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Abstract

Communication noise is a common feature in several real-world scenarios where systems
of agents need to communicate in order to pursue some collective task. Indeed, many bio-
logically inspired systems that try to achieve agreements on some opinion must implement
resilient dynamics, i.e. are not strongly affected by noisy communications. In this work, we
study the 3-Majority dynamics, an opinion dynamics that has been shown to be an effi-
cient protocol for the majority consensus problem, in which we introduce a simple feature of
uniform communication noise, following D’Amore et al. (2022). We prove that, in the fully
connected communication network of n agents and in the binary opinion case, the process
induced by the 3-Majority dynamics exhibits a phase transition. For a noise probability
p < 1/3, the dynamics reaches in logarithmic time an almost-consensus metastable phase
which lasts for a polynomial number of rounds with high probability. We characterize this
phase by showing that there exists an attractive equilibrium value seq ∈ [n] for the bias of
the system, i.e. the difference between the majority community size and the minority one.
Moreover, we show that the agreement opinion is the initial majority one if the bias towards
it is of magnitude Ω(

√
n log n) in the initial configuration. If, instead, p > 1/3, we show that

no form of consensus is possible, and any information regarding the initial majority opinion is
lost in logarithmic time with high probability. Despite more communications per round being
allowed, the 3-Majority dynamics surprisingly turns out to be less resilient to noise than the
Undecided-State dynamics, whose noise threshold value is p = 1/2.

Keywords: opinion dynamics, consensus problem, randomized algorithms, distributed comput-
ing.

1 Introduction

The consensus problem is a fundamental problem in distributed computing [6] in which we have
a system of agents supporting opinions that interact between each other by exchanging messages,
with the goal of reaching an agreement on some valid opinion (i.e. an opinion initially present
in the system). In particular, we focus on the majority consensus problem where the goal is to
converge towards the initial majority opinion. The numerous theoretical studies in this area find
justifications in many different application scenarios, ranging from social networks [2, 41], swarm
robotics [5], cloud computing, communication networks [44], and distributed databases [20], to
biological systems [25, 26]. As for the latter, the goal of the majority consensus problem is to
model some real-world scenarios where biological entities need to communicate and agree in order
to pursue some collective task. Many biological entities in different real situations perform this
type of process, e.g. molecules [13], bacteria [4], flock of birds [9], school of fish [45], or social
insects [27], such as honeybees [43].
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In such scenarios, some form of noise often affects communication among agents. For this
reason, one of the main goals of network information theory is to guarantee reliable communi-
cations in noisy networks [28]. In this context, error-correcting codes are very effective methods
to reduce communication errors in computer systems [34, 40], and this is why many theoretical
studies of the (majority) consensus problem assume that communication between entities occurs
without error, and instead consider some adversarial behavior (e.g. byzantine fault [8]). Despite
their effectiveness in computer applications, error-correcting codes are quite useless if we want to
model consensus in biological systems. Indeed, they involve sending complicated codes through
communication links, and it is reasonable to assume that biological type entities communicate
between each other in a simpler way. For this reason, in recent years many works have been fo-
cusing on the study of opinion dynamics where the communication between entities is unreliable
and subjected to uniform noise [17,18,25,26].

Opinion dynamics do not have a formal definition, but we provide an informal one for the sake
of the intuition, following [24].

Definition 1 (Opinion dynamics – informal). An opinion dynamics is a synchronous distributed
algorithm characterized by a very simple structure. In this structure, the state of a node at round
t depends only on its own state and a symmetric function of the multiset of states of its neighbors
at round t − 1. This function defines the update rule and can be randomized. Furthermore, the
update rule is the same for every graph and every node and does not change over time.

However, within the constraints of Definition 1, one can still devise very complex updating
rules, which would violate the spirit of simplicity that characterizes the concept of opinion dy-
namics.

