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A B S T R A C T

The combined application of direct current (DC) resistivity and induced polarization (IP) methods, referred to as 
combined DCIP method, has gained popularity for characterizing the critical zone dynamic processes such as 
dense non-aqueous phase liquids (DNAPLs) spreading at contaminated sites. Large-scale DCIP surveys typically 
require considerable durations, necessitating optimized survey designs to enhance survey resolution while 
controlling time and labor costs. However, to date, approaches to optimize geoelectrical survey design have 
focused solely on DC applications, and the efficiency of optimized survey designs for combined DCIP is yet to be 
investigated. Moreover, as subsurface heterogeneity would impact the geophysical observations, most field-scale 
numerical DCIP studies have still been conducted at artificial sites that lacked realistic aquifer heterogeneity, 
which could affect the validity of the DCIP survey evaluations. In this work, a virtual geoenvironmental field site 
based on high-resolution real aquifer analog was created to simulate a DNAPL evolution scenario with simul
taneous monitoring by DCIP survey, employing both the optimized survey design and popular non-optimized 
survey designs (Wenner, Wenner-Schlumberger, Dipole-Dipole arrays). Results show that the optimized survey 
with prior information improves the monitoring accuracy of DNAPL source zone (SZ) by 8 to 19 % with respect to 
different DCIP characteristics (conductivity, chargeability, normalized chargeability, and relaxation time). 
Another ideal numerical test indicates that the optimized survey shows up to an 83 % reduction in measurement 
time compared to the conventional survey, while maintaining the same subsurface image resolution. Addition
ally, the optimized surveys designed without or with limited prior information were also shown to be more 
efficient than conventional survey for imaging the entire subsurface space. The findings in this study highlight 
the immense potential of optimized survey design methods for enhancing the efficiency of DCIP surveys on 
subsurface contaminants and hydrological processes.

1. Introduction

DNAPL contamination in groundwater poses a significant environ
mental threat (Kang et al., 2020; National Research Council, 2013). 
Once released to the subsurface, free-phase DNAPL tends to persist as 
disconnected residual ganglia or pools under the control of gravity and 
capillary force (Dekker and Abriola, 2000; Al-Raoush, 2009). Due to 
their low solubility and high resistance to degradation, DNAPL SZs have 
the potential to release pollutants persistently over many decades 
(Moretti, 2005). The dissolution pattern and environmental impact of 
DNAPLs are heavily controlled by the mass and architecture of DNAPL 

SZs (Kang et al., 2022, 2024; Wang et al., 2023). Hence, high-resolution 
characterization of DNAPL SZs at contaminated sites is essential for 
designing efficient remedial programs and assessing their performance 
following implementation.

Traditionally, direct investigation methods such as intrusive drilling 
or sampling are used at DNAPL sites, but they can be highly laborious, 
time-consuming, and suffer from limited spatial and temporal image 
resolution. Geophysical techniques are an attractive alternative since 
they can provide non-intrusive, spatially connected data in a shorter 
time at a much lower cost (Slater and Binley, 2021). Geoelectrical 
methods such as direct current (DC) resistivity and induced polarization 
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(IP) have become increasingly popular for mapping DNAPLs due to their 
sensitivity to the presence of resistive DNAPL (e.g., Johansson et al., 
2015; Koohbor et al., 2022; Revil et al., 2012a; Han et al., 2024a). More 
recently, the combined DC resistivity and IP (DCIP) method have been 
used for DNAPL investigations, since IP characteristics such as charge
ability, normalized chargeability, and relaxation time can better 
differentiate DNAPL SZs from surrounding soils with similar electrical 
resistivity (e.g., Almpanis et al., 2021; Kang et al., 2023; Sparrenbom 
et al., 2017). Meanwhile, IP chargeability could also help to identify the 
subsurface water content, and the characteristic relaxation time can be 
used to predict the permeability to flow of porous materials (De Lima 
and Niwas, 2000; Revil, 2013; Revil et al., 2015). In addition, IP char
acteristics can be used to image the subsurface contaminants and hy
drological processes especially for clay-rich areas, because clay-rich area 
usually exhibits significant IP response and surface conduction that 
would disturb the interpretation of DC conductivity data alone. Mean
while, the signal-to-noise ratio (SNR) in IP data acquisition often being 
10–100 times smaller relative to the DC (Revil et al., 2018). Therefore, a 
comprehensive evaluation of combined DCIP surveys at field sites is 
needed to assess its applicability for a range of field survey scenarios.

The success of DCIP survey at field sites is based on the spatial image 
resolution that can be obtained, which is influenced by the positioning of 
the electrodes along a survey line and the measurement arrays used 
(Griffiths et al., 1990). Conventional electrode arrays such as Wenner, 
Wenner-Schlumberger, and dipole-dipole arrays are most commonly 
used due to their ease of use, but they are not always the best option for 
DCIP surveys due to their relatively low subsurface resolution and 
prolonged measurement times (Wilkinson et al., 2006). For instance, if 
DCIP is used to monitor transient subsurface processes that are 
providing a constantly changing target (e.g., fluid migration), the 
extended durations due to massive standalone measurements can lead to 
image blurring (Wilkinson et al., 2015). Therefore, DCIP surveys should 
be optimized to collect more subsurface information within time and 
labor constraints (Binley and Slater, 2020).

The ‘Compare-R’ method is the most widely used approach for 
optimizing survey design (Wilkinson et al., 2012). It selects measure
ments with maximum estimated resolution to provide highly efficient 
surveys that can improve imaging accuracy with a much lower number 
of measurements. The computational burden of the ‘Compare-R’ method 
can be enormous due to the required calculation of the resolution ma
trix, motivating Qiang et al. (2022) to propose a more computationally 
efficient survey design method based on Bayesian experimental design 
to maximize the information obtained by a standalone DC survey from 
the subsurface target area. While the method performed well within a 
‘target zone’, it lacks resolution on areas outside the target which could 
lead to unrealistic inversions of the collected data, especially data from 
heterogeneous subsurface environments. To date, the ‘Compare-R’ and 
Bayesian methods have focused solely on DC surveys (e.g., electrical 
resistivity tomography [ERT]), with the performance of optimized sur
vey design on IP characteristic tomographies such as chargeability, 
normalized chargeability and relaxation time, yet to be assessed.

A comprehensive understanding of the subsurface environment is 
needed to evaluate the efficiency of combined DCIP surveys using an 
optimized or non-optimized survey design. Most DCIP field studies have 
been performed at sites with little-to-no subsurface information, with 
the large amount of uncertainties hindering DCIP efficiency in
vestigations. This has led to the employment of ‘virtual sites’, which 
refer to field-scale numerical model domains that contain high- 
resolution hydrogeological and hydrogeochemical parameters 
(Mumford et al., 2022; Xie et al., 2023). The transparency of virtual sites 
allows all subsurface parameters to be known, making them an ideal and 
effective approach to investigate a range of geoelectrical survey capa
bilities (e.g., Almpanis et al., 2021; Kang et al., 2023; Power et al., 
2015). So far, most virtual sites have been created from idealized 
hydrogeological parameters, such as spatially correlated random 
permeability (Power et al., 2013), thereby lacking true subsurface 

heterogeneity. Since heterogeneity disturbs the geoelectrical response 
from subsurface targets, such as DNAPL SZs (e.g., Kang et al., 2018), it 
provides a significant obstacle to geoelectrical data interpretation; 
therefore, it is critical to implement realistic subsurface heterogeneity in 
numerical model domains used to evaluate geoelectrical surveys. 
Aquifer analogs can provide spatially explicit representations of genuine 
geological structures (e.g., Maji et al., 2006), meaning virtual sites 
created from these analogs contain high-resolution subsurface parame
ters while preserving subsurface heterogeneity information. These vir
tual sites with realistic subsurface heterogeneity have yet to be used in 
numerical investigations on combined DCIP performance.

