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A B S T R A C T

As Water Sensitive Urban Design (WSUD) is a key strategy in integrated urban water management worldwide, 
there is a need for robust monitoring of WSUD systems. Being economical and flexible for operation and 
communication, low-cost sensor systems show great potential to mainstream digital water management. Yet, 
such systems are insufficiently tested, casting doubt on the reliability of their measurements. Here, we document 
a robust testing approach for a pressure transducer water level low-cost sensor (KIT0139) and a traditional sensor 
(OTT PLS) in both laboratory and field conditions. We tested six different devices under three temperatures 
relevant to tropical climate: 25, 30, 35 ◦C and proposed a field calibration approach. Results reveal that the low- 
cost sensors were robust as the six individual devices performed consistently under different testing conditions. 
After calibration, low-cost sensors provided sufficient accuracy (±10mm) and precision for water levels more 
than 0.05m. While varying water flow direction did not significantly influence the performance, we showed that 
calibration should be done for individual devices. In addition, large (>5 ◦C) variations in water temperature and 
varying wet/dry conditions may also influence the performance of the low-cost sensors. The field calibration 
approach was validated in a 3-month experiment, confirming that this model of low-cost sensor can effectively 
replace traditional sensors in the field in tropical climates. Our study confirms that systematic and thorough 
testing is needed for low-cost sensors systems to realize their full potential for scientific-grade applications. We 
provide practical recommendations to conduct such testing from the laboratory to the field.

1. Introduction

Urban hydrological processes have been considerably altered by 
rapid urbanization, which has resulted in the increase of water-related 
problems including floods and water pollution (Reu Junqueira et al., 
2021). Flood risk has significantly increased in urban areas due to the 
combination of intensifying stormwater events brought on by climate 
change (Chang et al., 2021; Rangari et al., 2021), highlighting the sig
nificance of Sustainable Urban Water Management principles in urban 
planning (Kuller et al., 2017). As a complementary approach to tradi
tional engineered and centralized drainage systems, Water Sensitive 
Urban Design (WSUD) relies on natural and semi-natural systems that 
are able to retain and purify runoff water (Gleason and Casiano Flores, 
2021). WSUD integrates water cycle management with the built envi
ronment by retaining, filtering, storing, and utilizing runoff water 

resources in the urban area (Gleason and Casiano Flores, 2021). In 
addition to or in place of the conventional infrastructure, WSUD offers 
multi-functional landscapes (e.g., wetlands, bioretention basins, rain 
gardens, cleaning biotopes, green roofs) with numerous benefits (e.g., 
flood control, water purification, heat mitigation, carbon sequestration), 
making it the essential long-term strategy in integrated and sustainable 
urban water management (Keesstra et al., 2018; Tzoulas et al., 2007).

To further understand the role of WSUD in sustainable urban water 
management, the effectiveness of WSUD has been extensively studied at 
watershed and sub-watershed scales (Bellezoni et al., 2021; Gunnell 
et al., 2019; Yau et al., 2017). However, such studies often ignore the 
field performance of WSUD at the site scale, lacking sufficient empirical 
data from field monitoring for the model calibration and validation 
(Hamel and Tan, 2021; Yin et al., 2021). The absence of field monitoring 
of WSUD is mainly due to the constrained budgets, especially in the 
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developing areas such as Global South and most countries in Southeast 
Asia (Hamel and Tan, 2021). Since traditional monitoring systems can 
be costly and time-consuming, relatively few attempts were made for 
monitoring the medium to long-term performance of WSUD systems in 
the Tropics (Bertrand-Krajewski et al., 2021; Hamel and Tan, 2021). The 
limited monitoring efforts restrict the ability of public agencies and 
private developers to provide adequate maintenance for existing WSUD 
systems and to optimize the design of new systems (Kuller et al., 2019).

Compared to traditional monitoring equipment, a low-cost sensor 
(LCS) presents great economic advantages by providing useful data at a 
considerably lower expense (Hamel et al., 2024). In addition, low-cost 
sensors often work on open-source platforms (e.g., Arduino), hence 
they are more flexible in operation and communication (Cherqui et al., 
2020; Mao et al., 2020). LCS technology has been emerging in many 
fields and shows reliable results (Mao et al., 2019), including for air 
quality assessment (Ali et al., 2016; Levy Zamora et al., 2019; Morawska 
et al., 2018), air temperature measurement (Sun et al., 2019), water 
quality monitoring (Alam et al., 2021; Shi et al., 2021), and agriculture 
(Valente et al., 2020). Yet, there is insufficient evidence of the perfor
mance of off-the-shelf LCS for hydrology, including for water level – an 
essential parameter for monitoring the performance of WSUD systems. 
Zhu et al., (2023) reviewed commercially available LCSs for monitoring 
stormwater and related meteorological variables, including five com
mercial low-cost water level sensors, and concluded that their perfor
mance and associated uncertainties require further testing and 
evaluation for better quantification.

There are two main types of water level sensors: contact and non- 
contact sensors, including pressure transducer, ultrasonic sensor, radar 
sensor, laser sensor, capacitive devices, etc (Loizou and Koutroulis, 
2016; Segovia-Cardozo et al., 2021; Tabada et al., 2020). All types of 
sensors offer distinct advantages and disadvantages in field applications. 
Contact sensors, such as pressure transducers, are not affected by 
meteorological conditions like rainfall and wind, and environmental 
conditions including human and animal activities. However, they are 
prone to interference from sediment accumulation inside the water since 
they are typically submerged. On the other hand, non-contact sensors, 
including ultrasonic, radar, and laser sensors, can be conveniently 
installed above the water without entering the waterway. Nonetheless, 
they are more susceptible to environmental disturbances, such as air 
temperature, wind, rainfall, and obstacles between the sensor and the 
water. These obstacles may include presence of vegetation, wildlife ac
tivity, birds, insects, spiders, or even human vandalism (Catsamas et al., 
2023; Intharasombat and Khoenkaw, 2015; Zhang et al., 2019), which 
can reduce the performance of the sensor in practice. Uneven concrete 
walls in stormwater manholes and debris in drains can also reduce the 
performance of ultrasonic and radar sensors due to their wide detection 
angles (Shi et al., 2021). Thus, submersible pressure transducers are 
often considered more reliable options for field applications in natural 
environments with unpredictable human and animal activity (Zhu et al., 
2023).

