numerical simulations are carried out for two
types of exchange terms and highlight the behavior of the perturbed dynamical system as expected thanks to
Theorem 2.2.

Organization of the paper. The paper is structured as follows. In Section 2, we present the model and our
main hypotheses. Additionally, we give Proposition 2.2 that is a slight extension of [27, Corollary 2.3] to our
setting and Proposition 2.3 which provides a simpified version of the Malkin-Gorshin Theorem. For sake of
completeness, these propositions are proved in the Appendix. In section 3, we analyze in details steady-states
of the perturbed system in the case where the perturbation term is linear w.r.t. species concentrations. Finally,
Section 4 develops numerical simulations of the perturbed chemostat system for two types of exchange terms.
Section 5 explores various perspectives derived from the results obtained in this paper.
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2 Model presentation and main result

2.1 The chemostat system with a general perturbation term
Throughout this paper, we consider the chemostat system with a single limiting substrate and n ≥ 1 species,
and we also incorporate an exchange term between them that depends on species concentrations, substrate
concentration, and on a perturbation parameter called ε. This yields the following dynamical system

ẋ = D(s)x− ux+ h(x, s, ε),

ṡ = −
n∑

j=1

µj(s)xj

Yj
+ u(sin − s),

(2.1)

where:

• x := (x1, ..., xn)
⊤ ∈ Rn is a vector containing the species concentrations xi for i ∈ {1, ..., n} ;

• s and sin denote respectively the substrate and input substrate concentration (where sin > 0) ;

• D(s) ∈ Rn×n denotes the diagonal matrix diag(µ1(s), ..., µn(s)) where for all i ∈ {1, ..., n}, the function
µi : R+ → R+ is the kinetics of species i ;

• for all i ∈ {1, ..., n}, Yi > 0 is the yield coefficient associated with species i ;

• u ≥ 0 is the dilution rate and ε ≥ 0 is the perturbation parameter ;

• the function h : Rn×R×R → Rn represents the perturbation term so that for all i ∈ {1, ..., n}, hi(x, s, ε)
describes how species i converts into other species at a rate ε.

The perturbation parameter ε plays different roles depending on the interaction type considered between
species (typically, it can represent a mutation rate or a constant probability of mutation). Regardless of the
biological meaning of ε, it is relevant in our formulation as it will allow us to see (2.1) as a perturbation of
the chemostat system. Let us now introduce the following hypotheses on the data. Hereafter, |ξ| stands for
the euclidean norm of a vector ξ ∈ Rn.

(A1) for all i ∈ {1, ..., n}, µi is of class C1, non-decreasing, bounded over R+, and such that µi(0) = 0.

(A2) h is of class C1 and satisfies h(x, s, 0) = 0 for all (x, s) ∈ Rn+1. Moreover, it is with linear growth, i.e.,
for all ε ≥ 0 there is cε > 0 such that for all (x, s) ∈ Rn+1,

|h(x, s, ε)| ≤ cε
(
|x|+ 1

)
. (2.2)

(A3) for all i ∈ {1, ..., n} and all x ∈ Rn, if xi = 0, then for all (ε, s) ∈ R∗
+ × [0, sin], one has hi(x, s, ε) ≥ 0.

(A4) for every (x, s, ε) ∈ Rn × R× R+, one has
n∑

j=1

hj(x, s, ε) = 0.

Some comments on the preceding hypotheses are in order.

Remark 1. (i). Hypothesis (A1) is standard when considering chemostat type’s systems (see, e.g., [26]).
However, depending on the application model, other types of kinetics are relevant such as Haldane4 type’s
kinetics which are non-monotonic or kinetics with a more complicated behavior such as in [6]. In this paper,
we shall restrict our attention to monotone kinetics only.
(ii). Supposing that h vanishes for ε = 0 (see (A2)) allows us to retrieve the chemostat system

ẋi = µi(s)xi − uxi, 1 ≤ i ≤ n

ṡ = −
n∑

j=1

µj(s)xj

Yj
+ u(sin − s),

(2.3)

4Such kinetics allow to take into account inhibition through substrate.
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for ε = 0. This hypothesis is crucial in our study in order to investigate global stability properties of (2.1).
Note that (2.2) is a standard hypothesis in the theory of ordinary differential equations in order to prevent the
blow-up phenomenon of solutions.
(iii). Hypothesis (A3) is essential for biological purpose to guarantee that all species remain non-negative over
time and Hypothesis (A4) implies that mass is conserved during the exchange process between species (this
property is crucial in our study).
(iv). In contrast with the chemostat system, the wash-out point Ewo := (0Rn , sin) may not necessarily be an
equilibrium point of (2.1) as long as h(0, sin, ε) ̸= 0.

The next lemma is a preliminary result in order to introduce the invariant domain that will be considered
throughout the paper.

Lemma 2.1. Suppose that (A1)-(A2)-(A3) are satisfied. Then, for every (x0, s0) ∈ Rn
+× [0, sin] and for every

(ε, u) ∈ R+ × R+, there is a unique solution of (2.1) defined over R+. Moreover, Rn
+ × [0, sin] is forward

invariant.

Proof. The existence of a unique solution to (2.1) essentially follows from (2.2) which guarantees that solution
exist over R+. The fact that Rn

+ × [0, sin] is invariant follows from (A3).

Observe that ṡ|s=0
= usin. Hence, it is readily seen that s(t) > 0 for all time t > 0 (even if s(0) = 0)

provided that u > 0. Regarding the positivity of the variables xi, obtaining such a property naturally depends
on the assumptions made about the function h. We shall see in Section 4 that the system satisfies xi(t) > 0
for all time t > 0 and all 1 ≤ i ≤ n as soon as x(0) ̸= 0 in two specific cases regarding the perturbation term.

We now turn to the definition of the invariant set ∆ for (2.1). Set Y+ := max
{
Y1, . . . , Yn

}
and let ∆ be

defined as

∆ :=

{
(x, s) ∈ Rn

+ × [0, sin] ; s+
1

Y+

n∑
j=1

xj ≤ sin

}
. (2.4)

This set will play a significant role in the remainder of the paper (in particular to state our global stability
results). Hereafter, we say that a set is (forward) invariant for a dynamical system if every solution starting
in this set at time t = 0 remains in it for all time t ≥ 0. We say that it is attracting if the distance between
this set and solutions starting outside the set at time t = 0 converge to zero as t → +∞.

Proposition 2.1. If hypotheses (A1)-(A2)-(A3)-(A4) are satisfied, then ∆ is an invariant and attractive
manifold for solutions of (2.1). Moreover, for every (x0, s0) ∈ Rn

+× [0, sin], either the unique solution to (2.1)
such that (x(0), s(0)) = (x0, s0) satisfies b(t) → sin as t → +∞ or it enters into ∆ in a finite time.

Proof. Let us set b := s+ 1
Y+

∑n
j=1 xj . We have

ḃ =

n∑
j=1

(
1

Y+
− 1

Yj

)
µj(s)xj + u (sin − b) ≤ u(sin − b),

from which we deduce that for every time t ≥ 0, one has

b(t) ≤ sin +
(
b(0)− sin

)
e−ut, (2.5)

implying that ∆ is invariant through (2.1). Take an initial condition (x(0), s(0)) ∈ (Rn
+ × [0, sin])\∆ and let

(x(·), s(·)) be the unique solution to (2.1) starting at t = 0 from this initial condition. If there is a time t′ > 0
such that b(t′) ≤ sin, we obtain using a similar argumentation as (2.5) that b(t) ≤ sin for all time t ≥ t′ which
shows that the distance of the solution to ∆ is zero for all t ≥ t′. On the other hand, if for every t ≥ 0, one
has b(t) > sin, we obtain that

sin < b(t) ≤ sin +
(
b(0)− sin

)
e−ut,

for every t ≥ 0. Hence, the distance of the solution to ∆ (that is proportional to b(t) − sin since the active
part of boundary of ∆ is the hyperplane of equation s + 1