The objective of this study is to evaluate the efficiency of an opti
mized DCIP survey design method (based on Bayesian experimental 
design) for characterizing DNAPL SZs. A field-scale 3D high-resolution 
aquifer analog was used to create a realistic virtual site with the evo
lution of a DNAPL SZ simultaneously monitored by DCIP survey, which 
used both optimized and non-optimized survey design. The imaging 
ability and measurement time of optimized DCIP surveys were 
compared to the conventional non-optimized arrays. Further, the 
sensitivity of different DCIP characteristics (conductivity, chargeability, 
normalized chargeability, and relaxation time) to subsurface heteroge
neity and DNAPL SZ was explored.

2. Materials and methods

2.1. Construction of virtual site

2.1.1. High-resolution aquifer analog
The aquifer analog utilized in this study originates from the fluvial- 

glacial sediments located in Herten, Germany (Heinz et al., 2003). The 
original aquifer dataset includes hydraulic conductivity and effective 
porosity measured using undisturbed samples collected in the field at a 
resolution of 5 cm by 5 cm, featuring six vertical cross-sections sized 16 
m × 7 m at 2 m intervals. Bayer et al. (2015) employed stochastic 
techniques to extrapolate these sections to a 3D domain. Additional 
adjustments were made to the 3D aquifer analog prior to implementa
tion for DCIP monitoring of DNAPL evolution: 

(1) Resolution adjustment: The resolution of the aquifer analog was 
changed from 5 cm to 10 cm to reduce the number of cells that 
need to be computed and streamline computational resources. 
The upscaling is done using unweighted average method.

(2) Extension: The original 16 m × 10 m × 7 m aquifer analog was 
expanded to enlarge the site and accommodate a typical and 
uniform surface DCIP survey grid. It was expanded to 16 m × 20 
m × 7 m by duplicating the analog along the original y-direction. 
Then this longer ‘y-direction’ was converted to the x-direction, 
with the updated analog being 20 m × 16 m × 7 m in the x, y and 
z directions.

(3) Scaling of hydraulic conductivity: The combined DCIP method is 
known to be sensitive to clay minerals (Revil et al., 2023) which 
usually exhibit low hydraulic conductivity. However, due to the 
relatively high hydraulic conductivity of the original analog (for 
most cells, K is larger than 10− 5 m/s), it was difficult to assign 
sufficient clay contents to the domain that could provide a 
measurable IP response. Therefore, the hydraulic conductivity of 
the analog was scaled by a factor of 1× 10− 5 to align it with the 
normal hydraulic conductivity range in clay-rich aquifers (Kang 
et al., 2023; Revil et al., 2015) and allow a distribution of clay 
contents to be estimated. These modifications do not change the 
structural integrity of the aquifer. The final hydraulic conduc
tivity K and porosity ϕ of the aquifer are present in Fig. 1.

2.1.2. Determination of the volumetric clay content
The following equation by Marion et al. (1992) and Revil and Cathles 

(1999) was employed to calculate the clay content cl from the 
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permeability (directly correlated to hydraulic conductivity) of each cell 
in the modified aquifer analog: 

cl =
ϕsd

(
k1/3m

sd − k1/3m
)

k1/3m
sd (1 − ϕcl)

(1) 

where ϕcl (− ) and ϕSd (− ) represent the porosity of pure clay and sand, 
respectively, m (− ) denotes Archie’s cementation or porosity exponent 
(comprised between 1 and 3), and k (m2) is the permeability. The lower 
threshold permeability of clay-free sand ksd (m2) is determined by (Revil 
and Cathles, 1999): 

ksd =
d2

sd(ϕsd)
3m

24
(2) 

where dsd (m) is the grain diameter of sand. All permeabilities larger 
than ksd were assumed to correspond to clay-free sands (cl = 0). The 
resultant clay content distribution is illustrated in Fig. 1. The value of 
parameters used in the determination of cl are shown in Table 1.

2.1.3. DNAPL percolation and evolution
A stochastic invasion-percolation (SIP) algorithm (Ewing and Ber

kowitz, 1998) was employed to simulate DNAPL release, infiltration, 
and redistribution (no dissolution for this study) into the aquifer. It al
lows for the generation of SZ with architectures consistent with multi
phase processes at the representative element volume scale. DNAPL 
infiltration is modeled by simulating invasion into each model cell based 
on an entry pressure threshold, which is determined by the Young- 
Laplace equation. These thresholds are updated with the capillary 
pressure-saturation relationship that quantifies the capillary resistance 
against water and DNAPL saturation. The maximum DNAPL saturation 
can be achieved for each cell is imposed by the residual saturation of 
water, which is 0.2 in this study (Koch and Nowak, 2015). The final 
architecture of the source zone is influenced by the permeabilities and a 
stochastic component that accounts for unresolved pore-scale vari
ability. This SIP framework efficiently generates complex, realistic SZs 
composed of ganglia and pools, which aligns with the intrinsic perme
ability field and is widely utilized in DNAPL simulations (e.g., Ayaz 
et al., 2020; Bandara et al., 2016; Koch and Nowak, 2015, 2016). The 
depth of the water table for the synthetic domain is set as 0.4 m. Since 
the SIP algorithm cannot deal with the DNAPL infiltration in unsatu
rated zone (Ewing and Berkowitz, 2001), the water saturation above the 
water table was set as a homogeneous value of 0.4, where the capillary 
fringe and the presence of DNAPL in unsaturated zone were neglected. 

The domain below the water table was initially saturated with water and 
waiting for DNAPL invasion.

This aquifer analog-based DNAPL SZ simulation aims to assess the 
optimized survey design under more complex SZs conditions with 
practical significance, rather than simple blocky targets as used in pre
vious optimization studies. Although there are some simplifications in 
the setting such as the neglect of the effects of DNAPL dissolution and 
external groundwater flow. In fact, the effect of dissolved DNAPL phase 
on the electrical signal is negligible due to their lack of charge carriers 
(Sauck, 1998; Song et al., 2024). Even if the dissolved phase were 
considered, their conductive characteristics would enhance the contrast 
between the resistive DNAPL SZ and the backgrounds (Power et al., 
2014), which do not affect the applicability of DCIP surveys on these 
sites.