Cherqui et al., (2020) tested and assessed the performance of three 
types of low-cost water level sensors in the lab platform, confirming the 
reliability of the pressure transducer. However, the influence of tem
perature was not systematically evaluated, particularly for low-cost 
sensors that, in theory, integrate temperature compensation. This may 
be problematic in the Tropics where higher temperatures are reached in 
the environment. Although some low-cost sensors already incorporate 
built-in temperature compensation technology, it remains unclear 
whether this technology performs as effectively as that in traditional 
sensors, especially in the Tropics. This gap is common in the literature 
with the majority of studies ignoring field temperature conditions (e.g., 
Andang et al., 2019; Dswilan et al., 2021; Gonzaga et al., 2020; Kalya
napu et al., 2023; Kombo et al., 2021; Koshoeva et al., 2021; Nasution 
et al., 2018; Patil et al., 2020; Shrenika et al., 2017; Zhang et al., 2019). 
While these studies have tested ultrasonic, laser and pressure water level 
sensors, none have thoroughly examined the potential impact of 

temperature on sensor performance. In addition, studies commonly 
evaluate one device (e.g., Andang et al., 2019; Espinoza Ortiz et al., 
2023; Intharasombat and Khoenkaw, 2015; Nasution et al., 2018; Parra 
et al., 2017; Paul et al., 2020; Segovia-Cardozo et al., 2021), assuming it 
is representative of a model or manufacturer’s quality. However, lower 
quality control standards in the low-cost sensor industry may lead to 
different levels of performance from different devices (Hamel et al., 
2024). Therefore, at least three duplicates for the LCS should be tested 
simultaneously to further confirm the reliability of the LCS.

In this study, we document a testing approach for the off-the-shelf 
LCS used for affordable and flexible monitoring of WSUD systems, 
demonstrating that the tested LCS devices can be used for scientific- 
grade measurements after calibration and under limited temperature 
variations. The specific objectives are to: 1) Compare LCSs with a 
traditional sensor (TS) in the laboratory using a range of performance 
metrics; 2) Assess the change in performance of the sensors in laboratory 
conditions controlled for water flow direction in the column (up or 
down) and temperature (tested for tropical temperatures ranging from 
25 ◦C to 35 ◦C); 3) Propose a field calibration approach for the LCS and 
evaluate its performance in tropical field conditions.

We selected the OTT PLS model, a commonly used traditional water 
level sensor. The model of low-cost water level sensor, KIT0139, was 
chosen for the following reasons: first, it is an off-the-shelf sensor, 
making it more accessible than sensors still under development in the 
laboratory, and it can be readily purchased from various local distrib
utors. Second, like the TS, it features a stainless-steel protective casing, 
which shields the pressure transducer and offers protection for harsh 
environments. The pressure sensor MS5803–01BA, by contrast, experi
enced a drift issue in water due to moisture absorption by its white 
protective layer, requiring re-calibration every two weeks to maintain 
an accuracy of ±10mm (Shi et al., 2021). Additionally, to prevent 
corrosion that could compromise the performance of electronic com
ponents, using a stainless-steel base instead of iron has been recom
mended (Pearce et al., 2024). Therefore, KIT0139, with its waterproof 
stainless-steel housing, is worth testing. Third, it includes a vented tube 
to compensate for atmospheric pressure, a feature absents in other 
off-the-shelf pressure sensors like the MS5803 model, commonly used in 
previous studies (Chan et al., 2021; Cherqui et al., 2020; Kombo et al., 
2021; Shi et al., 2021). Using a vented tube could eliminate the need for 
an additional sensor exposed to the air for measuring atmospheric 
pressure, which in natural environments could be impacted by wildlife, 
insects, spiders, or even human vandalism as aforementioned. Also, a 
vented tube enables immediate, accurate water depth readings in the 
field without post-deployment processing or applying proximate pres
sure corrections (Pearce et al., 2024). Finally, this low-cost sensor, 
similar to the TL231 model mentioned in (Zhu et al., 2023), has not yet 
been extensively investigated in scientific papers and requires testing to 
provide valuable insights for broader user applications. Both traditional 
and low-cost sensors are pressure transducers (Table S-1), which mea
sure the water depth by converting the pressures at different depths of 
liquid into corresponding current or digital signals. However, the 
traditional sensor (~1000 USD) is approximately 20 times more 
expensive than the low-cost sensor (~50 USD). Detailed specifications 
can be found in the Supplementary Material (Table S-1).

Our study comprises two parts. The main component is a laboratory 
experiment where we tested six LCS devices in columns filled then 
emptied with water, at temperatures 25 ◦C, 30 ◦C, and 35 ◦C (Fig. 5). We 
computed the measurement errors for each sensor with reference to the 
water level measured with a graduated ruler (1mm mark) and conducted 
calibration and validation using an ordinary least squares (OLS) method. 
To identify whether there is a universal calibration line for the LCS, 
statistical analyses including F test and T test were done to compare the 
calibration lines generated from each individual LCS under each water 
flow direction and each water temperature. In addition to computing the 
laboratory performance metrics for both types of sensors, we also pre
sent the performance of the LCS several months later both in the 
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laboratory and in the field.

2. Results

2.1. Sensor calibration and validation

All unitless digital readings from the six LCS exhibited a strong linear 
correlation with the reference water level, with R2 values approaching 1. 
Calibration lines generated for six LCS (KIT1-KIT6) are shown in Fig. S- 
10. The results of the statistical analyses indicated that no two calibra
tion lines can be regarded as identical, i.e. that in theory, a given sensor 
should be calibrated individually, and for a given flow direction or 
temperature range. To further evaluate whether using different cali
bration lines — generated via the OLS method for individual LCS devices 
or for different temperatures — would significantly affect the accuracy 
of the LCS, errors introduced by applying calibration lines from other 
temperatures and sensors were compared to those from the original 
calibration line. The errors generated by using calibration lines under 
different water temperatures did increase the error range compared to 
using the original calibration line (Figs. 1, S-5 and S-6), but remained 
within an acceptable range (MAE less than 50mm) compared to the 
errors introduced by using calibration lines from different LCS, which 
were consistently high (MAE more than 100mm). Thus, our results 
suggest that the calibration should be done for each individual sensor, 
with sensitivity to temperature further investigated in Section 2.4.