Y+

∑n
j=1 xj = sin in Rn

+ × [0, sin]) goes to zero as
t → +∞. To prove the rest of the proposition, suppose that t 7→ b(t) does not converge to sin as t → +∞.
Then, using (2.5), there are κ > 0 and k0 ∈ N such that for all k ≥ k0, one has b(tk) ≤ sin− ε which is enough
for proving that the trajectory has entered into ∆ in finite time. This ends the proof.
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Remark 2. (i). In Lemma 2.1 and in Proposition 2.1, (A1) can be weakened supposing that µi is only non-
negative, continuous and null at s = 0, but, as said in Remark 1, we shall not consider non-monotonic kinetics
in this paper.
(ii) In the case of the chemostat system, it is relevant to introduce b0 := s+

∑n
j=1 xj so that changing xi into

xi/Yi if necessary, b0 satisfies ḃ0 = u(sin−b0). In that case, ∆0 := {(x, s) ∈ Rn
+× [0, sin] ;

∑n
j=1 xj+s = sin}

is an invariant and attractive manifold of (2.3), but, solutions to (2.3) starting outside this set never enter
into ∆0 in a finite time. A key difference that arises whenever ε > 0 is that solutions to (2.1) with ε > 0
may enter the region ∆ in finite time, provided that the function b does not converge to sin. We highlight this
property numerically in Section 4 (see Fig. 4 and Fig. 5).

The analysis of stability properties of (2.1) when the perturbation parameter tends to zero is closely related
to properties of the chemostat system (2.3) corresponding to (2.1) for ε = 0, that is why, we wish now to recall
the competitive exclusion principle (see, e.g., [16, 26]). In what follows, we set

φ(u) := min
{
µ−1
i (u) ; i = 1, ..., n

}
∈ [0,+∞].

Note that φ(u) can be equal to +∞ if u is greater than maxs∈[0,sin] µi(s) for every 1 ≤ i ≤ n. For ε = 0, (2.1)
has at most exactly n+ 1 steady-states (depending on the value of u), namely,

Ei := (0, ..., 0, 1− µ−1
i (u), 0, ..., 0, µ−1

i (u)) ∈ Rn+1, 1 ≤ i ≤ n,

together with Ewo. The CEP can be formulated as follows.

Theorem 2.1. Suppose that (A1) is fulfilled and that there is a unique i∗ ∈ {1, . . . , n} such that µ−1
i∗ (u) =

φ(u) < +∞. Then, for every initial condition (x0, s0) ∈ Rn
+× [0, sin] such that xi∗(0) > 0, the unique solution

of (2.1) for ε = 0 starting at (x0, s0) at time 0, converges to (x∗, s∗) = Ei∗ , and this steady state is locally
exponentially stable. If φ(u) = +∞, then, for every initial condition (x0, s0) ∈ Rn

+ × [0, 1], the unique solution
to (2.1) with ε = 0 starting at (x0, s0) at time 0 converges to Ewo.

As it is well-known the behavior of a perturbed dynamical system may slightly differ from the behavior
of the non-perturbed system. In our setting and as far as we know, the available methods to prove the CEP
(such as Lyapunov functions) cannot be straightforwardly transferred to study (2.1). That is why, we will
enuntiate in the next section intermediate results before stating the main theorem about the behavior of (2.1).

2.2 Global stability of the perturbed chemostat system
In this section, we prove Theorem 2.2 which is our main result. We start by recalling a result by Smith and
Waltman from [27], but adapted to our context (Proposition 2.2) and we also state a weaker version of the
Malkin-Gorshin Theorem5 to be found in [23] (Proposition 2.3). Doing so, let us consider a general Cauchy
problem {

ẏ = f(y, ε),
y(0) = y0,

(2.6)

where f : V × R → Rm is of class C1, V ⊂ Rm is such that Int(V) ̸= ∅6, y0 ∈ V, and ε ∈ R is a parameter.
We suppose that for every y0 ∈ Rm, the unique solution to (2.6) denoted by y(·, y0, ε) is defined over R+ and
that V is forward invariant by (2.6). The next proposition is a slight adaptation of [27, Corollary 2.3].

Proposition 2.2. Let U be a subset of Rm such that U ⊂ V and Int(U) ̸= ∅ Suppose that there is y∗ ∈ Int(U)
such that f(y∗, 0) = 0, that all eigenvalues of Dyf(y

∗, 0) have negative real part, and that y∗ is attracting7 for
solutions of (2.6) in U with ε = 0. Moreover, assume that the following hypothesis is fulfilled:

(H1) There exist a compact set C ⊂ U and ε̄ > 0 such that for each ε ∈ [0, ε̄] and for each y0 ∈ U , the unique
solution to (2.6) reaches C meaning that y(t, y0, ε) ∈ C for every t large enough.

5This result is demonstrated in [23] in the context of B-stability. However, we deal here with asymptotic stability which is a
stronger notion but sufficient for our purpose.

6Throughout the paper, the interior of a set A ⊂ Rm is denoted by Int(A).
7This means that y(t, y0, 0) → y∗ for every y0 ∈ U as t → +∞.
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Then, there are ε̄0 ∈ (0, ε̄) and a unique point ŷ(ε) ∈ U such that for every ε ∈ [0, ε̄0], one has f(ŷ(ε), ε) = 0
and y(t, y0, ε) → ŷ(ε) for all y0 ∈ U as t → +∞.

The only difference with [27, Corollary 2.3] is that U is not supposed to be invariant but rather contained
in another set V which is invariant. For this reason, we propose a proof of this proposition in the Appendix
following [27] (also, the proof is made in the context of ordinary differential equations and not in an abstract
setting). Finally, we would like to insist on the fact that the point y∗ may belong to the boundary of the set
U if the dynamics f can be extended to an open set around y∗ whose intersection with U is convex (as it is
mentioned in [27, Remark 2.1]).

We now turn to the Malkin-Gorshin Theorem [23, Theorem 4] which is part of the folklore in the theory of
dynamical systems involving regular perturbations. A version of this result involving the concept of B-stability
can be found in [23]. We provide below a version of this result involving the (stronger) concept of asymptotic
stability which will be enough for our purpose.

Proposition 2.3. Let y∗ ∈ Rm be a steady-state of (2.6) for ε = 0. Suppose that the Jacobian matrix of f
w.r.t. y at (y∗, 0) is Hurwitz, and that y∗ is attracting for solutions of (2.6) with ε = 0 and initial condition
in a non-empty compact set C ⊆ Rm. Then, for every δ > 0, there is ε̄ > 0 such that for all ε ∈ [0, ε̄] and all
y0 ∈ C,

sup
t≥0

|y(t, y0, ε)− y(t, y0, 0)| ≤ δ.

The proof of this proposition (using local stability) can be found in the Appendix. Let us emphasize the
fact that the parameter δ depends on a compact set C for initial conditions (in contrast with [23, Theorem 4]
which involves a single initial condition). In our approach, considering such a compact set will be needed to
prove Theorem 2.2 whose proof relies on the combination of Proposition 2.2 and Proposition 2.3 in the setting
of (2.1). More precisely, the result of Proposition 2.3 will allow us to verify (H1) in Proposition 2.2.

Coming back to (2.1), for every 1 ≤ i ≤ n and for every α ∈ (0, sin), we define a non-empty compact
subset ∆i,α of Rn as

∆i,α :=
{
(x, s) ∈ ∆ ; xi ≥ α

}
,

so that for a fixed index 1 ≤ i ≤ n, the union of these sets is associated with ∆ through the following
relationship: ⋃

α>0

∆i,α = ∆\{(x, s) ∈ Rn
+ × [0, sin] ; xi = 0}.

Our main result states that (2.1) has a steady-state (apart the wash-out) that is attracting in subsets ∆i∗,α

provided that the perturbation parameter is small enough (where given a value of the dilution rate u, i∗

represents the index of the species that dominates the competition in Theorem 2.1).