A progressive release of 6000 kg DNAPL mass at a randomly 

Fig. 1. Cross-sectional slices of the true parameter fields at x = 14 m, y = 10 m, and z = − 5 m of the virtual site. K, ϕ, cl represent the true hydraulic conductivity, 
porosity, and clay content of the modified aquifer analog, respectively. Sn denotes the simulated DNAPL saturation prior to evolution, while σ, M, Mn, τ denote the 
conductivity, chargeability, normalized chargeability, and relaxation time distribution (estimated from K, ϕ, cl, Sn), respectively.

Table 1 
Model parameters for the numerical simulation.

Parameter Value

Aquifer analogy
Domain Size (x, y, z) (m) 20 × 16 × 7
Grid spacing (m) (Δx,Δy,Δz, ) 0.1 × 0.1 × 0.1
Water level (m) 6.6

DNAPL source zone
DNAPL Spill point (m) (12.6, 10, 6.6)
DNAPL density (kg m− 3) 1496
DNAPL viscosity (Pa⋅s) 0.965 × 10− 3

Water residual saturation (− )a 0.2
Brooks-Corey shape (− ) 2
Total DNAPL release mass (kg) 6000
Release rate (m3 s− 1) 1 × 10− 6

Petrophysical model
dsd (m) 1 × 10− 4

Cementation exponent m (− ) 2
Saturation exponent n (− ) 2
σw (S m− 1) 0.2
Porosity (− ) b 0.37 (sand), 0.56 (clay)
B (m2 V− 1 s− 1) c 1.65 × 10− 9

λ (m2 V− 1 s− 1) c 1.35 × 10− 10

ρg (kg m− 3) 2650
CEC (C kg− 1) 1.45 (sand), 18,652 (clay) b

Ds
(+)

(m2 s− 1) d 3.8× 10− 12

a (Koch and Nowak, 2015).
b (Revil et al., 2021).
c (Revil, 2012).
d (Revil, 2013).

S. Qiang et al.                                                                                                                                                                                                                                   Journal of Contaminant Hydrology 267 (2024) 104452 

3 



determined spill center located at x = 12 m, y = 10 m, and z = − 0.4 m 
(level with the water table) was simulated by the SIP algorithm. During 
the release, datasets of DNAPL distribution and saturation were recor
ded at 100 kg, 500 kg, 1000 kg, 2000 kg, 4000 kg, and 6000 kg indi
vidually. These DNAPL distributions were then combined in reverse 
order to reconstitute the evolution of a DNAPL SZ from 6000 kg over six 
time steps (T0 to T5). The DNAPL saturation (Sn) of each time step 
within the aquifer analog is depicted in Fig. 2. Due to the strong longi
tudinal heterogeneity within this site, DNAPL is trapped immediately at 
the near-surface low permeability (clay-rich) layer and formed rounded 
pool structures. It is noted that these subtracting following-up DNAPL 
release and distribution processes may not fully reflect actual DNAPL SZ 
remediation, but serve as synthetic numerical simulations of DNAPL SZ 
evolution. For example, the organic compound dissolution and the 
corresponding effect of DNAPL morphology change on the petrophysical 
relationships (Qiang et al., 2024) are not considered. These simplifica
tions are reasonable here because the ultimate goal of this work is to 
evaluate the performance of DCIP survey design.

2.1.4. Determination of DCIP characteristics
Petrophysical models were employed to determine the electrical 

conductivity and chargeability of the aquifer analog with DNAPL SZ 
from the hydrogeological parameters. In addition to the electrical 
properties of the pore fluid, contributions from the electrical double 
layer (EDL) (Revil, 2012) were incorporated into the calculation of the 
parameters. The bulk electrical conductivity σ (Ω-m) was derived from 
the low-frequency conductivity model (Revil, 2013; Revil et al., 2017) as 
follows: 

σ =
1
F

⋅Sn
w⋅σw +

1
F⋅ϕ

⋅Sn− 1
w ⋅ρg⋅(B − λ)⋅CEC (3) 

while the chargeability M (mV/V) was calculated using the equation 
(Revil et al., 2018): 

M =
ρg⋅λ⋅CEC

σw⋅ϕ⋅Sw + ρg⋅B⋅CEC
(4) 

where F = ϕ− m (− ) is the formation factor. Sw (− ) denotes the water 
saturation, σw (S m− 1) denotes the conductivity of the pore water. ρg (kg 
m− 3) is the density. B and λ (m2 V− 1 s− 1) denote the apparent mobility of 
the counterions for surface conduction and polarization, respectively. 

The cation exchange capacity (CEC, C kg− 1) for each cell in the domain 
could be determined by the clay content in weight φw as (Patchett, 1975; 
Revil et al., 1998): 

CEC = CECsd⋅(1 − φw)+CECcl⋅φw (5) 

where CECsd and CECcl denote the CEC of pure sand and clay, respec
tively. The clay content in weight φw and volume cl can be related 
through the grain densities of pure clay and sand as well as the clay 
porosity (Rabaute et al., 2003; Revil et al., 2002). For simplicity, we 
assumed the φw here to be equal to the cl calculated by Eq. (1), which is 
not true in an absolute way but is a common practice in some numerical 
DCIP studies (Kang et al., 2023; Almpanis et al., 2021). Finally, the 
normalized chargeability of each cell Mn (S m− 1) was determined by 
Mn = M • σ.

According to Revil (2013), the characteristic relaxation time of a 
partially saturated clayey material can be determined by: 

τ =
Λ2

2Ds
(+)

Sn
w (6) 

where Ds
(+)

(m2 s− 1) denotes the diffusion coefficient of the counterions, 
Λ (m) is characteristic pore size. Following the relationship proposed by 
Johnson et al. (1987), Λ can be estimated from the permeability k using 
the formation factor F: 

k =
Λ2

8F
(7) 

which yields a direct determination of the relaxation time from the 
permeability (Revil, 2013; Revil et al., 2012b) by: 

τ =
4kF

2Ds
(+)

Sn
w (8) 

The parameters used in the calculations of DCIP characteristics are 
presented in Table 1. All these equations have a good correlation with 
the experimental and field observations and have been used in various 
hydrogeological studies involving DCIP. Finally, the numerical domain 
that contains aquifer analog, DNAPL saturation, and electrical param
eter information is defined as a ‘virtual site’.

Fig. 2. DNAPL distribution at different time steps shown as the isosurface of Sn = 0.01 and Sn = 0.5. The spill center is located at x = 12 m, y = 10 m, and z = − 0.4 
m. The darker area in the hydraulic conductivity distribution denotes higher clay content. T0 signifies the DNAPL SZ before evolution (a case where DNAPL release 
mass = 6000 kg). Notably, the DNAPL formed a pool structure on the top low permeability (clay-rich) layer.
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2.2. DCIP survey implementation

2.2.1. DCIP survey settings
The DCIP surveys performed in this study were completed with a 

survey grid consisting of nine parallel lines with interline spacing of 2 m 
(y-direction) and 21 electrodes along each line with inline spacing of 1 m 
(x-direction) (see Fig. 3). The 20 m × 16 m × 7 m virtual site was 
implemented within a larger 300 m × 300 m × 30 m domain to mitigate 
the boundary effect, this perimeter zone was assigned with background 
parameters indicated as σ = 0.015 S m− 1, M= 8 mV/V, τ = 0.4 s, which 
were consistent with their common values of sand dominated cells 
within the virtual site.