Three-point calibration was assessed to simplify the calibration 
process of the LCS and to provide guidance for the future field sensor 
calibration. For two devices, twenty combinations of three points from 
the reference water levels (0.1m, 0.2m, 0.3m, 0.4m, 0.5m, 0.6m) were 
used to generate the three-point calibration lines (Figs. 2 and S-18). The 
errors of the validated measurements by the LCS compared to the 

reference water levels are shown in Figs. 2 and S-18, indicating a similar 
error range with the whole range calibration (0~1.7m). This confirms 
the feasibility of conducting three-point calibration of the LCS in a field 
implementation.

2.2. Sensor accuracy assessment

Post-calibration, errors for each of the six LCS were within the range 
of [-15, 15]mm (Fig. 3). The largest errors generally occurred for water 
levels of [0, 0.1] m. After additional measurements were conducted 
within that range, we found that below 0.05m, errors exhibited a 
random pattern, and were generally higher than for other water levels, 
indicating that the LCS is more reliable above 0.05m water level. 
Overall, the mean errors of the six LCS were within [-10, 10]mm, and the 
mean errors of the TS were less than 0.5mm over the measuring range 
(Fig. 4). According to the accuracy indicators MAE and RMSE shown in 
Table 1, the MAE and RMSE values of the six LCS seemed consistent 
under different water flow direction (Water Up and Water Down) and 
varying water temperature from 25 ◦C to 35 ◦C, indicating that the water 
flow direction and water temperature do not have a significant impact 
on the accuracy of the calibrated LCS measurements. A similar conclu
sion was reached for the TS as well. Compared to the accuracy given by 
the manufacturer (Table 1), which indicated a theoretical MAE of 
4.4mm for the LCS and 0.44mm for the TS over our testing range of 
0~1.7m, the LCS exceeded this value on three occasions, and the TS 
slightly exceeded it on one occasion, confirming the overall reliability of 
the tested sensors.

2.3. Sensor precision assessment

Numerical values of precision indicators (SD and CV) calculated for 

Fig. 1. MAE (mm) after calibration (Cali_type_1, in green) when applying calibration lines from different individual low-cost sensor at 25 ◦C (KIT1/KIT2/KIT3/KIT4/ 
KIT5/KIT6) (Cali_type_4 - Cali_type_8, shown in blue in the figure) and different water temperatures (30 ◦C/35 ◦C) (Cali-type_2/Cali_type_3, shown in red).

N. Ding et al.                                                                                                                                                                                                                                    Water Research X 27 (2025) 100298 

3 



the validated measurements from the sensors are shown in Table 2. 
Overall, the SD values and CV values for the six LCS and TS were small, 
indicating that the precision of both LCS and TS are good. Also, the SD 
and CV values of each sensor showed very little variation under the 
different testing conditions (varying water flow direction and water 
temperature), which confirmed that different testing conditions do not 
significantly influence the precision of LCS and TS tested. To further 
observe the variability of the LCS over the measuring range, the error 
between each measurement from the LCS with the reference value at 
each water level was compared and shown in the boxplot (Fig. S-3). The 
variability of measures by the LCS showed most of the measurements at 
each reference water level varied within 5mm at two water flow di
rections and three water temperature degrees. No trend of variability 
changing either for the different water flow directions or the water 
temperatures was found for the six LCS. For different individual LCS, the 

boxplot showed that the low-cost sensors tested in group A (KIT1, KIT2, 
KIT3) have larger variabilities than the sensors tested in group B (KIT4, 
KIT5, KIT6), indicating a potential influence of varying dry and wet 
conditions on the LCS’s variability. This observation is further supported 
by the standard deviation (SD) and coefficient of variation (CV) values 
for the two groups of LCS. The SD values for the LCS in Group B (KIT4, 
KIT5, KIT6) were generally lower than those in Group A (KIT1, KIT2, 
KIT3). A similar trend was observed for the CV values, with Group B 
exhibiting lower CV values compared to Group A.

2.4. Sensitivity to water temperature

Overall, based on the variations in accuracy (MAE and RMSE) and 
precision (SD and CV) under different water temperature conditions, 
water temperature did not show a significant impact on the performance 

Fig. 2. Twenty three-point calibration lines and the associated errors of the validated measurements for LCS KIT1, compared to the error range of the whole-range 
calibration at 25 ◦C. Panel (a) displays the 20 three-point calibration lines for KIT1, while panel (b) illustrates the error range when applying these calibration lines, 
compared to the error range using the whole-range calibration.
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of the six LCS devices after calibration. For instance, the MAE variation 
remained below 0.073mm for a temperature range of 25–30 ◦C, below 
0.35mm for a range of 25–35 ◦C, and below 0.76mm for a range of 
30–35 ◦C. To further explore whether there is an influence of water 
temperature on the sensor calibration, a comparison of the calibration 
lines (focusing on the values of slopes and intercepts) under different 
water temperature degrees was conducted. The results indicated a 
minimal influence of water temperature on the calibration lines of the 
sensors, and there was no trend among the six sensors found between the 
slope and intercept values of the calibration lines under varying water 
temperatures of 25 ◦C to 35 ◦C (Fig. S-7).

Fig. 1 shows the MAE (mm) resulting from the application of 
different calibration lines to individual low-cost sensors at 25 ◦C. The 
results showed that using calibration lines derived from different tem
peratures (30 ◦C or 35 ◦C) increased the MAE range up to approximately 
50mm for one of the six devices (KIT1), and up to about 25mm for the 
other five devices (KIT2, KIT3, KIT4, KIT5, KIT6). Figs. S-5 and S-6 show 
similar results for other temperatures. While these errors are greater 
than those obtained for a constant temperature (Table 1), they remain 
acceptable for small temperature variations in the field. For example, 
the temperature data collected during the three-month field experiment 
(Fig. S-17) shows that temperatures mostly remained within a 3 ◦C 
range. Therefore, the measurement errors in the field, under varying 
temperature conditions, are expected to be lower.