Theorem 2.2. Suppose that hypotheses (A1)-(A2)-(A3)-(A4) are fulfilled. Let u > 0 be such that there is a
unique i∗ ∈ {1, ..., n} such that µ−1

i∗ (u) = φ(u) < +∞ and let α ∈ (0, sin−φ(u)). Then, there is εu,α > 0 such
that for every ε ∈ [0, εu,α], (2.1) has a steady-state (xε,u, sε,u) ∈ ∆i∗,α apart the washout. Moreover, for every
(x0, s0) ∈ ∆i∗,α, the unique solution to (2.1) starting at (x0, s0) at time t = 0, converges to a (xε,u, sε,u).

Proof. Let f : Rn
+ × [0, sin]× R+ → Rn+1 be defined as

f(y, ε) :=


(µ1(s)− u)x1 + h1(x, s, ε)

...
(µn(s)− u)xn + hn(x, s, ε)

−
∑n

j=1
µj(s)xj

Yj
+ u(sin − s)

 (2.7)

for every y := (x, s) ∈ Rn
+ × [0, sin] and all ε ≥ 0. Set y∗ := (x∗, s∗) where (x∗, s∗) = Ei∗ so that f(y∗, 0) = 0

and recall that y∗i∗ = sin − φ(u), hence, 0 < α < y∗i∗ . For every y0 := (x0, s0) ∈ Rn
+ × [0, sin], we denote

by y(·, y0, ε) the unique solution to (2.1) starting at y0 at time t = 0. In virtue of Theorem 2.1, we have
y(t, y0, 0) → y∗ for every y0 ∈ Rn

+ × [0, sin] whose i∗-th component is positive at time t = 0. It follows that
there is an instant t0 ≥ 0 (that depends on the initial condition y0) such that

yi∗(t, y0, 0) ≥ y∗i∗ − η,
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for every t ≥ t0 where η > 0 is such that y∗i∗ − η > α (η does not depend on y0). Now, the Jacobian matrix of
f w.r.t. y at (y∗, 0) is just the Jacobian matrix of the chemostat system at the globally asymptotically stable
steady-state Ei∗ . Hence, it is of Hurwitz type (this property is standard, see, e.g., [16, 26]). Moreover, for
ε = 0, the CEP implies that y∗ is attracting for solutions to (2.1) (with ε = 0) and starting in ∆i∗,α at time
t = 0. We are now in a position to apply Proposition 2.3 to f at the point (y∗, 0) with C = ∆i∗,α. Take δ > 0
such that δ < y∗i∗ − η− α. It follows that there is ε̄ > 0 such that for every ε ∈ [0, ε̄], for every y0 ∈ C, and for
every t ≥ 0,

|yi∗(t, y0, 0)− yi∗(t, y0, ε)| ≤ δ.

Now, take y0 ∈ C. We deduce that there is t0 ≥ 0 (as before, depending on y0) such that for every t ≥ t0,

yi∗(t, y0, ε) ≥ yi∗(t, y0, 0)− δ ≥ y∗i∗ − η − δ ≥ α.

Therefore, y(t, y0, ε) ∈ ∆i∗,α for every ε ∈ [0, ε̄], every y0 ∈ ∆i∗,α, and every t ≥ t0. We have just checked
hypothesis (H1) of Proposition 2.2 with U = C (remind that C = ∆i∗,α) and V = Rn

+. Note that the
point y∗ lies on the boundary of Rn

+ × (0, sin) since y∗i = 0 for every 1 ≤ i ≤ n such that i ̸= i∗ and
that y∗n+1 = s∗ = φ(u) ∈ (0, sin). But, thanks to the expression defining f as given in (2.7), f can be
straightforwardly extended to a new function (still denoted by f) defined over Rn × [0, sin] × R+. Hence,
we are in a position to apply Proposition 2.2 (see [27, Remark 2.1]). It follows that there exists ε̄0 ∈ (0, ε̄)
such that for every ε ∈ [0, ε̄0], there is a unique point ŷ(ε) ∈ ∆i∗,α satisfying f(ŷ(ε), ε) = 0 and such that
y(t, y0, ε)

t→+∞−→ ŷ(ε) for every y0 ∈ ∆i∗,α. We conclude by taking εu,α := ε̄0 and (xε,u, sε,u) := ŷ(ε) which, by
continuity w.r.t. ε, is not the wash-out.

The previous result asserts a global stability type property for (2.1) once the dilution rate u > 0 and the
corresponding subset ∆i∗,α have been chosen where i∗ is such that µ−1

i∗ (u) = φ(u) < +∞ and α ≤ sin −φ(u).
It is also natural to ask about the behavior of (2.1) if instead, we are given some initial condition in ∆. This
question can easily be answered as follows.

Corollary 2.1. Suppose that the hypotheses of Theorem 2.2 are fulfilled and let y0 := (x0, s0) ∈ ∆ be given
such that the i∗-th coordinate of x0 is positive. Then, there is εu,y0

such that for every 0 ≤ ε ≤ εu,y0
, the

unique solution y(·) to (2.1) starting at y0 at time t = 0 converges to (xε,u, sε,u). Furthermore, every solution
ỹ to (2.1) such that ỹi∗(0) ≥ yi∗(0) also converges to (xε,u, sε,u).

Proof. Let α > 0 be such that α ≤ min(yi∗(0), sin − φ(u)). It follows that y0 belongs to ∆i∗,α and so is ỹ(0).
The result then follows from Theorem 2.2.

Remark 3. (i). Theorem 2.2 sets up the existence of a perturbed equilibrium point (xε,u, sε,u) ̸= Ewo together
with its stability in ∆i∗,α. It could be interesting to find general conditions on h that guarantee that the
perturbed steady-state is such that all species are present asymptotically (i.e., xε,u

i > 0 for all i). In the next
section, we answer to this question in two particular cases of the perturbation term h.
(ii). The reasoning as deployed in the proof of Theorem 2.2 does not allow us to obtain global stability of the
steady-state in ∆\{0Rn} for a fixed ε > 0. Indeed, for every initial condition x(0) ∈ ∆ such that xi∗(0) = 0,
the system (2.1) with ε = 0 does not converge to Ei∗ (but to some other steady state, thanks to the CEP).
It follows that for ε = 0, the time to reach E∗

i from an initial condition in ∆ such that xi∗(0) > 0 and
xi∗(0) → 0 goes to infinity. This prevents us to apply Proposition 2.3 that requires a compact set C for initial
conditions x(0) in order to uniformly control the distance between perturbed and non-perturbed trajectories for
all x(0) ∈ C. However, numerical simulations (as performed in Section 4) indicate that global stability of the
perturbed system (for a fixed ε > 0) should be verified in ∆\{0Rn} in two particular cases for the perturbation
term. Proving this property for a general function h seems rather a delicate question in general and it could
be first addressed when the perturbation term is as in Section 4.

3 Analysis of steady-states in the case of a linear exchange term
The objective of this section is to study properties of steady-states of (2.1) when the interaction term is linear
w.r.t. x and the perturbation parameter enters linearly into the system, that is,

h(x, s, ε) = εT (s)x, (3.1)
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for all (x, s, ε) ∈ Rn+2 where T : R → Rn×n is continuous. Considering such a linear coupling w.r.t. x is
motivated by several application models, see, e.g., [4, 10, 11]. The fact that the interaction term is now more
specific than in the preceding section will allow us to give additional properties concerning the steady-state as
given in Theorem 2.2. When h is given by (3.1), (2.1) can be equivalently rewritten as :

ẋ = B(s, u, ε)x, 1 ≤ i ≤ n,

ṡ = −
n∑

j=1

µj(s)xj

Yj
+ u(sin − s),

(3.2)

where the matrix B(s, u, ε) ∈ Rn×n is defined as

B(s, u, ε) := D(s)− uIn + εT (s).