2.2.2. Optimized survey design method and survey types evaluated
The electrodes used to inject/accept electrical current and measure 

potential for each DCIP measurement are controlled by the survey 
design, which influences the subsurface resolution distribution. The 
Bayesian experimental design method employed to generate an opti
mized survey selects the measurements that have high relative entropy 
(the difference between prior and posterior parameter distributions 
caused by a measurement) and minimizes the predicted post- 
experimental uncertainties on model parameters, while satisfying 
some other constraints (Lindley, 1956). The expected relative entropy 
U(s) for each measurement in the DCIP survey was estimated according 
to Bayes’ rule (Huan and Marzouk, 2013): 

U(s) ≈
1

nout

∑nout

i=1

{
ln
[
p
(

di
|mi, s

) ]
− ln

[
p
(

di
|s
) ]}

, (9) 

where mi is the Monte Carlo (MC) samples randomly generated with 
prior information of the model parameters m, di are the simulated ob
servations contaminated by measurement error, and nout is the number 
of samples in the outer loop of the MC simulation, which is used to 

calculate the likelihood function p
(

di
|mi, s

)
. The evidence factor p

(
di
|s
)

can be estimated by the following formula: 

p
(

di
|s
)
≈

1
nin

∑nin

j=1
p
(

di
|mi,j, s

)
, (10) 

where nin is the number of samples used in the inner loop of MC simu
lation. To alleviate the computational cost of the MC simulation, the 
same samples for both the outer and inner loop of MC simulation were 

used, and consequently nin = nout (Huan and Marzouk, 2013). For the 
DCIP measurement with multiple types of model parameters (conduc
tivity, chargeability, and relaxation time) and observations, conductiv
ity and the corresponding voltage difference between electrodes were 
chosen as the model parameters m and observations d, respectively in 
Eq. (9) to calculate the relative entropy of each measurement due to 
their computation rapidity. The principle of superposition was also used 
here to reduce the number of forward modelings needed for each opti
mization (see details in Qiang et al., 2022).

The implementation of Bayesian optimized survey design usually 
necessitates a specific area of interest as the survey focus target. The 
determination of the target area range for each site typically relies on the 
prior site information. For example, we need to investigate potential 
contaminant zones through the site’s history of production and facility 
operations. Borehole sampling and preliminary geophysical surveys can 
also provide prior subsurface information to aid in target area identifi
cation. For the virtual site used in this study, we assume a scenario 
where the only preliminary information available is the location of the 
spill point. This is a common situation we might encounter in realistic 
field works, such as the detection of contaminant plume range from a 
known leakage. Given the uncertainty of the subsurface properties and 
processes, a vague and large potential contaminated area is often 
determined for these sites with limited historical information. Thus, to 
restore the real-world scenario, we chose an 8 m × 8 m × 5 m target area 
(as illustrated in Fig. 3) starting at x = 8 m, y = 6 m, z = − 5 m that 
surround the DNAPL spill center for the focused optimized survey. This 
target area occupies nearly a quarter of the entire model, which is 
relatively large compared with the DNAPL SZ generated in the same 
aquifer analog with much higher (original) permeability (Maji and 
Sudicky, 2008; Maji et al., 2006) and the DNAPL SZ encountered in most 
field or synthetic surveys (Almpanis et al., 2021; Wang et al., 2014; Kang 
et al., 2023). Note that the target area here only encompasses a potential 
area where the target DNAPL can distributed, rather than an exact in
clusion of the potential DNAPL SZ, as the resolution could still be 
improved at cells outside the target area as they are located closely.

We may also encounter cases where little or vacant historical site 
information is available. If we still assign the survey design with a 
specific target area, locations far away from these selected zones will 
have lower resolution and poor imaging quality due to the absence of 
data points (lower than the conventional survey), hence limiting the 
investigation efficiency. To address this, we propose two strategies here. 
The first routine is the unfocused optimization strategy, which was 

Fig. 3. DCIP survey settings used in this study. An additional surrounding 300 × 300 × 30 m domain outside of this model was employed to mitigate the boundary 
effect. The black dots indicate the positions of electrodes, the black dashed line shows the range of the virtual site incorporated. The orange cube is the target area for 
the focused optimized survey design and the red dot illustrates the DNAPL spill center. (For interpretation of the references to colour in this figure legend, the reader 
is referred to the web version of this article.)
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applied without defining a specific target area. Thus, the configurations 
with the highest entropy across the entire model are selected. The 
resulting optimized survey is then supposed to enhance the resolution 
throughout the subsurface. The second routine is to replace some of the 
measurements in the focused optimized survey with conventional 
measurements that cover the entire domain, which serves as compen
sation for the resolution outside the target area.

Meanwhile, as the magnitude of the IP signal in field measurements 
is relatively lower than DC survey (see Kemna et al., 2012; Zarif et al., 
2017), the optimization should be also aimed at improving the signal-to- 
noise ratio of the DCIP survey. To implement this, we introduced 
voltage-dependent noise to the simulated observations in Eq. (9). 
Compared with traditional Gaussian noises, it comprises an extra ab
solute minimum noise that indicates the constant background noise. 
This type of noise can reduce the relative entropy of the measurements 
with small measure voltage magnitude, hence improving the signal-to- 
noise ratio of the selected optimized measurements.

The measurements in the optimized surveys are usually selected 
from a comprehensive measurement set that contains all the possible 
independent measurements (Wilkinson et al., 2006). However, there are 
N(N − 1)(N − 2)(N − 3)/8 possible independent measurement for a 
survey with N electrodes (Xu and Noel, 1993), which is 1.5 × 108 for the 
survey grids we used. The computation and storage burden when 
considering the complete comprehensive measurement set is unaccept
able in this study. Therefore, we chose a reduced comprehensive mea
surement set with 842,091 measurements as the pending library of the 
optimized survey. This comprehensive set comprising inline 4-pole 
Alpha type (Wenner, Wenner-Schlumberger) and Beta type (Dipole- 
Dipole) arrays with their offset version (electrodes A, B, M, N located at 
different survey lines), as well as the equatorial Dipole-Dipole arrays 
(see Fig. 4). From the comprehensive set, four types of measurement sets 
were constructed: 

1. The conventional survey consists of 3486 inline Wenner, Wenner- 
Schlumberger, and Dipole-Dipole measurements along both the x- 
and y-direction, with a maximum geometric factor of 660 m. This 
low geometric factor constraint ensures a mean investigation depth 
around − 1.5 m (Edwards, 1977) that proportional to DNAPL SZs 
depth in the conceptual model. The conventional survey was 
generated to simulate the conventional DCIP monitoring approach at 
the virtual site, providing a reference for comparison.