2.5. Long-term reliability, stability of the low-cost sensor

The three-point calibration experiment was conducted eight months 
after the main experiment. Of the three sensors from Group A (KIT1, 
KIT2 and KIT3) used for this experiment, one of them (KIT2) malfunc
tioned due to a presumed damage of the ground wire inside the sensor 
cable. The other two sensors showed stable performance compared to 
the main experiment, with the error range after the three-point cali
bration remaining generally consistent with that observed during the 
main experiment (Figs. 2 and S-18).

The performance of the LCS was also observed with the TS in a field 
experiment conducted from July to October 2023. The three-point 
calibration line and the corresponding errors of the validated measure
ments are illustrated in Fig. S-15. The raw measurements from the LCS 
(represented as digital values without units) exhibited a strong linear 
correlation with the reference measurements from the TS. After applying 
the three-point calibration, most errors fell within the range of [-10, 10] 
mm, with a few outliers in July showing larger errors up to 20mm. 
Notably, errors exceeding 10mm accounted for just about 0.05% of the 
total 85,920 measurements shown in Fig. S-15. This performance was 
generally consistent with the main lab experiment, confirming the 
reliability of the LCS under field conditions and suggesting positive 
potential for long-term reliability and stability.

To evaluate the applicability of one-point calibration using an offset 
value for quick field adjustments, a comparison was conducted between 
three-point calibration and one-point calibration. The results (Fig. S-16) 

Fig. 3. Errors introduced by the validated measurements of LCS (KIT1-KIT6) at three water temperatures over the measuring range. Red points represent the errors of 
measurements at the water going up flow direction, while blue points represent the errors of measurements at the water going down flow direction.
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showed that the errors associated with the monthly three-point cali
bration (blue points) are tightly distributed around zero, with an MAE of 
1.13mm over the reference water level range for August 2023 and 
1.17mm for September 2023, demonstrating the high accuracy of this 
method. In comparison, the one-point offset calibration (red points), 
applied after the three-point calibration from July 2023, produces a 
slightly wider but still comparable error range, with an MAE of 1.29mm 
for August 2023 and 2.46mm for September 2023. Additionally, the 
errors for the one-point calibration remained within a smaller range 
(less than 6mm) compared to the errors (Fig. S-15) associated with using 
only the three-point calibration line from July 2023 for data in August 
and September (less than 9mm).

3. Discussion

3.1. Assessment of the performance of the sensors

During the main laboratory experiments, there were around 10,800 
measurements from each of the LCS and 1080 measurements from 
traditional sensor recorded by the Arduino board, over a range of water 
levels under two water flow directions and at three different water 
temperatures. The traditional sensor has high reliability with about 
0.5mm accuracy compared to the reference water level, confirming that 
laboratory testing might not be needed for this sensor. No obvious dif
ference of the accuracy and precision was found from the six LCS, but 
sensor-specific calibration is needed for each individual sensor accord
ing to the comparison of calibration lines. As illustrated in Section 2.1, 

Fig. 4. Mean errors (mm) introduced by the validated measurements of LCS (KIT1-KIT6) compared to the TS (OTT PLS) at three water temperature degrees over the 
measuring range.

Table 1 
Numerical values of accuracy (MAE and RMSE) are shown in this table.

Type of sensor LCS (Low-cost sensors) TS (Traditional sensor)

Sensor names KIT1 KIT2 KIT3 KIT4 KIT5 KIT6 OTT PLS

Mean Absolute Error (MAE) 
Unit: mm

25 ◦C Water Up 2.14 2.33 1.89 1.23 3.05 4.99 0.52
Water Down 2.93 2.34 2.19 1.22 3.74 3.81 0.06

30 ◦C Water Up 1.84 1.35 1.53 1.00 4.19 4.75 0.19
Water Down 3.70 3.07 2.42 1.44 2.00 2.98 0.17

35 ◦C Water Up 5.64 1.23 1.51 1.04 2.81 2.35 0.10
Water Down 2.15 2.16 2.42 1.14 1.91 2.33 0.12

Root Mean Square Error (RMSE) 
Unit: mm

25 ◦C Water Up 2.35 2.59 2.17 1.28 3.19 5.10 0.53
Water Down 3.21 2.57 2.52 1.28 3.85 3.92 0.08

30 ◦C Water Up 2.04 1.60 1.72 1.07 4.30 4.83 0.27
Water Down 3.84 3.27 2.63 1.50 2.14 3.08 0.25

35 ◦C Water Up 5.78 1.50 1.80 1.10 2.91 2.49 0.14
Water Down 2.34 2.38 2.65 1.21 2.06 2.47 0.17

Accuracy given by Manufacturers 4.4mm of testing range 0~1.7m 0.44mm of testing range 0~1.7m
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using the calibration line derived from another LCS device could lead to 
very large errors (MAE more than 100mm). In addition, minimal in
fluence of the water temperature and water flow direction was found for 
the six low-cost sensors according to the relatively consistent accuracy 
and precision at two water flow directions (up and down) and three 
water temperatures (25 ◦C, 30 ◦C, 35 ◦C). The exchangeable calibration 
lines also indicated that the variation of the water temperature within a 
limited range (<5 ◦C) and water flow direction in the field will not be a 
concern for this low-cost water level sensor monitoring system.

Another main finding from the lab experiments is that the perfor
mance of the LCS in measuring water level may be affected by the water 
level in the field. Specifically, it may give a larger bias when the water 
depth of the WSUD system is relatively low (under 0.05m) as illustrated 
in Section 2.2, and manual check found that the current signal from the 
low-cost sensor became less sensitive when the water pressure became 
relatively low. This may lead to potential underestimation or over
estimation of the water quantity variation of the WSUD system in the 
field implementation. In addition, the change of wet/dry condition 
could also slightly affect the performance of the low-cost sensor, as re
flected in the increased variability of measurements from sensors in 
group A (KIT1, KIT2, KIT3) compared to group B (KIT4, KIT5, KIT6), as 
detailed in Section 2.3. This should be considered in field applications.