If a pair (x, s) ∈ Rn
+ × [0, sin] is a steady state of (3.2), then, we necessarily have

B(s, u, ε)x = 0,
n∑

j=1

µj(s)xj

Yj
= u(sin − s). (3.3)

As a consequence, Ewo is always a steady-state of (3.2). On the other hand, if a steady-state of (3.2) is
such that x is non-null, then, x is necessarily an eigenvector associated with the 0 eigenvalue of the matrix
B(s, u, ε). To study the occurence of such a steady-state, let us recall classical definitions related to the
Perron-Frobenius Theorem. A matrix8 A ∈ Rn×n is said to be essentially non-negative if ai,j ≥ 0, for all
i ̸= j and irreducible if there are r > 0 and k ∈ N∗ such that all entries of (A+ rIn)

k are positive. Moreover
λ(A) := max{Re(λ) ; det(A− λIn) = 0} denotes the largest real part of the eigenvalues of A. When dealing
with λ(A), we shall also refer to the Perron root of A. We introduce now additionnal hypotheses related to
T (·).

(A5) For all s ∈ [0, sin], T (s) is essentially non-negative, irreducible and
∑n

j=1(T (s)x)j = 0 for all x ∈ Rn ;

(A6) For all 1 ≤ i, j ≤ n such that i ̸= j, the function s 7→ ti,j(s) is increasing and there is ε̄ > 0 such that
for all 1 ≤ i ≤ n, s 7→ µi(s) + εti,i(s) is also increasing for every ε ∈ [0, ε̄].

For future reference, note that in (A6), s 7→ µi(s) + εti,i(s) corresponds to the i-th entry of D(s) + εT (s).
From (A5) we can prove the following property related to T (·).

Property 3.1. Suppose that (A5) is satisfied. Then, one has λ(T (s)) = 0 for every s ∈ [0, sin].

Proof. Given 1 ≤ i ≤ n one has
∑n

j=1 ti,j(s) =
∑n

j=1

(
T (s)ei

)
j
= 0, where ei is the ith vector of the canonical

basis of Rn. Now, the Perron-Frobenius Theorem implies that

0 = min
1≤i≤n

{ n∑
j=1

ti,j(s)

}
≤ λ

(
T (s)⊤

)
≤ max

1≤i≤n

{ n∑
j=1

ti,j(s)

}
= 0,

whence the result (using that any matrix and its transpose have same eigenvalues).

For every ε ≥ 0, we define the critical dilution rate as

uc(ε) := λ
(
D(sin) + εT (sin)

)
. (3.4)

It will allow us to determine if there is another steady-state than the washout depending on the value of u
w.r.t. uc(ε). The dependence of the matrix T on s complicates the approach compared to the one presented
in [4]. Therefore, before delving into this issue, we will first recall two results from [1] related to :

• the convexity of the largest real part of the sum of two matrices9 (Theorem 3.1 below) ;
8As usual, matrices are named using capital letters and coefficients are represented by lower case letters.
9This result is known as Cohen’s convexity Theorem, which pertains to the spectral bound of essentially nonnegative matrices

in relation to their diagonal elements.
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• properties of a function of two variables that is convex in the second variable (Lemma 3.1 below).

Theorem 3.1 ([1], Theorem 2). If D ∈ Rn×n is a diagonal matrix and A ∈ Rn×n an essentially nonnegative
matrix, then, λ(A+D) is a convex function of D.

Lemma 3.1 ([1], Lemma 1 (3)). If f : R∗
+ × R+ → R, (a, b) 7→ f(a, b) is a function satisfying:

1. for all (a, b) ∈ R∗
+ × R+ and all β ∈ R∗

+, f(βa, βb) = βf(a, b),

2. for all a ∈ R∗
+, b 7→ f(a, b) is convex over R+,

then, for all (a, b) ∈ R∗
+×R+, one has ∂f

∂a (a, b) ≤ f(1, 0) except possibly at a countable number of points where
the one-sided derivatives10 of f exist but differ, and, at these points, one has ∂f

∂a (a
−, b) < ∂f

∂a (a
+, b) ≤ f(1, 0).

The next proposition establishes properties of the matrix B and of the critical dilution rate uc extending
[4, Lemma 3.1] to the case of a non-constant and non-necessarily symmetric matrix T (·), and whenever yield
coefficients are non-necessarily equal. It is also useful for proving Proposition 3.2.

Proposition 3.1. Let (ε, u) ∈ [0, ε̄]× R∗
+ and suppose that (A1), (A5), and (A6) hold true.

(i). One has λ(B(0, u, ε)) < 0 and s 7→ λ(B(s, u, ε)) is increasing over [0, sin].
(ii). The function uc(·) is non-increasing over R+ and

uc(0) = µmax ; uc(ε)
ε→+∞−→ µ̂,

where µmax := max
i=1,...,n

µi(sin), µ̂ := w⊤D(sin)v, and v, w ∈ Rn are uniquely defined by

T (sin)v = 0 ; w⊤T (sin) = 0 ; w⊤v = 1. (3.5)

Proof. Let us prove (i). Doing so, let ε ∈ [0, ε̄] and u > 0. One has B(0, u, ε) = −uIn + εT (0), thus,
λ(B(0, u, ε)) = −u + ελ(T (0)) = −u < 0 (thanks to (A5)). From the Perron Frobenius Theorem, for every
s ∈ [0, sin], λ(B(s, u, ε)) exists and is of multiplicity one, hence, we can uniquely define v(s) as the uni-
tary associated eigenvector (which is thus with positive coordinates). Now, given s < s′, (A6) implies that
B(s, u, ε) < B(s′, u, ε) entry-wise. Thus, by the Collatz-Wielandt formula11 and using (A6), we deduce that

λ(B(s′, u, ε)) = sup
x∈Rn

+\{0}
min

1≤i≤n

(B(s′, u, ε)x)i
xi

≥ min
1≤i≤n

(B(s′, u, ε)v(s))i
vi(s)

> min
1≤i≤n

(B(s, u, ε)v(s))i
vi(s)

= λ(B(s, u, ε)),

which proves (i). To prove (ii), we adapt the proof of Proposition 3.5 in [4] using the aforementioned results to
the case where T depends on s. First, we can directly conclude from the CEP that uc(0) = µmax. Recall now
that for any essentially non-negative and irreducible matrix A, the Perron Frobenius Theorem ensures that
λ(A) is simple, hence, there is a neighborhood VA of A in Rn×n such that λ(B) is simple for every B ∈ VA.
Furthermore, the following (standard) result holds true (see, e.g., [12]) : the derivative of λ w.r.t. A, denoted
by DA

1 is given by DA
1 := wav

⊤
a , where va, wa ∈ Rn are uniquely defined by

(λ(A)In −A)va = 0, w⊤
a (λ(A)In −A) = 0 and w⊤

a va = 1.

Observe that T (sin) is essentially non-negative, irreducible and that λ(T (sin)) = 0. Thus, if v and w are given
by (3.5), one has D

T (sin)
1 = wv⊤. Next, let us set

f(a, b) := λ(aT (sin) + bD(sin))

for (a, b) ∈ R+ × R and let γ(a) := f(a, 1). When a ↓ 0, the Perron root λ(aD(sin) + T (sin)) is simple since
λ(T (sin)) is also simple, hence, γ is differentiable at a = 0 and using the chain rule formula, we get that

γ′(0) =
∑

1≤i,j≤n

(wv⊤)i,j D(sin)i,j = w⊤D(sin)v.

10The notation ∂f
∂a

(a±, b) stands for the right and left derivatives of f w.r.t. a at the point (a, b).
11For every essentially non-negative matrix A, λ(A) = supx∈Rn

+\{0} min1≤i≤n
(Ax)i
xi

.
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Thus, using a first-order expansion of γ around 0, we obtain as ε → +∞

uc(ε) = ελ

(
1

ε
D(sin) + T (sin)

)
= ε

(
λ(T (sin)) +

1

ε
w⊤D(sin)v +

1

ε
o
(
1
ε

))
= w⊤D(sin)v + o

(
1
ε

)
,

from which we deduce that uc(ε) → µ̂ as ε → +∞. To show that uc is non-increasing over R+, we use
Theorem 3.1 and Lemma 3.1. Let us first check that f fulfills the hypotheses of Lemma 3.1. Doing so, observe
that for β > 0, f satisfies f(βa, βb) = βf(a, b). Next, Theorem 3.1 implies that D 7→ λ(T (sin) +D(sin)) is
convex w.r.t. the diagonal matrix D given that by Assumption (A5), T (sin) is essentially non-negative. This
property implies that f is convex w.r.t. b, hence, we are in a position to apply Lemma 3.1. Furthermore,
from (A5), the matrix D(sin) + εT (sin) is essentially non-negative and irreducible for all ε > 0 so that
λ(D(sin)+ εT (sin)) is simple. It follows that ε 7→ uc(ε) is differentiable over R∗

+ and that for every ε > 0, one
has:

u′
c(ε) =

∂f

∂ε
(ε, 1) ≤ f(1, 0) = λ(T (sin)) = 0,

and therefore, uc is non-increasing12.