2. The focused optimized survey comprises 3486 measurements which 
have the highest relative entropy in the comprehensive measurement 
set when the target area (8 m × 8 m × 5 m) is set around the spill 
center. Note that the term “target area” throughout this paper in
dicates this small area for the focused optimized survey design

3. The unfocused optimized survey comprises 3486 measurements which 
have the highest relative entropy in the comprehensive measurement 
set for the entire model space

4. The optimized + base survey replaced 20 % measurements in the 
focused optimized survey with the randomly selected conventional 
(base) measurements to make up for the resolution outside the target 
area. As a result, the optimized + base survey comprises 2948 opti
mized measurements with the highest relative entropy and 736 
conventional measurements

2.2.3. Forward modeling and inversion of DCIP characteristics
The forward modeling of apparent conductivity for the virtual site 

utilized an elliptic equation computed using the finite element method 
by COMSOL Multiphysics® (Version 5.4): 

∇⋅(σ∇V) = − Iδ(r) (11) 

where δ denotes the Dirac delta function and r is a single current elec
trode which is a point source at the origin with current strength I (A).

For the IP effect, both intrinsic and integrated (an integration of the 
whole voltage decay curve) chargeability should be acquired in this 
study to calculate the inverted relaxation time tomography. Therefore, 
the time domain IP effects were solved by assuming it a time-dependent 
self-potential-type problem (Soueid and Revil, 2018), which allows 
time-saving in the numerical acquisition of the whole secondary voltage 
decay curve after the primary current is shut down. The total current 
density J in the simulation domain is written as (Seigel, 1959): 

J = [1 − M(t) ]Jp (12) 

where Jp denotes the secondary current density. M(t) denotes the time- 
dependent chargeability. From a Debye model (Revil et al., 2014) we 
have: 

M(t) = M
[
1 − exp

(
−

t
τ

) ]
(13) 

After forward modeling, Gaussian random noise with a standard 
deviation of 5 % of the absolute value was added to the apparent con
ductivity and chargeability prior to inversion. The conductivity was 
inverted using the standard smoothness-constrained least-squares 
method (L2-norm, Loke et al., 2003): 
(
GTG+ λC

)
Δri = GTd − λCri− 1 (14) 

where G is the Jacobian matrix, λ denotes the damping factor. Δri = ri −

ri− 1 is the model parameters change vector. d denotes the difference 
between the observed data and the model response (the discrepancy 
vector). C contains the roughness filter constraint. The intrinsic and 

Fig. 4. The sketch of array configurations in the comprehensive measurement set. (a) Alpha type array, (b) Beta type array, and (c) Equatorial Dipole-Dipole array. 
The electrode spacings are controlled by the dipole length a, dipole separation na, and the number of offset lines, which vary among different electrodes and 
measurements.
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integrated chargeability were then inverted using a linear approach 
based on the conductivity model (Oldenburg and Li, 1994). The inverted 
normalized chargeability was determined by the inverted M • σ.

The relaxation time was usually inverted by fitting complex con
ductivity models (Loke et al., 2006) for each cell in the domain, which 
may lead to computation burdens. In this work, relaxation time distri
bution was approximated in a more computationally effective way by 
the ratio of the acquired integrated chargeability to the intrinsic char
geability tomography cell by cell through the Debye model: 

τ ≈
Mi

M
=

∫∞
0 M[1 − exp( − t/τ) ]dt

M
(15) 

3. Results

3.1. Resolution of the conventional and optimized surveys

The resolution of a geoelectrical survey represents its capability to 
delineate the subsurface characteristics (Day-Lewis et al., 2005). Fig. 5
illustrates the resolution distributions of the conventional and optimized 
surveys of each model cell, which is estimated using the diagonal ele
ments of the resolution matrix R (Loke et al., 2010) calculated by: 

R =
(
GTG + λC

)− 1GTG (16) 

where λ = 1 × 10− 6 (− ). The Jacobian matrix G of a 4-pole measurement 
is derived by aggregating the 3-D Frechet derivatives (Mcgillivray and 
Oldenburg, 1990) for 2-pole measurements where one electrode is 
equivalently located in (a,0,0): 

F3D(x, y, z) =
1

4π2⋅
x(x − a) + y2 + z2

[x2 + y2 + z2]
1.5
[
(x − a)2

+ y2 + z2
]1.5 (17) 

where x, y, and z are the relative coordinates of the other electrode in the 
2-pole array. The Jacobian matrix of these 2-pole measurements is then 
used to calculate the 4-pole measurement Jacobian matrix with the 
superposition principle.

Figs. 5a and b show that the subsurface resolution from the con
ventional and unfocused optimized survey is distributed uniformly and 
decreases with depth, despite the resolution for the unfocused optimized 
survey being higher throughout the domain. In comparison, the reso
lution of the focused optimized + base and focused optimized survey is 
clearly confined around the target area, reaching almost 1 near the 
surface (< 0.5 m) and exhibiting significant resolution enhancement 
throughout the target area. The mean resolution for cells within the 
target area at − 2 m depth acquired by the focused optimized survey 
(0.23) is almost 3.4 times larger than that by the conventional survey 
(0.068), following the unfocused optimized survey with 0.18 and the 
optimized + base survey with 0.21 at the same range.

Fig. 6 presents the mean resolution values across various areas. The 
focused optimized survey shows nearly 2 times higher mean resolution 
within the target area than the conventional survey. This does involve a 
small (but worthwhile) cost because the resolution of the focused opti
mized survey outside the target area is slightly lower than that of the 
conventional survey (see Fig. 6b). Compared with the focused optimized 
survey, the unfocused optimized survey could provide a moderated 
resolution enhancement in the target area around the spill center, and 
the highest mean resolution throughout the entire model. While the 
focused optimized + base survey provides a remarkable resolution 
enhancement within the target area and also improves a bit the reso
lution throughout the entire area. Interestingly, the three optimized 
surveys turn out to have lower geometrical factor than the conventional 
survey (see Fig. 6d). This is caused by the specific array types in these 
surveys. For example, 75.95 % of the measurements in the focused 
optimized survey are Wenner-Schlumberger (alpha) or equatorial 
Dipole-Dipole array with dipole length a ≥ 5, and dipole separation n ≤
0.4. These arrays share the feature that the distance between two current 
electrodes is much larger than the distance between the current and 
potential electrodes, which corresponds to very strong signal strength 
and small geometrical factors. These measurements are easier to be 
selected for the optimized survey because of the voltage-dependent 
Gaussian noise (Qiang et al., 2022) added to the simulated observa
tions in Eq. (9), which assigns higher relative entropy to measurements 
with better signal-to-noise ratios.

Fig. 5. The subsurface resolution distribution for (a) conventional survey, (b) unfocused optimized survey, (c) focused optimized + base survey, and (d) focused 
optimized survey. The red dash line delineates the target area for the focused optimized surveys. (For interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.)
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3.2. Static DCIP survey

Fig. 7 presents the true and inverted conductivity, chargeability, 
normalized chargeability, and relaxation time distributions acquired by 
the conventional survey and optimized surveys for the virtual site at T0 
(i.e., 6000 kg DNAPL mass). The conventional survey can roughly 
outline the DNAPL SZ via different tomography, while the optimized 
surveys could better locate the DNAPL SZ with more detailed and 
obvious structural information. In particular, the focused optimized 
surveys (row 5) could reveal a bit of the DNAPL SZ heterogeneity with 
more accurate values of different DCIP characteristics within SZ, 
whereas the conventional survey shows the DNAPL SZ as a blurred 
anomaly.