There are also other off-the-shelf low-cost water level sensors that 
have been tested or used in previous studies, including the ultrasonic 
sensors JSN-SR04T, HC-SR04, MB7092, pressure sensor MS5803–01BA, 
laser-ranging sensor VL53L0X, etc. (Andang et al., 2019; Cherqui et al., 
2020; Nasution et al., 2018). Among them, MS5803–01BA and 
JSN-SR04T were the best performing sensors in the laboratory: 
MS5803–01BA presented an accuracy of ± 5mm for water level up to 
2m, and JSN-SR04T showed an accuracy of ±7mm in the range 
0.225~1.9m. Since the temperature conditions for these two sensors is 
in [21~25] ◦C, they can be comparable to the performance of KIT0139 
at 25 ◦C water temperature in our lab testing experiment. KIT0139 has 
similar accuracy (mean errors within ± 10mm) for the water level range 
of 0~1.7m. Overall, the low-cost water level sensor KIT0139 tested in 
this study has a similar good performance as the two best performing 
sensors in the previous studies. However, the advantages of the KIT0139 
sensor, including its protective casing and vented tube for automatic 
atmospheric pressure compensation, make it a more promising 
replacement for traditional sensors in field applications. To our knowl
edge, our study is the first to test the LCS in high temperatures repre
sentative of Tropical climates both in the laboratory and field 
conditions, which provides confidence in the reliability of the sensors for 
field implementation in the Tropics. Additionally, our DIY real-time 
field monitoring system with the low-cost sensor model and its signal 
processing protocol with fully shareable codes, can be easily adopted 
and replicated by other practitioners for implementation in tropical 
regions.

3.2. Practical recommendations of low-cost sensor monitoring system

Considering that the expected accuracy of field application is around 
±20mm (Cherqui et al., 2020), our results indicate a great potential of 
the low-cost water level sensor KIT0139 in water quantity monitoring of 
WSUD systems in the field. We recommend, however, to carefully 
consider the depth at which the sensor is installed: a minimum depth of 
50mm of water will allow continuous immersion of the sensor and avoid 
measurements in the 0–0.05m range, which seems less reliable. The 
result from the lab experiments also suggested that limited water tem
perature variations (<5 ◦C) would not be a concern in the calibration of 
the low-cost water level sensor KIT0139, but the calibration for each 
individual sensor is required for the field implementation. The 
three-point calibration method has been evaluated and confirmed to be 
useful for this low-cost water level monitoring system in the field. In 
practice, a three-point calibration is recommended during the initial 
installation, which can be performed similarly to the field experiment in 
this study. However, instead of using the TS to measure reference water 
levels, manual measurements or a bucket on site can be used. Section 2.5
and Supplementary Material S6 demonstrate that while the regular use 
of three-point calibration (e.g., on a monthly basis) remains the more 
precise method, applying one-point calibration as a subsequent adjust
ment after an initial three-point calibration offers a promising approach 
to simplify the calibration process in field applications. Nevertheless, the 
long-term effectiveness of both calibration methods needs to be further 
investigated.

The results from the main experiment, the three-point calibration 
experiment and the field experiment demonstrated the good stability of 
the LCS (KIT0139), as detailed in Section 2.5. These findings suggest 
positive long-term reliability for the LCS in field implementations. Since 
the water used for the laboratory experiments was tap water, the water 
quality in the field may differ, potentially containing more sediments 
and debris. This could lead to drift in sensor measurements and neces
sitate manual maintenance of the sensors in the field. In our field 
experiment, the water indeed contained some sediments and leaf debris, 
and animal activity was observed in the sump where the sensors were 
installed, including lizards, frogs, and snakes. However, the sensors were 
well protected by the stainless-steel casing, and the field maintenance 
for both the LCS and TS during the experiment was minimal. Never
theless, the exact long-term reliability and stability of the LCS in field 
conditions require exploration through extended field applications, and 
longer-term observations are necessary to fully assess the cost- 
effectiveness of the LCS compared to the TS. While purchasing price is 
an important factor, long-term reliability, stability, lifespan, and main
tenance costs should also be considered when evaluating the LCS as a 
replacement for traditional sensors in long-term field applications.

Table 2 
Numerical values of precision (SD and CV) are shown in this table.

Type of sensor LCS (Low-cost sensors) TS (Traditional sensor)

Sensor names KIT1 KIT2 KIT3 KIT4 KIT5 KIT6 OTT PLS

Standard Deviation (SD) Unit: mm 25 ◦C Water Up 1.05 1.26 1.30 0.33 0.90 0.83 0.06
Water Down 1.23 1.31 1.37 0.37 0.90 0.87 0.06

30 ◦C Water Up 0.92 1.11 1.09 0.39 0.77 0.74 0.21
Water Down 0.94 1.14 1.10 0.38 0.80 0.75 0.20

35 ◦C Water Up 0.99 1.26 1.25 0.36 0.78 0.78 0.10
Water Down 0.89 1.10 1.15 0.38 0.77 0.77 0.13

Coefficient of Variation (CV), % 25 ◦C Water Up 0.21 0.26 0.26 0.06 0.15 0.13 0.02
Water Down 0.23 0.24 0.26 0.07 0.14 0.12 0.01

30 ◦C Water Up 0.17 0.22 0.22 0.07 0.11 0.10 0.05
Water Down 0.18 0.24 0.24 0.07 0.12 0.12 0.02

35 ◦C Water Up 0.18 0.28 0.28 0.07 0.13 0.12 0.02
Water Down 0.15 0.20 0.22 0.07 0.11 0.11 0.03
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4. Conclusion

This study explored the potential of low-cost sensors in monitoring 
the performance of Water Sensitive Urban Design systems for urban 
stormwater management. The performance of a selected low-cost water 
level sensor (KIT0139) was evaluated alongside a traditional water level 
sensor (OTT PLS) in laboratory and field experiments. Key indicators of 
accuracy, including MAE and RMSE, as well as precision indicators such 
as SD and CV, were assessed under various testing conditions. These 
conditions included two water flow directions (up and down) and three 
water temperatures (25 ◦C, 30 ◦C, and 35 ◦C).