As a consequence, under (A1), (A5), and (A6), ε 7→ uc(ε) is one-to-one from R+ into (µ̂, µmax], hence its
reciprocal ξ : (µ̂, µmax] → R+ is defined as

ξ(u) :=

{
+∞ if u ∈ [0, µ̂],
u−1
c (u) if u ∈ (µ̂, µmax].

Our discussion on steady-states of (3.2) is divided into two cases, whether u ≥ uc(ε) or u < uc(ε). The next
proposition presents similarities with [4, Propostion 3.3], but, as explained before, yield coefficients are not
necessarily all equal to one (in contrast with [4]) and the perturbation matrix T (s) is now a function of s (and
non-necessarily symmetric). That is why we provide the proof in details.

Proposition 3.2. Suppose that (A1), (A5), (A6) hold true and that there is a unique i∗ ∈ {1, ..., n} such that
µ−1
i∗ (u) = φ(u) < +∞.

(i) If (ε, u) ∈ R∗
+ × R∗

+ is such that u ≥ uc(ε), then Ewo is the only equilibrium of (3.2) and it is stable. If
u > uc(ε), then Ewo is globally asymptotically stable.
(ii) If (ε, u) ∈ R∗

+×R∗
+ is such that u < uc(ε), then, there are only two equilibria for (3.2), namely the wash-out

Ewo that is unstable and a coexistence steady-state Eε,u := (xε,u, sε,u) ∈ (0,+∞)n × (0, sin). Additionally, for
every u ∈ (0, µmax), there is ε̃u ∈ (0, ξ(u)) such that for every ε ∈ (0, εu), Eε,u is locally asymptotically stable.

Proof. Assume that u ≥ uc(ε). We will see that Ewo is the only solution of (3.3). Suppose by contradiction
that there is (x̄, s̄) ∈ Rn

+ × [0, sin] satisfying (3.3) and such that x̄ ̸= 0Rn . Hence, we necessarily have s̄ < sin.
Moreover, x̄ is an eigenvector of B(s̄, u, ε) associated with the eigenvalue 0, implying that λ(B(s̄, u, ε)) ≥ 0.
On the other hand, by Lemma 3.1, s 7→ λ(B(s, u, ε)) is increasing, thus

λ(B(s̄, u, ε)) < λ(B(sin, u, ε)) = λ(D(sin) + εT (sin))− u ≤ λ(D(sin) + εT (sin))− uc(ε) = 0,

therefore we have a contradiction so that we must have (x̄, s̄) = Ewo. Let us now turn to the stability of Ewo.
We claim that for every η > 0 there is a δ > 0 such that |x(t)| < η and |s(t) − sin| < η for every solution
(x(t), s(t)) of (3.2) with |x(0)| ≤ δ and |sin − s(0)| ≤ δ. First, notice that ẋ = (D(s) − uIn + εT (s))x ≤
(D(sin)−uIn+ εT (sin))x, but λ(B(sin, u, ε)) ≤ 0, hence, we deduce that |x(t)| ≤ |x(0)| for every t ≥ 0. Now,
fix η > 0 and observe that

ṡ(t) ≥ −

 n∑
j=1

µj(s(t))
2

Y 2
j

1/2

|x(t)|+ u(sin − s(t)) ≥ −C|x(0)|+ u(sin − s(t)), t ≥ 0,

where C :=
(∑ µj(sin)

2

Y 2
j

)1/2. Let us set δ := min(η, uη/(2C)) and then take |x(0)| ≤ δ and |sin − s(0)| ≤ δ.
We deduce first that |x(t)| ≤ δ ≤ η for all t ≥ 0 and that if at some time t′ ≥ 0 we have s(t′) = sin − η, then

ṡ(t′) ≥ −uCη

2C
+ uη =

uη

2
> 0.

12We are ignoring the case there the one-side derivatives may differ on Lemma 3.1 as we know that uc is differentiable.

10



It follows that for all time t ≥ 0, one has s(t) ≥ sin − η which allows us to conclude on the stability of Ewo.
Finally, in the case where u > uc(ε), we have

d

dt
|x(t)|2 ≤ 2x(t)⊤B(sin, u, ε)x(t) ≤ 2x(t)⊤B(sin, u, ε)x(t).

Since λ(B(sin, u, ε)) < 0, we conclude that |x(t)| → 0 as t → +∞ and this ends up the proof of (i).
Suppose now that 0 < u < uc(ε) and let (x, s) be a steady-state of (3.2). If s = sin, then, we have x = 0.

We easily check that the Jacobian matrix of (3.2) at Ewo is a block matrix whose first block is B(sin, u, ε)
which is such that λ(B(sin, u, ε)) = uc(ε)−u > 0. It follows that Ewo is unstable, thus, s ∈ (0, sin). Thanks to
the Perron-Frobenius Theorem, x is an eigenvector associated with the zero eigenvalue of B(s, u, ε) (the largest
one), hence, it is with positive coordinates. The vector x is uniquely defined as follows. Since s 7→ λ(B(s, u, ε))
is continuous and increasing and using that λ(B(0, u, ε)) = −u < 0 and λ(B(sin, u, ε)) > 0, there is a unique
solution s := sε,u ∈ (0, sin) to the equation λ(B(s, u, ε)) = 0. Now, x is proportional to the Perron vector13
aε,u associated with the zero eigenalue of B(s, u, ε). Thus, there is a unique αε,u ∈ R such that x = αε,uaε,u

and from (3.3), we get that

αε,u :=
u(sin − sε,u)

τ
where τ :=

n∑
j=1

µj(s
ε,u)aε,uj

Yj
(3.6)

The vector xε,u := x is then uniquely defined. Now, it is well-known that for ε = 0, the Jacobian matrix of
(3.2) at the steady-state is a Hurwitz matrix (see, e.g., [16, 26]). The existence of ε̃u follows by continuity of
eigenvalues of a matrix w.r.t. parameters. This ends the proof.

Remark 4. The equilibrium (xε,u, sε,u) is called coexistence steady-state because one has xε,u
i > 0 for every

1 ≤ i ≤ n. Remind that sε,u is defined by λ(B(s, u, ε)) = 0 and that xε,u = αε,uaε,u where αε,u is defined
in (3.6) and aε,u is the (unitary) Perron vector associated with λ(B(s, u, ε)). Note that for an arbitrary pair
(ε, u) ∈ R∗

+ × [0, uc(ε)), it is not easy to show that the Jacobian matrix of (2.3) at this point is of Hurwitz
type (in order to show that this point is locally asymptotically stable). That is why, we have proceeded with the
proof of Proposition 3.2 using a continuity argumentation. It could be interesting to prove that Eε,u is always
locally asymptotically stable for every (ε, u) ∈ R∗

+ × [0, uc(ε)).

4 Numerical simulations
In this section, we provide a numerical analysis of (2.1), our goal being to confirm the theoretical study
conducted previously while highlighting other properties of the system numerically. This numerical study is
conducted for two types of linear perturbations w.r.t. x:

• Case 1 : h(x, s, ε) := εΘx where Θ ∈ Rn×n is a given symmetric matrix ;

• Case 2 : h(x, s, ε) := εT (s)x where for every s ∈ [0, sin], T (s) ∈ Rn×n is a given matrix involving the
kinetics µi and that is non-symmetric neither constant.