Fig. 8 presents the cross-sectional images at y = 10 m of the true and 
inverted conductivity, chargeability, normalized chargeability, and 
relaxation time fields at T0. The inverted conductivity fields acquired by 
both the conventional and optimized surveys effectively identify the 
DNAPL SZ, but reveal limited background stratigraphic information. In 
contrast, the IP characteristics such as chargeability and normalized 
chargeability, better delineate the spatial boundaries between the top 
sand and below clay-rich layers (identified by dashed gray lines). Due to 
the poor resolution outside the target area, the focused optimized survey 
failed to capture the complete stratigraphic boundary of the clay-rich 
zones, which is rather evident in the chargeability, normalized charge
ability and relaxation time tomography. The issue is resolved by the 
unfocused optimized and focused optimized + base survey, which pro
vide clearer stratigraphic boundaries with their sensitivity across the 
entire domain while keeping resolution enhancements for the DNAPL SZ 
targets. Meanwhile, the conventional survey seems to overestimate the 
chargeability of the clay-rich layer below the DNAPL SZ, making the 
high chargeability center improperly shift away from the original 
DNAPL SZ to the underlying clay layers.

3.3. DCIP survey for DNAPL SZ evolution

Fig. 9 shows the true DNAPL SZ evolution (row 1), inverted con
ductivity (rows 2–4), and inverted chargeability (rows 5–7) for the un
focused and focused optimized survey at all time steps. All surveys could 
successfully characterize the DNAPL SZ in the first stage. While some 
changes indicated by the conventional survey are not as evident as the 
optimized surveys. For instance, the conventional survey almost loses 
sight of the DNAPL SZ in conductivity tomography T1 and chargeability 
tomography T2 (indicated as the red dashed box), which is still obvious 
in the two optimized surveys.

An indicator called misfit (Loke et al., 2015) is used here to quanti
tatively evaluate the differences between the true model parameters 
ct and the inverted model ci: 

Misfit =

(
1
N
∑N

i=1
[log(ct(i) ) − log(ci(i) ) ]2

)0.5

. (18) 

The value of misfit is dependent on the magnitude of the evaluated 
parameter so it can only be compared when evaluating the same pa
rameters. The misfits of the inverted characteristics within the target 
area acquired by the different surveys across the six time steps are shown 
in Fig. 10 and normalized by the maximum value of each parameter 
themselves, respectively. For all time steps evaluated, the misfit for the 
conductivity, chargeability, and normalized chargeability acquired by 
the focused optimized surveys within the target area decreased by an 
average of 8 %, 19 %, and 12 %, respectively, compared to the con
ventional survey. For the relaxation time tomography, although the 
optimized surveys provide an improved qualitative delineation of the 
DNAPL SZ range above the clay-rich area (see Fig. 8, row 2–5, column 4, 
above the dashed lines), its misfits in Fig. 10 are abnormally larger than 
those acquired by the conventional survey. This anomaly is largely due 

Fig. 6. Mean resolution and geometrical factor for different surveys. (a) Mean resolution within the target area, (b) mean resolution outside the target area, (c) mean 
resolution of the entire area. Correspondingly, (d) illustrates the mean geometrical factor for different surveys. ‘Con.’ refers to conventional survey and ‘Opt.’ refers to 
optimized surveys with different features as follows below.
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to the overestimation of the relaxation time value during inversions. 
This shows that the indicator misfit may not always be a good repre
sentative of the image due to its extremely high sensitivity to the 
magnitude of the parameters, while neglecting the overall conformity in 
distribution. Nevertheless, the significant difference between the values 
of the true and inverted relaxation time would indeed invalidate most 
similarity indicators, even the structural similarity index metrics (SSIM, 
see Han et al., 2024b).

Fig. 11 presents the change ratio of conductivity, chargeability, 
normalized chargeability, and relaxation time in logarithm based on the 
inversions at T5 and T0. These proportional images remove the ‘con
stant’ background geology (i.e., aquifer structure), allowing all DCIP 
characteristics to highlight the changes associated with the DNAPL SZ 
evolution. It is then evident from Fig. 11 that the DNAPL was trapped 
above the clay rich layer (identified by dashed gray lines). The opti
mized surveys reveal the change ratios of various DCIP characteristics 
that more closely approximate their true values, while the conventional 
survey shows varying degrees of underestimation. This deviation is 
particularly pronounced in normalized chargeability (Mn) tomography, 
whereas the conventional survey almost loses sight of the Mn changes. 
This is because Mn, as the product of conductivity (decrease with time 

steps) and chargeability (increase with time steps), does not exhibit as 
significant change ratios as other characteristics in nature, making it 
more difficult to detect. Meanwhile, Mn results have to involve the un
certainties from both the conductivity and chargeability inversions, 
further contributing to poor characterization quality. Fig. 11 also pro
vides insight into why the optimized surveys have larger misfits for 
relaxation times compared to the conventional survey, as the optimized 
surveys seem to overestimate the relaxation time changes of the area 
below the DNAPL SZs.

4. Discussion

4.1. Sensitivity of different DCIP characteristics to survey resolution

The enhanced extent of target area characterization accuracy 
attributed to the optimized surveys appears to vary with different DCIP 
characteristics. As in Fig. 10, the mean misfit reduction for chargeability 
acquired by the focused optimized survey (19 %) is larger than for 
conductivity (8 %). This is because the chargeability measurement is 
more sensitive to the survey resolution due to its susceptibility to sub
surface structures. For example, the chargeability tomography in 

Fig. 7. True and inverted conductivity, chargeability, normalized chargeability, and relaxation time fields at the initial time step T0 for conventional, unfocused 
optimized, focused optimized + base, and focused optimized surveys. The target area for the focused optimized surveys is indicated as red box in the true models. 
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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conventional survey confused the high chargeability area caused by 
DNAPL SZ and the clay-rich layer, and overestimates the chargeability 
values at around − 2 m, while the optimized surveys with higher reso
lutions could better characterize the chargeability values of both DNAPL 
SZ and the clay-rich layer (see Fig. 8). Meanwhile, all the misfit for 
conductivity data in Fig. 10 decreases with time steps, indicating that 

the conductivity signal is mainly controlled by the DNAPL SZ mass 
decay. While chargeability is more sensitive to the background aquifer 
information, their misfit is almost fixed over time since the background 
aquifer contributes more to the electrical signals than the DNAPL SZs. 
The normalized chargeability, acquired by the product of conductivity 
and chargeability, exhibits a neutral sensitivity to both the DNAPL SZ 

Fig. 8. Cross-sectional images of the true and inverted conductivity, chargeability, normalized chargeability, and relaxation time field at y = 10 m at the initial time 
step T0. The target area for the focused optimized surveys is indicated as a red box in the true models. The black dashed lines in the inverted images indicate the 
boundary between the sand and clay-rich area. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.)

Fig. 9. Cross-sectional images at y = 10 m of the true and inverted conductivity and chargeability fields acquired at different time steps. To better highlight the 
details of the DNAPL SZ, the fields are magnified to show an 8 m × 3 m region within the target area. The dashed red boxes indicate the stages where the conventional 
surveys start to lose sight of the DNAPL source zone. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.)
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and the background information, resulting in a moderated mean misfit 
reduction for the optimized surveys (12 %).