The results indicated that the traditional sensor exhibited high reli
ability and does not require further calibration (though it is always 
recommended to calibrate sensors during field deployment). This 
traditional sensor could serve as the reference for field observations of 
the low-cost sensors. Our laboratory experiment demonstrated that all 
six low-cost sensors achieved good accuracy and precision, and their 
performance was not significantly affected by varying water flow di
rections. However, varying wet and dry conditions slightly influenced 
the variability of the LCS measurements. Calibration is necessary for 
each low-cost sensor device during field deployment. Limited water 
temperature variations (<5 ◦C) would not be a concern in the calibration 
of LCS in the field. Our field experiment further confirmed the appli
cability of three-point calibration and reliability of the LCS in the field 
conditions. In conclusion, with sufficient accuracy and precision, along 
with market availability, durability with protective casing, and signifi
cant cost advantages compared to traditional sensors, the low-cost 
sensor device tested in this study is recommended to be used in the 
WSUD monitoring that requires to be widely promoted with no more 
strict restriction of accuracy.

For future work, alternative low-cost sensors, including pressure, 
ultrasonic, laser, and radar sensors with promising advantages, should 
be identified and tested in both laboratory and field settings for various 
WSUD designs that require different measuring ranges and accuracy 
restrictions. Additionally, the long-term reliability, stability, lifespan, 
and maintenance costs of low-cost sensors should be further explored in 
field applications.

5. Methodology

5.1. Laboratory experimental setup

The lab testing platform (Fig. 5) mainly consists of the following key 

components: an acrylic water column, water level sensors, a microcon
troller (Arduino MKR1310 board), a water temperature controller 
(PolyScience Heated Circulators machine Heated Circulators 2024), a 
water tank, pumps and an online control platform (Arduino IDE soft
ware). The water used was tap water. The water level testing range was 
designed to be 0~1.7m since our application of water level monitoring 
mainly focuses on WSUD systems where the water depth is normally less 
than 1.5m. The sensors were tested for a measuring range of 0~1.7m, 
under three water temperatures (25 ◦C, 30 ◦C, 35 ◦C). Each experiment 
included one complete cycle (two water flow directions) of filling the 
water column to the maximum height of 1.7m (upper limit) with an 
increment of 0.1m, followed by emptying to the minimum height of 0m 
(lower limit) with a decrement of 0.1m. After reaching each water level, 
there was a 10-second stabilization time before recording readings from 
the LCS and TS sensors. The reference water level was measured visually 
with a graduated ruler (1mm mark). In addition, the water temperature 
was recorded by the traditional sensor (OTT PLS) during the water level 
measurements.

5.1.1. Preliminary lab experiment
From March 28 to 29, 2022, a preliminary experiment was con

ducted to evaluate the performance of one LCS (KIT0139, referred to as 
KIT0) alongside the TS (OTT PLS) using the experimental setup 
described earlier. During this preliminary test, 20 measurements were 
recorded from both the LCS and TS at each water level. The circuit 
schematic for the electrical design of the low-cost and traditional water 
level sensors used in the preliminary lab experiment is illustrated in 
Fig. S-1. The Arduino Mega 2560 board served as the microcontroller to 
communicate with the sensors. The SDI-12 output from the TS was 
directly read by the Arduino board through its digital pin. However, the 
4~20mA analog current output from the LCS could not be directly read 
by the Arduino. To address this, an analog current-to-voltage converter 
(SEN0262) with 120Ω termination resistor, which is the default con
verter in the KIT0139 measurement kit, was used. This converter 
transformed the 4~20mA current signal from the LCS into a 0.48~2.4V 
voltage signal, making it compatible with the Arduino board.

5.1.2. Main lab experiment
On March 31, 2023, six LCS (KIT0139, labelled KIT1 through KIT6) 

and one TS (OTT PLS), were tested in the laboratory following the 
procedure described in the first paragraph of Section 5.1. To assess the 
impact of varying wetting and drying conditions – common in flashy 
stormwater catchments – on sensor performance, the LCS devices were 

Fig. 5. Experimental setup for the main lab experiment. Six LCS and one TS were tested in a water column over a range of 0~1.7m, with three LCS at 0m water level 
and the other three LCS at 0.3m. Group A corresponds to LCS sensors KIT1, KIT2 and KIT3, while group B corresponds to LCS sensors KIT4, KIT5 and KIT6.

N. Ding et al.                                                                                                                                                                                                                                    Water Research X 27 (2025) 100298 

8 



divided into two groups, each containing three sensors. As shown in 
Fig. 5, group B (KIT4, KIT5, KIT6) of LCS was positioned at the 0m level 
(always submerged in water), while group A (KIT1, KIT2, KIT3) was 
placed at 0.3m level with a variety of dry and wet conditions. The total 
testing time for each cycle (involving two water flow directions at one 
water temperature) was approximately 72 minutes, and the exposure 
time for group A was about 8 minutes under dry conditions between the 
two testing cycles. Additionally, testing three LCS from each group at the 
same time aimed to check if there is a distinct difference between the 
individual LCS device.

At each water level, 100 readings were recorded from the LCS and 10 
from the TS. The reason for recording one TS measurement for every 10 
LCS measurements was that it took approximately 30 seconds for the 
Arduino to gather 100 readings from the LCS (KIT0139), whereas it 
required around 60 seconds to obtain 10 readings from the TS (OTT 
PLS). This approach allowed for more LCS readings to provide better 
information on precision assessment, while fewer readings from the TS – 
whose precision had already been confirmed in the preliminary exper
iment – helped reduce overall testing time and minimized potential drift 
or temperature fluctuations during each cycle.