For case 1, we shall refer to the case with a constant perturbation matrix (or transition matrix) and for case 2,
we shall refer to a non-constant perturbation matrix (or transition matrix). The exact definition of Θ and T (s)
and the discussion of the corresponding dynamical system can be found in Section 4.1 and 4.2 respectively.
Section 4.3 presents numerical simulations of trajectories that are carried out with the SciPy library in Python
and more specifically using the function solve_ivp that solves numerically ordinary differential equations
using an explicit Runge-Kutta method of fifth order14. The number of grid points is around 400.

The parameters used for the numerical simulations are defined as follows. We assume that kinetics are of
Monod type, i.e., µi(s) =

ais
bi+s , where ai, bi are positive parameters for every 1 ≤ i ≤ n (it is easily seen that

(A1) is fulfilled). Figure 1 depicts the kinetics that have been chosen for the examples. The values of yield
coefficients and other coefficients can be found below.

13It is the unique unitary eigenvector in the eigenspace of B(s, u, ε) for the zero eigenvalue.
14The scripts for reproducing the numerical experiments of this paper can be found in the repository https://github.com/

calvarezlatuz/simulation_CM
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Figure 1: Plot of the kinetics µi(s) =
ais
bi+s of Monod type (coefficients are given in Table 1), i = 1, ..., 5.

In the numerical simulations of (2.1) related to its asymptotic behavior, note that we have chosen a constant
dilution rate value fixed to u = 0.4. From the CEP, we deduce that for ε = 0, then species 1 survives (see
Fig. 1) so that in Theorem 2.2, the index i∗ is such that i∗ = 1.

Species number i 1 2 3 4 5

Coefficients of µi

ai 0.84 0.46 0.34 0.48 0.76

bi 0.28 0.90 0.11 0.09 0.36

Yield coefficients Yi 1.00 1.50 2.00 2.50 3.00

Simulation parameters n = 5 sin = 1 u=0.4 ε=0.1 α=0.05

Table 1: Values of ai, bi, Yi, and simulation parameters.

4.1 Case 1 : perturbation term defined via a constant perturbation matrix
In this section, we suppose that h(x, s, ε) := εΘx where the matrix Θ is defined as

Θ :=


−1 1 0 · · · 0
1 −2 1 · · · 0
...

. . .
. . .

. . .
...

0 · · · 1 −2 1
0 · · · 0 1 −1


so that (2.1) rewrites 

ẋ = D(s)x− ux+ εΘx,

ṡ = −
n∑

j=1

µj(s)
xj

Yj
+ u(sin − s). (4.1)

To explain, the origin of Θ, let us examine the following population dynamics model structured around
a single phenotypic trait called z and where z is with values within a fixed segment I ⊂ R. It describes the
evolution of both species and substrate with concentrations x(t, z) and s(t, z) respectively:{

∂tx(t, z) = µ(s(t), z)x(t)− ux(t) + ∆zx(t, z),

ṡ(t) = −
∫
I

µ(s(t),z′)
Y (z′) + u(sin − s(t)),

(4.2)

where t > 0 and z ∈ I. In the preceding integro-differential system, µ denotes the kinetics (depending now
on the substrate and on the trait), ∆zx denotes the Laplacian of x w.r.t. z, and the function z 7→ Y (z)
replaces the yield coefficients Yi to be found in the finite-dimensional setting for the species. To ensure that
the integro-differential system (4.1) is well-posed, it is typically coupled with appropriate initial and boundary
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conditions, which help to guarantee both the uniqueness and existence of a solution to (4.1). Since our purpose
in this paper is to address stability properties for a finite number of species, we will not further discuss the
preceding system. We just want to point out that Θ can be seen discretization of the diffusion term ∆zx for
Neumann boundary conditions.
Note that the main difference between (4.1) and the model studied in [4] is that in the present setting, yield
coefficients are not all equal to one (in contrast with the model in [4]). Furthermore, it is important to note
that the dynamical system examined in [4] is only analyzed in the asymptotic case where u approaches zero.
In contrast, our study maintains u at a fixed constant value while ε is a small parameter (which seems more
reasonable from a practical viewpoint).
In order to apply the results of Section 3, we can easily check that Θ is symmetric, essentially non-negative,
irreducible and such that

∑n
j=1(Θx)j = 0 for every x ∈ Rn (see also [4]) so that (A5) is satisfied. Note that

(A6) is not satisfied because Θ does not depend on s, but, (A6) is not needed. Indeed, since the kinetics
are increasing, Lemma 3.1 still holds in this case, and so is Proposition 3.2 (see also [4]). We recall that
λ(Θ) = 0 (this follows from (A5) and Lemma 3.1) where we recall that λ(·) denotes the largest real part of
the eigenvalues of a matrix. Now given a pair (ε, u) ∈ R∗

+ × R∗
+ such that u < uc(ε), Section 3 ensures the

existence of a unique steady-state (xε,u, sε,u) of (4.1) apart the wash-out. We recall from [4] the following
property.

Property 4.1. For all (ε, u) ∈ R∗
+ × R+, every solution to (4.1) such that x(0) ∈ Rn

+ and x(0) ̸= 0 satisfies
xi(t) > 0 for every t > 0 and every 1 ≤ i ≤ n.

In view of the link between Θ and the discretization of the Laplacian operator, this property is in line with
the well-known regularizing effect of the heat equation.

4.2 Case 2 : perturbation term defined via a non-constant perturbation matrix
In this section, we suppose that h(x, s, ε) := εT (s)x where the matrix T (s) is defined as

−2µ1(s) µ2(s) 0 · · · µn(s)
µ1(s) −2µ2(s) µ3(s) · · · 0
0 µ2(s) −2µ3(s) · · · 0
...

...
...

. . . µn(s)
µ1(s) 0 0 µn−1(s) −2µn(s)


so that (2.1) rewrites 

ẋ = D(s)x− ux+ εT (s)x

ṡ = −
n∑

j=1

µj(s)
xj

Yj
+ u(sin − s), (4.3)

Observe that T (s) is a tridiagonal matrix that includes two coefficients located at the position (1, n) and
(n, 1). The origin of this matrix is derived from [9], which describes the effect of mutations within a cultivated
biomass, leading to the consideration of each species as a distinct gene mutation. For every s, the so-called
mutation matrix T (s) is derived considering a probability of mutation, leading that way to the above circulant
matrix. The system as described in (4.3) is also closely related to the one studied in [19, Section 4.2].

In order to apply the results of Section 3, it comes straightforward that for any s ∈ [0, sin], T (s) is essentially
non-negative, irreducible and such that

∑n
j=1(Θ(s)x)j = 0 for every x ∈ Rn so that (A5) is satisfied. Note

that (A6) is satisfied for any s ∈ (0, sin] and ε ∈ [0, 1). We recall that λ(T (s)) = 0 for s ∈ [0, sin] (this follows
from (A5) and Lemma 3.1). Now, given a pair (ε, u) ∈ R∗

+ × R∗
+ such that u < uc(ε), Section 3 ensures the

existence of a unique steady-state (xε,u, sε,u) of (4.3) apart the wash-out. Moreover, it is not difficult to see
that (4.3) also satisfies Property 4.1 (the proof of this property with T (s) in place of Θ is the same as in [4],
that is why, it is omitted).

4.3 Results for both examples
The numerical simulations on systems (4.1) and (4.3) are intended to highlight their various properties and
are organized as follows:
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• Fig. 2 and Fig. 3 depict solutions to (4.1) and to (4.3) respectively, for 100 random initial conditions
starting in (0, 10]n × [0, sin] ;

• Fig. 4 and Fig. 5 depict solutions to (4.1) and to (4.3) respectively, for 100 random initial conditions in
∆1,α (magenta) and also in ∆\∆1,α (orange) ;

• Fig. 6a and Fig. 6b represents an operating diagram (in the parameters ε and u) that depicts the
separation of the space (ε, u) into two distinct regions via the curve uc(ε) ;

• Fig. 7a and Fig. 7b depict the value of λ(Jε,u) in the parameter space (ε, u), the goal being to check that
the Jacobian matrix of (4.1) at (xε,u, sε,u), Jε,u, is of Hurwitz type for every (ε, u) ∈ R+ × (0, uc(ε)).
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Figure 2: Solutions to (4.1) for 100 randomly generated initial conditions in the set (0, 10]n × [0, sin]
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Figure 3: Solutions to (4.3) for 100 randomly generated initial conditions in the set (0, 10]n × [0, sin]

Comments on Fig. 2 & Fig. 3. This figure shows that all simulated trajectories converge to the coexistence
steady-state (xε,u, sε,u) even if initial conditions are taken outside the set ∆1,α.
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Figure 4: Solutions to (4.1) for 50 randomly generated initial conditions in the set ∆1,α (magenta) and 50
others in the set ∆\∆1,α (orange).
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Figure 5: Solutions to (4.3) for 50 randomly generated initial conditions in the set ∆1,α (magenta) and 50
others in the set ∆\∆1,α (orange).