The distinct sensitivity of different characteristics to resolutions also 
leads to the different performance of the three types of optimized sur
veys. The focused optimized survey shows a similar misfit reduction in 
conductivity estimations to the unfocused optimized and the focused 
optimized + base surveys, but a more significant misfit reduction in the 
chargeability and normalized chargeability tomography. These out
comes underscore the importance of optimized survey design in DCIP 
measurements, especially for the sites with complex subsurface condi
tions that demand higher data quality and resolution.

4.2. Influence of optimized survey design on DCIP survey duration

Survey duration is an important factor to consider for DCIP surveys 
at field sites since it is usually proportional to the human and economic 
costs. Prolonged measuring time can also lead to image blurring if 
monitoring quickly changing or moving targets (Wilkinson et al., 2015). 
The optimized survey can provide equal or higher subsurface resolution 
within the target area compared to a conventional survey, even though it 
uses much fewer measurements and therefore much shorter survey 
duration. Fig. 12 presents the mean resolution associated with different 
survey types and the number of measurements used in a DCIP survey at 
the virtual site. Since the conventional survey only contains in-line 
Wenner, Wenner-Schlumberger, and Dipole-Dipole measurements, the 
number of measurements in the conventional survey is limited for a 
certain electrode grid (e.g., 21 × 9 electrodes in this study). To show the 
benefits of an optimized survey over a larger range of the measurement 
numbers used in a DCIP survey, an arbitrary survey is introduced that 
made by measurements selected randomly from the comprehensive set, 
while the optimized survey selects the measurements with the largest 

relative entropy under the focused (with target area 8 m × 8 m × 5 m 
around the spill center) and unfocused conditions.

As shown in Fig. 12, the optimized surveys exhibit higher mean 
resolution compared to the conventional or arbitrary survey across 
varying numbers of measurements. For example, the focused optimized 
survey with 3486 measurements achieves a mean resolution of 0.263 
within the target area, while the arbitrary survey can only obtain a 
similar resolution with more than 21,000 measurements, which is an 
~83 % difference. This reduction of measurements is less significant for 
the unfocused optimized survey (Fig. 12b), but it could still save up to 
61 % of measurements for the same mean resolution throughout the 
entire model space compared to the arbitrary survey. Assuming a single 
DCIP measurement in the field usually takes 0.5 s, the focused optimized 
survey on the concerned domain can lower the measuring time equiv
alently by 2.4 h, while maintaining a similar resolution within the target 
area.

Fig. 12 shows that with slight or even no prior information, the 
proposed survey design method can provide a significant balance with 
the survey resolution within the target area and survey duration, hence 
improving the efficiency of DCIP surveys in the field. This time saving 
could be more and more significant in future DCIP surveys using in
struments with increasing amounts of supported electrodes and possible 
measurements.

4.3. Optimize survey design implementation suggestions

Our results highlight the advantages of different types of optimized 
surveys. Nevertheless, it is important to note that the advantages of the 
specific focused optimized survey are based on a premise that the 
location of the concerned subsurface target is roughly known, so that it 
is included in the selected target area that has high resolution. For sites 

Fig. 10. The normalized data misfit within the target area for different characteristics and surveys across the six time steps. (a) Inverted conductivity, (b) char
geability, (c) normalized chargeability, and (d) relaxation time. The misfits are normalized by the maximum value of each parameter series themselves, respectively.
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with scarce preliminary information, it is recommended to define a 
relatively larger target area, or use the unfocused optimized / focused 
optimized + base survey first to prescreen the site, which can further 
constrain the potential targets for the subsequent focused optimized 

survey design.
In addition, this study neglects the possible inductive coupling be

tween cables in DCIP survey (Wang et al., 2021), as well as the parallel 
configuration of survey commands for multi-channel systems. These 

Fig. 11. Cross-sectional difference (ratio) images at y = 10 m of the true and inverted conductivity, chargeability, normalized chargeability, and relaxation time 
between T5 and T0. The target area for the focused optimized surveys is indicated as a red box in the true models. The black dashed lines in the images indicate the 
boundary between the sand and clay-rich area. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.)

Fig. 12. The mean resolution within the target and entire area versus the survey types and number of measurements used in a DCIP survey. The arbitrary survey is 
made by measurements selected randomly from the comprehensive set. The optimized measurements are selected from the comprehensive set in order of their 
relative entropy with different focus ranges. The dashed gray lines indicate that different surveys provide similar resolutions but with different amounts of 
measurements.
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considerations may introduce additional principles for the optimized 
survey design that prioritize measurements with certain current elec
trode numbers or injection sequences, but would not affect the under
lying advantages of the optimized survey. Nevertheless, they may be 
considered in future studies for efficient DCIP surveys regarding 
different site conditions.

5. Conclusions

In this study, numerical DCIP monitoring of DNAPL evolution at the 
field scale was performed to evaluate the efficiency of a Bayesian opti
mized survey design method. The virtual site was developed from a 
high-resolution heterogeneous clay-rich aquifer analog and then used to 
simulate a 6-stages DNAPL evolution process and simultaneous moni
toring by DCIP. The results demonstrated that with the same time cost, 
the optimized survey with known prior target area information showed 
an average enhancement of 8 % to 19 % in target DNAPL SZs monitoring 
for various evaluated DCIP characteristics, including conductivity, 
chargeability, and normalized chargeability. In the meantime, to pro
vide the same subsurface resolution, the optimized survey with a prior 
target can save up to 83 % in measuring time compared to conventional 
surveys. To further, we evaluated the optimized surveys designed with 
limited or no prior site information, which can provide efficient reso
lution enhancement throughout the entire subsurface area. The inverted 
results also highlight the high sensitivity of the IP characteristics to 
subsurface heterogeneity caused by clay distributions.

The findings in this study emphasize a broad application prospect of 
optimized survey design in field scale DCIP surveys, which promote the 
monitoring of critical zone hydrological processes such as organic 
contamination remediation and solute transports. Moving forward, the 
development and utilization of more accurate relaxation time modeling 
and inversion methods, together with the optimized survey design 
method for inductive coupling and multi-channel geoelectrical systems, 
warrant attention in future research endeavors.
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Bayer, P., Comunian, A., Höyng, D., Mariethoz, G., 2015. High resolution multi-facies 
realizations of sedimentary reservoir and aquifer analogs. Sci. Data 2 (1), 1–10. 
https://doi.org/10.1038/sdata.2015.33.

Binley, A., Slater, L., 2020. Resistivity and Induced Polarization: Theory and Applications 
to the Near-Surface Earth. Cambridge University Press. https://doi.org/10.1017/ 
9781108685955.

Day-Lewis, F.D., Singha, K., Binley, A.M., 2005. Applying petrophysical models to radar 
travel time and electrical resistivity tomograms: resolution-dependent limitations. 
J. Geophys. Res. Solid Earth 110 (B8). https://doi.org/10.1029/2004JB003569.

De Lima, O., Niwas, S., 2000. Estimation of hydraulic parameters of shaly sandstone 
aquifers from geoelectrical measurements. J. Hydrol. 235 (1–2), 12–26. https://doi. 
org/10.1016/S0022-1694(00)00256-0.