The electrical design for the main lab experiment was optimized 
based on insights from the preliminary experiment, with the updated 
circuit schematic shown in Fig. 6. The major optimization was upgrad
ing the signal processing protocol for the LCS (KIT0139). Since the 
precision of the LCS (KIT0139) tested in the preliminary experiment was 
unsatisfactory (Fig. S-2), the signal measurement was optimized with 
new components in the main lab experiment. Specifically, the analog 
current-to-voltage converter (SEN0262) used in the preliminary exper
iment was replaced with a system offering a better resolution and ac
curacy. A 250-ohm (R1) high-precision resistor was used to convert the 
4~20mA current into a 1~5V voltage, enabling more precise mea
surement of the LCS output. Additionally, an analog-to-digital converter 
DFR0553 based on the ADS1115 chip (U2) was used to read out the 
voltage and convert the signal to a 16-bit resolution digital signal (better 
than the Arduino board’s 10-bit resolution) to communicate with the 
Arduino board. The TS (OTT PLS) continued to use the SDI-12 signal 
output to directly communicate with Arduino board, as in the pre
liminary experiment. Another improvement was preparing the system 
for field deployment. This was achieved by replacing the Arduino Mega 

2560 board with the Arduino MKR 1310 board (U1), which supports 
real-time data transmission for future field implementation. Both the 
OTT PLS sensor (U6) and the KIT0139 sensor (U5) were powered using a 
24V power supply, enabled by the Arduino’s 5V output and the MT3608 
voltage converter modules (U3, U4). This setup allowed for all electrical 
connections to be integrated onto a DIY PCB board, making the system 
easier to deploy and maintain in the field. It was important to connect 
both OTT PLS sensor and KIT0139 sensor to the same power supply for 
the process of comparing measurement performance, to the detriment of 
studying the consumption of the low-cost sensor. The Arduino MKR 
1310 board was directly connected to the computer via USB port, and 
data was recorded through the Arduino Integrated Development Envi
ronment (IDE) software. To determine the correlation between the 
recorded signal from the low-cost sensor (KIT0139) and the water level, 
a calibration function is needed (see Section S5 in Supplementary 
Material).

5.1.3. Three-point calibration lab experiment
On December 15, 2023, a new experiment was conducted to gather 

data for a three-point calibration. This experiment focused solely on the 
LCS sensors in Group A (Fig. 5) and tested within a range of 0 to 0.6 m, 
with water levels increasing in 0.1-meter increments under a constant 
water temperature of 25 ◦C. During the experiment, it was observed that 
the LCS KIT2 sensor appeared to be malfunctioning after being left on 
the testing platform for approximately eight months. The likely cause of 
the malfunction was a damage of the ground wire inside the sensor 
cable.

Finally, we also tested a one-point calibration approach using data 
from August and September 2023 collected during the field experiment 
under two scenarios: (1) applying three-point calibration in July 2023, 
followed by one-point calibration using an offset value calculated from 
the first data point of each month to adjust LCS measurements for August 
and September 2023; and (2) directly applying three-point calibration to 
the LCS measurements on a monthly basis for August and September 
2023.

5.1.4. Three-month field experiment
A real-time monitoring station was established at the outlet sump of a 

Rain Garden in Singapore to assess sensor performance under field 

Fig. 6. Circuit schematic for the electrical design for the low-cost and traditional water level sensors in the main lab experiment.
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conditions from July to October 2023. The station consisted of an 
Arduino MKR1310 microcontroller board, an Arduino MKR Mem Shield, 
an SD card, a Lilygo ESP32 LoRa module, two antennas, two MT3608 
voltage converters, a low-cost water level sensor (KIT0139), a tradi
tional water level sensor (OTT PLS), an ADS1115 module, a 250-ohm 
resistor, a digital temperature sensor (DS18B20) with a 4.7k resistor, 
and a real-time clock module (DS3231). These components were inte
grated into a DIY PCB board housed in a waterproof enclosure (Fig. S-14) 
to ensure durability in outdoor conditions. Power for the station was 
supplied by a nearby solar panel. A V-notch weir (Fig. S-14) was 
installed at the outlet pipe to maintain water levels above 0.05 m, 
enhancing the reliability of measurements from the LCS, as discussed in 
Section 2.2. During the experiment, the monitoring station recorded 10 
measurements from the LCS, one measurement from the TS and one 
measurement from the temperature sensor every 5 minutes, with data 
stored locally on an SD card and transmitted in real time to an online 
Google Sheet for storage and further analysis. Details of the monitoring 
station’s design protocol are illustrated in Fig. S-11, and additional in
formation is provided in Section S6 of the Supplementary Material.

Real-time data transmission was facilitated through communication 
between the Arduino MKR1310 board and the Lilygo ESP32 LoRa 
module. The Lilygo receiver, positioned in a laboratory approximately 
200m from the Rain Garden, and connected to the internet via a Wi-Fi 
router in the same lab (Fig. S-12). The data received by the Lilygo 
receiver was sent to an online Google Sheet via the IFTTT (If This Then 
That) platform, which created an applet enabling the Lilygo module to 
transmit the data using HTTP and JSON. The applet then forwarded the 
data to Google Sheets. The transmitted data was also displayed in real 
time on the Opendataeau platform (https://opendataeau.org/). To 
ensure data integrity, the Lilygo receiver sent the received data back to 
the Arduino board for verification, confirming consistency between 
transmitted and received data packages (Fig. S-13). Further details of the 
transmission and verification process are provided in Section S6 of the 

Supplementary Material.
With the design of V-notch weir, only water levels measured by the 

TS above 0.042m (including a 1.5cm offset due to the height of the 
protective cap) were considered for the calibration and assessment of 
LCS. This threshold accounts for the 0.008m difference in ground level 
between the two sensors in the field setup. Three random points were 
generated from the following ranges of water levels: [0.042, 0.062]m, 
[0.062, 0.082]m, and [0.082, 0.102]m in the field data collected in July 
2023. These points were used to create the three-point calibration line, 
which in turn validated the observed field measurements from the LCS.

5.2. Sensor calibration and performance assessment

Fig. 7 shows the methodology used for the sensor calibration and 
performance assessment in this study. The following sections describe 
the methods for the performance assessment of the sensors, including 
the accuracy, precision, and sensitivity to the water temperature. To 
identify whether there is a universal calibration function for the low-cost 
sensor model tested in this study, and with the aim to simplify the sensor 
calibration process, the calibration lines for the six LCS were compared 
under each testing condition, and the potential of three-point calibration 
was explored.