Comments on Fig. 4 & Fig. 5. As expected, trajectories starting in ∆1,α converge to the coexistence
steady-state, but, this figure also shows that it is also the case if initial conditions are in ∆\∆1,α although it
is not predicted by Theorem 2.2.
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(a) Case 1: constant perturbation matrix.
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(b) Case 2: non-constant perturbation matrix.

Figure 6: Plot of ε 7→ uc(ε) in red. The color indicates the distance between the solution of (4.1) at time T =
200 and the wash-out for the fixed initial condition (0.15, 0.15, 0.15, 0.15, 0.15, 0.25) and for (ε, u) ∈ [0, 10]×[0, 0.8].

Comments on Fig. 6. As expected, ε 7→ uc(ε) decreases from µmax to µ̂. In both cases, we have µmax = 0.65
(see Proposition 3.1) whereas in the case of the constant matrix Θ, one has µ̂ = 0.44 and in the second case,
one has µ̂ = 0.39. This figure is related to Proposition 3.2 and can be seen as an operating diagram :

• above the red curve uc(·), the wash-out is the only steady-state and it is globally asymptotically stable ;

• on the red curve uc(·), the wash-out is the only steady-state and it is stable ;

• below the red curve uc(·), there are two steady-states, namely the wash-out (unstable) and the coexistence
steady-state. The behavior of the system toward the coexistence steady-state is described in Theorem 2.2.

The figure confirms that whenever u > uc(ε), then the system converges to the wash-out whereas this is not
the case whenever u < uc(ε).
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(a) Case 1: constant perturbation matrix.
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(b) Case 2: non-constant perturbation matrix.

Figure 7: Plot of λ(Jε,u) together with the curve ε 7→ uc(ε) for (ε, u) ∈ [0, 10]× [0, 0.7].

Comments on Fig. 7. The figure indicates for every (ε, u) ∈ [0, 5] × [0, 0.8] such that u < uc(ε) the value
of λ(Jε,u), the goal being to check numerically that Jε,u is of Hurwitz type so that (xε,u, sε,u) is locally
asymptotically stable. Note that (xε,u, sε,u) does not exist for u > uc(ε).

5 Conclusion and perspectives
In this paper, we have addressed the question of global stability of the chemostat system including a perturba-
tion term modeling any interaction type between species. In this context, the perturbation term depends on
the species concentration (to model interaction between them) and on a perturbation parameter quantifying
the amplitude of the perturbation w.r.t. the non-perturbed dynamics, but it may also depend on the substrate
concentration. We have demonstrated a global stability result toward an equilibrium point in a subset ∆i∗,α

of the invariant set (parametrized by a “small” parameter α) provided that the perturbation parameter ε is
small enough. Our methodology relies on the combination of the Malkin-Gorshin Theorem [23] and a result
by Smith and Waltman about the conservation of global attractivity when considering perturbed dynamical
systems [27]. The index i∗ corresponds to the species that dominates the competition in the chemostat system
(without any perturbation). Our result may not be sharp, however, as we noted, proving global stability
within the invariant set ∆ (let’s say, for ε small enough) is likely a challenging problem. This is because,
according to the competitive exclusion principle, solutions to the non-perturbed system do not converge to
the equilibrium point Ei∗ when the initial condition is on the boundary of ∆i∗,α, specifically when x∗

i (0) = 0.
Our approach has also shown that one can consider a large class of functions modeling the exchange term

although accurate properties of the equilibrium point as given by Theorem 2.2 can be obtained whenever the
perturbation term is linear w.r.t. species (but possibly non-linear with respect to the substrate). It is important
to note that the global stability result has extended the study conducted in [4], which examined stability as
the dilution rate approaches zero, to the case where the perturbation parameter tends to zero. When the
exchange term depends linearly on x, a numerical study of the system (asymptotic stability, operational
diagram, computation of the Jacobian, etc.) supported the theoretical study conducted in two sub-cases
(relying on whether the transition matrix depends on the substrate or not). These simulations highlight the
fact that as soon as the exchange term is linear, then the globally stable equilibrium is such that all species
are present asymptotically.

It would be interesting to prove that the coexistence steady-state is always locally asymptotically stable
(based on a thorough study of the Jacobian matrix which is a rank-one perturbation of a Hurwitz matrix).
Additionally, it would be valuable to show the existence of a uniform bound on the perturbation parameter
(i.e., independent of α), probably by using another approach (such as Lyapunov functions). This would allow
to obtain a global stability result for all initial conditions in ∆. Another perspective beyond this work would
be to carry out a similar analysis but in the case of a population dynamics model structured around a single
phenotypic trait which can be seen as if we were considering an infinite number of species in the system.

6 Appendix
Proof of Proposition 2.2 (based on [27, Corollary 2.3]). Hereafter, r(A) stands for the spectral radius of a
matrix A ∈ Rn×n.
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Step 1. Let s > 0 be fixed and recall that y∗ is a steady-state of (2.6) with ε = 0, i.e., f(y∗, 0) = 0. By using
standard results about the differentiability of the solution to an ordinary differential equation w.r.t. the initial
condition, we have

Dy0y(s, y
∗, 0) = esDyf(y

∗,0) 1̄, (6.1)

where 1̄ := (1, ..., 1) ∈ Rn. Since Dyf(y
∗, 0) is a Hurwitz matrix, we deduce that

r(Dy0y(s, y
∗, 0)) < 1.

Thus, there exist a norm | · | on Rn and a real ρ ∈ (0, 1) such that

|Dy0
y(s, y∗, 0)| < ρ,

see, e.g., [28] for the existence of such a norm. By using the continuity of Dy0y(s, ·, ·), there is (ε̄1, η) ∈
(0, ε̄)× R∗

+ (remind that ε̄ is defined in (H1)) such that15 B(y∗, η) ⊂ U and satisfying

∀y0 ∈ B(y∗, η), ∀ε ∈ [0, ε̄1], |Dy0y(s, y0, ε)| < ρ. (6.2)

By continuity of y(s, y∗, ·) w.r.t. ε, we can also find ε̄2 ∈ (0, ε̄1) such that

∀ε ∈ [0, ε̄2], |y(s, y∗, 0)− y(s, y∗, ε)| < (1− ρ)η. (6.3)

From (6.2), we deduce, thanks to the mean value inequality, that

∀(y0, y′0) ∈ B(y∗, η), ∀ε ∈ [0, ε̄2], |y(s, y0, ε)− y(s, y′0, ε)| ≤ ρ|y0 − y′0|. (6.4)

Combining (6.3) and (6.4) then yields

∀y0 ∈ B(y∗, η), ∀ε ∈ [0, ε̄2], |y(s, y0, ε)− y∗| ≤ |y(s, y0, ε)− y(s, y∗, ε)|+ |y(s, y∗, ε)− y(s, y∗, 0)|
< ρ|y0 − y∗|+ (1− ρ)η < η.