Dekker, T.J., Abriola, L.M., 2000. The influence of field-scale heterogeneity on the 
surfactant-enhanced remediation of entrapped nonaqueous phase liquids. J. Contam. 
Hydrol. 42 (2–4), 219–251. https://doi.org/10.1016/S0169-7722(99)00091-1.

Edwards, L., 1977. A modified pseudosection for resistivity and IP. Geophysics 42 (5), 
1020–1036. https://doi.org/10.1190/1.1440762.

Ewing, R.P., Berkowitz, B., 1998. A generalized growth model for simulating initial 
migration of dense non-aqueous phase liquids. Water Resour. Res. 34 (4), 611–622. 
https://doi.org/10.1029/97WR03754.

Ewing, R.P., Berkowitz, B., 2001. Stochastic pore-scale growth models of DNAPL 
migration in porous media. Adv. Water Resour. 24 (3–4), 309–323. https://doi.org/ 
10.1016/S0309-1708(00)00059-2.

Griffiths, D., Turnbull, J., Olayinka, A., 1990. Two-dimensional resistivity mapping with 
a computer-controlled array. First Break 8 (4). https://doi.org/10.3997/1365- 
2397.1990008.

Han, Z., Kang, X., Singha, K., Wu, J., Shi, X., 2024a. Real-time monitoring of in situ 
chemical oxidation (ISCO) of dissolved TCE by integrating electrical resistivity 
tomography and reactive transport modeling. Water Res. 252, 121195.

Han, Z., Kang, X., Wu, J., Shi, X., Jiang, J., 2024b. Improved solute transport modeling 
through joint estimation of hydraulic conductivity and dispersivities from tracer and 
ERT data. Adv. Water Resour. 104655.

Heinz, J., Kleineidam, S., Teutsch, G., Aigner, T., 2003. Heterogeneity patterns of 
quaternary glaciofluvial gravel bodies (SW-Germany): application to hydrogeology. 
Sediment. Geol. 158 (1–2), 1–23. https://doi.org/10.1016/S0037-0738(02)00239-7.

Huan, X., Marzouk, Y.M., 2013. Simulation-based optimal Bayesian experimental design 
for nonlinear systems. J. Comput. Phys. 232 (1), 288–317.

Johansson, S., Fiandaca, G., Dahlin, T., 2015. Influence of non-aqueous phase liquid 
configuration on induced polarization parameters: conceptual models applied to a 
time-domain field case study. J. Appl. Geophys. 123, 295–309. https://doi.org/ 
10.1016/j.jappgeo.2015.08.010.

Johnson, D.L., Plona, T., Kojima, H., 1987. Probing porous media with 1st sound, 2nd 
sound, 4th sound, and 3rd sound. In: Paper Presented at AIP conference proceedings. 
American Institute of Physics. https://doi.org/10.1063/1.36398.

Kang, X., Shi, X., Deng, Y., Revil, A., Xu, H., Wu, J., 2018. Coupled hydrogeophysical 
inversion of DNAPL source zone architecture and permeability field in a 3D 
heterogeneous sandbox by assimilation time-lapse cross-borehole electrical 
resistivity data via ensemble Kalman filtering. J. Hydrol. 567, 149–164. https://doi. 
org/10.1016/j.jhydrol.2018.10.019.

Kang, X., Kokkinaki, A., Kitanidis, P.K., Shi, X., Revil, A., Lee, J., Soueid Ahmed, A., 
Wu, J., 2020. Improved characterization of DNAPL source zones via sequential 
hydrogeophysical inversion of hydraulic-head, self-potential and partitioning tracer 
data. Water Resour. Res. 56 (8), e2020WR027627. https://doi.org/10.1029/ 
2020WR027627.

Kang, X., Kokkinaki, A., Shi, X., Yoon, H., Lee, J., Kitanidis, P.K., Wu, J., 2022. 
Integration of deep learning-based inversion and Upscaled mass-transfer model for 
DNAPL mass-discharge estimation and uncertainty assessment. Water Resour. Res. 
58 (10), e2022WR033277. https://doi.org/10.1029/2022WR033277.

S. Qiang et al.                                                                                                                                                                                                                                   Journal of Contaminant Hydrology 267 (2024) 104452 

13 

https://doi.org/10.1029/2021WR031366
https://doi.org/10.1029/2021WR031366
https://doi.org/10.1021/es802566s
https://doi.org/10.1021/es802566s
https://doi.org/10.1029/2019WR026279
https://doi.org/10.1007/s40571-015-0098-8
https://doi.org/10.1038/sdata.2015.33
https://doi.org/10.1017/9781108685955
https://doi.org/10.1017/9781108685955
https://doi.org/10.1029/2004JB003569
https://doi.org/10.1016/S0022-1694(00)00256-0
https://doi.org/10.1016/S0022-1694(00)00256-0
https://doi.org/10.1016/S0169-7722(99)00091-1
https://doi.org/10.1190/1.1440762
https://doi.org/10.1029/97WR03754
https://doi.org/10.1016/S0309-1708(00)00059-2
https://doi.org/10.1016/S0309-1708(00)00059-2
https://doi.org/10.3997/1365-2397.1990008
https://doi.org/10.3997/1365-2397.1990008
http://refhub.elsevier.com/S0169-7722(24)00156-6/rf0070
http://refhub.elsevier.com/S0169-7722(24)00156-6/rf0070
http://refhub.elsevier.com/S0169-7722(24)00156-6/rf0070
http://refhub.elsevier.com/S0169-7722(24)00156-6/rf0075
http://refhub.elsevier.com/S0169-7722(24)00156-6/rf0075
http://refhub.elsevier.com/S0169-7722(24)00156-6/rf0075
https://doi.org/10.1016/S0037-0738(02)00239-7
http://refhub.elsevier.com/S0169-7722(24)00156-6/rf0085
http://refhub.elsevier.com/S0169-7722(24)00156-6/rf0085
https://doi.org/10.1016/j.jappgeo.2015.08.010
https://doi.org/10.1016/j.jappgeo.2015.08.010
https://doi.org/10.1063/1.36398
https://doi.org/10.1016/j.jhydrol.2018.10.019
https://doi.org/10.1016/j.jhydrol.2018.10.019
https://doi.org/10.1029/2020WR027627
https://doi.org/10.1029/2020WR027627
https://doi.org/10.1029/2022WR033277


Kang, X., Power, C., Kokkinaki, A., Revil, A., Wu, J., Shi, X., Deng, Y., 2023. 
Characterization of DNAPL source zones in clay-sand media via joint inversion of DC 
resistivity, induced polarization and borehole data. J. Contam. Hydrol. 258, 104240. 
https://doi.org/10.1016/j.jconhyd.2023.104240.

Kang, X., Kokkinaki, A., Shi, X., Lee, J., Guo, Z., Ni, L., Wu, J., 2024. Modeling upscaled 
mass discharge from complex DNAPL source zones using a Bayesian neural network: 
prediction accuracy, uncertainty quantification and source zone feature importance. 
Water Resour. Res. 60 (7), e2023WR036864. https://doi.org/10.1029/ 
2023WR036864.

Kemna, A., Binley, A., Cassiani, G., Niederleithinger, E., Revil, A., Slater, L., Williams, K. 
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