5.2.1. Sensor calibration and validation
The first order ordinary least squares regression (OLS) method was 

used for the calibration of the sensors tested in this study, based on the 
consideration of goodness of fit and appropriate complexity. The cali
bration line was generated by using the reference water level measured 
visually with a graduated ruler (1mm mark) as X-axis and the raw 
measurements by the sensors as Y-axis. The calibration line for the LCS 
and TS, under each water flow direction and water temperature, can be 
presented by Eq. 1. Then the validation of the sensor measurements can 
be represented by Eq. 2. The calibration lines were generated, and the 

Fig. 7. Framework for evaluating the performance of LCS and TS in lab testing experiments. The performance of the LCS and TS was assessed by their accuracy, 
precision, and sensitivity to water temperature.
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validation was done in R (v4.3.1). To identify whether there is a uni
versal calibration line for the LCS, statistical analyses including F test 
and T test were done to compare the calibration lines from each indi
vidual LCS, each water flow direction, and each water temperature.

To divide the calibration and validation dataset, k-fold cross vali
dation method was used to determine the proportion of calibration and 
validation to the original dataset from the sensor measurements. Ac
cording to the Mean Absolute Error (MAE) from the k-fold cross vali
dation, the 100 measurements from the LCS (KIT0139) taken at each 
water level were divided into two equal datasets: one dataset including 
50 measurements at each water level was used for generating the cali
bration lines, while the other dataset including the other 50 measure
ments at each water level was used for the validation to obtain the 
validated water level measurements and assess the performance of the 
LCS. Similarly, 10 measurements by TS (OTT PLS) recorded at each 
water level were divided into two datasets, each including 5 measure
ments at each water level. 

Yij = AXi + B (1) 

Where: 

• Xi represents the 18 reference water level values measured with the 
graduated ruler over the testing ranging of 0~1.7m, where i = 1,2,… 
,18.

• For each Xi, there are 50 corresponding LCS measurements used to 
generate the calibration line, denoted as Yij, where j = 1,2,…,50. For 
the TS, there are 5 measurements, represented as Yij, where j = 1,2,
…,5.

• A is the slope of the line, representing the change in LCS or TS 
measurement per unit change in water level.

• B is the intercept, representing the LCS or TS measurement when the 
water level is zero. 

WLvalij =

(
WLrawij − B

)

A
(2) 

Where: 

• WLrawij refers to the raw measurements from the LCS or TS over the 
measuring range of 0~1.7m. Where i represents the 18 reference 
water levels, with i = 1,2,…,18. And j is the corresponding 50 LCS 
measurements (j = 1,2,…,50) or 5 TS measurements (j = 1,2,…,5) 
used for validation.

• WLvalij represents the validated measurements from the LCS or TS 
corresponding to the WLrawij values.

5.2.2. Assessment of reliability, accuracy, and precision
We assessed accuracy, represented by the commonly used parame

ters including Mean Absolute Error (MAE) and Root Mean Square Error 
(RMSE) (Zhu et al., 2023), the calculations for these two statistics are 
shown in Eq. 3 and Eq. 4. Precision, defined here as the variance of 
measurements over the measuring range, and was quantified based on 
Standard Deviation (SD) and Coefficient of Variation (CV) (Levy Zamora 
et al., 2019), which are represented in Eq. 5 and Eq. 6. These indicators 
were calculated for each water level and then averaged over the whole 
testing range (0~1.7m). 

MAE =
1

n × m
∑n

i=1

∑m

j=1

⃒
⃒WLvalij − Xi

⃒
⃒ (3) 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
n × m

∑n

i=1

∑m

j=1

(
WLvalij − Xi

)2
√
√
√
√ (4) 

Where: 

• n = 18 represents the total number of reference water levels.
• m represents the total number of validated measurements from the 

sensor at each reference water level (m = 50 for LCS, and m = 5 for 
TS).

• WLvalij is the validated measurement from either the LCS or TS for 
reference water level Xi.

• Xi is the reference water level values, with i = 1,2,…,18.
• j represents the number of validated measurements for each water 

level. (j = 1,2,…,50 for LCS, and j = 1, 2,…,5 for TS). 

SD =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
n × m

∑n

i=1

∑m

j=i

(
WLvalij − WLval

)2
√
√
√
√ (5) 

Where: 

• n = 18 represents the total number of reference water levels.
• m represents the total number of validated measurements from the 

sensor at each reference water level (m = 50 for LCS, and m = 5 for 
TS).

• WLvalij is the validated measurement from either the LCS or TS for 
reference water level Xi.

• Xi is the reference water level values, with i = 1,2,…,18.
• WLval is the mean of the validated measurements calculated as: 

WLval =
1

n × m
∑n

i=1

∑m

j=1
WLvalij 

CV =
SD

WLval
× 100 (6) 

Where: 

• SD is the standard deviation of the validated measurements over the 
measuring range except for 0m.

• WLval is the mean of the validated measurements over the measuring 
range except for 0m.

To assess the potential differences between the individual LCS de
vices and the performance varying over time, which we term here as 
reliability, we systematically performed the analyses on each sensor’s 
data and compared the calibration and performance assessment.

5.2.3. Sensitivity to water temperature
The manufacturer states that the LCS (KIT0139) features built-in 

temperature compensation technology, which means that its signal 
output should be compensated for the effects of temperature on water 
density. However, there was no information provided on the tempera
ture correction, unlike for the TS (OTT PLS) that has real-time temper
ature measurements. Therefore, it is important to test and evaluate 
whether temperature compensation technology of the LCS performs as 
effectively as that of the TS. In this study, the sensitivity of the LCS to 
water temperature was assessed based on the variation of sensors’ ac
curacy (MAE and RMSE) and precision (SD and CV) with the tempera
ture varying from 25 to 35 ◦. Additionally, the impact of water 
temperature on the calibration of the LCS was examined by comparing 
calibration lines at different temperatures.
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