Therefore, for every ε ∈ [0, ε̄2], y0 7→ y(s, y0, ε) is a contraction mapping from B(y∗, η) into itself. Using the
uniform contraction mapping theorem, we deduce that there is a continuous mapping ŷ : [0, ε̄2] → B[y∗, η]
such that ŷ(0) = y∗ and such that for all ε ∈ [0, ε̄2], one has y(s, ŷ(ε), ε) = ŷ(ε). Furthermore, the fixed point
ŷ(ε) satisfies the following attractivity property:

∀(y0, ε) ∈ B(y∗, η)× [0, ε̄2], y(ns, y0, ε)
n→∞−→ ŷ(ε). (6.5)

Step 2. Our objective now is to prove the following:

∃ε̄3 ∈ (0, ε̄2), ∀(y0, ε) ∈ U × [0, ε̄3], y(ns, y0, ε)
n→∞−→ ŷ(ε), (6.6)

i.e., that (6.5) holds true for all y0 ∈ U (and not only over B(y∗, η)) up to reducing ε̄2. Doing so, we claim
the following:

∃ε̄3, ∀y0 ∈ C, ∀ε ∈ [0, ε̄3], ∃m ∈ N, y(ms, y0, ε) ∈ B(y∗, η). (6.7)

To prove this property, we proceed by contradiction. It follows that there is a sequence (εn) such that εn ↓ 0
and there is a sequence (yn) ∈ CN satisfying

∀m ∈ N, ∀n ∈ N∗, |y(ms, yn, εn)− y∗| ≥ η.

Since C is compact, we may assume that there is y0 ∈ C such that yn → y0 (extracting a sub-sequence if
necessary). Now, for ε = 0, y∗ is attracting in U , thus there is m ∈ N such that |y(ms, y0, 0) − y∗| < η

2 .
Moreover, y(ms, yn, εn) → y(ms, y0, 0) as n → +∞, hence, there is n ∈ N∗ such that

|y(ms, yn, εn)− y∗| ≤ |y(ms, yn, εn)− y(ms, y0, 0)|+ |y(ms, y0, 0)− y∗| < η,

which is a contradiction, hence (6.7) holds true. Let now (y0, ε) ∈ U×[0, ε̄3]. By (H1), there is T (y0, ε) ≥ 0 such
that for all t ≥ T (y0, ε) one has y(t, y0, ε) ∈ C. Take m1 ∈ N such that m1s > T (y0, ε) so that y(m1s, y0, ε) ∈ C.

15Here, B(x, r) stands for the open ball in Rn (for the norm | · |) of center r and of radius r > 0.
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From (6.7), there is m ∈ N such that y((m1 +m)s, y0, ε) ∈ B(y∗, η). We can now apply (6.5) which implies
(6.6) as wanted.

Step 3. Take y′0 ∈ U and let ε ∈ [0, ε̄3]. By (H1) there exists T (y′0, ε) ≥ 0 such that for every t ≥ T (y′0, ε), one
has y(t, y′0, ε) ∈ C. Thus, we obtain from (6.6) that

y(t+ ns, y′0, ε) = y(ns, y(t, y′0, ε), ε)
n→∞−→ ŷ(ε).

But (6.6) also implies that y(ns, y′0, ε) → ŷ(ε) as n → +∞, hence, since y(t, ·, ε) is continuous,

y(t+ ns, y′0, ε) = y(t, y(ns, y′0, ε), ε)
n→∞−→ y(t, ŷ(ε), ε).

We have thus proved that for every ε ∈ [0, ε̄3] and for every t ≥ T (y′0, ε), one has

y(t, ŷ(ε), ε) = ŷ(ε). (6.8)

We deduce that for ε ∈ [0, ε̄3], ŷ(ε) is a steady-state of (2.6), i.e., f(ŷ(ε), ε) = 0, so that by Cauchy-Lipschitz’s
Theorem, one has y(t, ŷ(ε), ε) = ŷ(ε) for every t ≥ 0. Finally, let us prove that for every y0 ∈ U and every
ε ∈ [0, ε̄3], one has y(t, y0, ε) → ŷ(ε) as t → +∞. By contradiction, suppose that there exist y0 ∈ U , ε ∈ [0, ε̄3],
ν > 0, and (tn) with tn → +∞ such that

∀n ∈ N, |y(tn, y0, ε)− ŷ(ε)| ≥ ν.

Let us write tn = kns + τn where kn ∈ N and τn ∈ [0, s]. Since (τn) is bounded, there is τ ∈ [0, s] such that,
up to a sub-sequence, τn → τ ∈

[
0, s]. By using (6.6) and the continuity of y(·, ·, ε), we obtain

y(tn, y0, ε) = y(τn, y(kns, y0, ε), ε)
n→∞−→ y(τ, ŷ(ε), ε) = ŷ(ε),

where the last equality follows from the fact that ŷ(ε) is a steady-state of (2.6). Hence, we have a contradiction.
We have thus proved that for all y0 ∈ U and for all ε ∈ [0, ε̄3], y(t, y0, ε) → ŷ(ε) as t → +∞ which proves the
desired result (taking ε̄0 := ε̄3). □

Proof of Proposition 2.3. We recall that the Euclidean norm of ξ ∈ Rn is denoted by |ξ|. Hereafter, B(x, r)
stands for the open ball in Rn (for the Euclidean norm) of center x and of radius r > 0. We start by proving
the following property:

∀δ > 0, ∃ε̄ > 0, ∀ε ∈ [0, ε̄], ∀y0 ∈ C, ∀t ≥ 0, |y(t, y0, ε)− y(t, y0, 0)| ≤ δ. (6.9)

Let then δ > 0 be fixed. First, recall that Dyf(y
∗, 0) is a Hurwitz matrix, hence y∗ is exponentially stable for

ε = 0. Since exponential stability implies B-stability (see [23]), Theorem 4 in [23] implies that there is ε1 > 0
such that for all ε ∈ [0, ε1], one has

∀y′ ∈ B(y∗, ε1), ∀t ≥ 0, y(t, y′, ε) ∈ B(y∗, δ
2 ). (6.10)

Observe that ε1 ≤ δ/2, namely, because for any initial condition y′ ∈ B(y∗, ε1), one has y(0, y′, ε1) = y′ ∈
B(y∗, δ/2) from (6.10). Second, we claim that t 7→ y(t, y0, 0) uniformly converges over C to y∗ as t → +∞. This
result is standard and it follows by combining the local stability property of y∗ together with the compactness
of C and the continuity of an ordinary differential equation w.r.t. initial conditions (that is why, we omit the
details). Applying this property then implies

∃T > 0, ∀t ≥ T, ∀y0 ∈ C, y(t, y0, 0) ∈ B(y∗, ε1
2 ). (6.11)

Using the continuity of solutions to an ordinary differential equation w.r.t. a parameter, we get

∃ε2 > 0, ∀ε ∈ [0, ε2], ∀t ∈ [0, T ], ∀y0 ∈ C, |y(t, y0, ε)− y(t, y0, 0)| <
ε1
2
. (6.12)

Then, combining (6.11) and (6.12) yields

∀ε ∈ [0, ε2], ∀y0 ∈ C, |y(T, y0, ε)− y∗| ≤ ε1,
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hence, for every y0 ∈ C and for every ε ∈ [0, ε2], one has y(T, y0, ε) ∈ B(y∗, ε1). Set ε3 := min(ε1, ε2) and let
us given ε ∈ [0, ε3] and y0 ∈ C. Applying (6.10) with y′ := y(T, y0, ε) yields

∀t ≥ T, y(t, y0, ε) = y(t− T, y(T, y0, ε), ε) ∈ B(y∗, δ
2 ),

This, together with (6.11) implies that :

∀t ≥ T, |y(t, y0, ε)− y(t, y0, 0)| ≤ |y(t, y0, ε)− y∗|+ |y(t, y0, 0)− y∗| ≤ δ

2
+

ε1
2

≤ δ,

since ε1 ≤ δ. Finally, (6.12) implies that

∀t ∈ [0, T ], |y(t, y0, ε)− y(t, y0, 0)| < δ.

We can then conclude that:

∀ε ∈ [0, ε3], ∀y0 ∈ C, ∀t ≥ 0, |y(t, y0, ε)− y(t, y0, 0)| < δ.

This ends up the proof of the proposition setting ε̄ := ε3. □
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