The first consensus dynamics (i.e. opinion dynamics for the consensus problem) that have
been studied in the presence of noise communication are linear opinion dynamics, such as the
Voter dynamics and the Averaging dynamics. In these dynamics, the function describing a
single agent’s state update rule is linear with respect to the states of its neighbors. Interestingly,
they were studied in the presence of uniform noise communication [36] or of stubborn agents
(i.e. agents that never change opinion) [38, 39, 49]. In these settings, only metastable forms of
consensus can be achieved, where a large subset of the agents agree on an opinion while other
opinions remain supported by smaller subsets of agents. However, the Voter model has a slow
convergence time even in fully connected networks and a large initial bias towards some majority
opinion [31], and the Averaging dynamics requires agents to perform non-trivial computation
and, more importantly, to have large local memory. For these reasons, linear opinion dynamics
struggle explaining the observed metastable consensus in multi-agent systems [12,16,24], and many
research papers have begun to investigate new, more plausible, non-linear opinion dynamics.

In this work, we consider the 3-Majority dynamics, which is based on a majority rule,
the latter being widely employed also in the biological research field [14, 22]. In particular, we
introduce in the system a uniform communication noise feature, following the definition of [18].
Such dynamics, without communication noise, has a similar behavior to the Undecided-State
dynamics [6]. As we describe in the next section, the two dynamics behave similarly even in
the presence of uniform noise, as both exhibit a phase transition, but with different thresholds.
Indeed, although the 3-Majority dynamics makes use of more per-round communications, it
turns out to be less resilient to noise than the Undecided-State dynamics.

1.1 Our result

In this work, we study the 3-Majority dynamics over a complete network of n agents holding
opinions from a binary set Σ = {alpha,beta}. In each round, each agent pulls the opinions
of three neighboring agents chosen independently uniformly at random and updates its opinion
to the majority of the three. This dynamics is shown to be a fast, robust protocol for the
majority consensus problem in different network topologies, ranging from complete graphs to
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sparser graphs [6]. For further details on previous results about the 3-Majority dynamics, we
defer the reader to Section 1.2.

In this work, we introduce to the 3-Majority dynamics an uniform communication noise
feature, following the definition in [18], for which we give an equivalent formulation. Each com-
munication with a sampled neighbor is noisy with probability p ∈ (0, 1), i.e. with probability p
the received opinion is sampled u.a.r. in the opinion set Σ. Instead, with probability 1 − p the
communication is unaffected by noise.

Even if considering the complete graph is a strong assumption for such communication net-
works, we note that, in every round, an agent pulls an opinion from three neighbors, resulting
in a round-by-round communication pattern that forms a dynamic graph with O (n) edges. Fur-
thermore, this model can capture the behavior of bio-inspired multi-agent systems where mobile
agents meet randomly at a relatively high rate. For more details about models for bio-inspired
swarms of agents, we refer to [46].

To keep track of the progress of the dynamics towards consensus, we describe the dynamics
via the bias at time t, denoted by st, which represents the difference between the sizes of the
majority and minority opinion communities at time t. Note that the protocol, in the case of a
complete graph of fixed size n with binary opinions, is completely described by {st}t. We prove
that, in the aforementioned setting, the 3-Majority dynamics exhibit a phase transition. Our
results are summarized in the following theorem.

Theorem. Let {st}t≥0 be the bias of the process induced by the 3-Majority dynamics with
uniform noise probability p, and let s0 the initial value of the bias. The following statements hold.

1. If p < 1/3 and if s0 = Ω(
√
n log n), consider seq = n

1−p

√
1−3p
1−p , and let ε > 0 be any

sufficiently small constant. Then, there exists a time τ1 = O(log n) such that, w.h.p.,1

the process at time τ1 reaches a metastable almost-consensus phase characterized by the
equilibrium point seq, i.e.

sτ1 ∈ [(1− ε)seq, (1 + ε)seq].

Moreover, the bias remains confined in such interval for nΘ(1) rounds w.h.p.

2. If p < 1/3 and if s0 = O(
√
n log n), there exists a time τ2 = O(log n) such that, w.h.p., the

system becomes unbalanced towards an opinion, i.e.

sτ2 = Ω(
√

n log n).

3. If p > 1/3 and if s0 = Ω(
√
n log n), there exists a time τ3 = O(log n) such that, w.h.p., at

time τ3 the majority opinion is lost, i.e. sτ3 = O(
√
n). In addition, with constant probability,

at time τ3 + 1 the majority opinion changes. Moreover, for nΘ(1) additional rounds the
absolute value of the bias is O(

√
n log n) w.h.p.

Interestingly, when p < 1/3, the equilibrium point seq is the fixed point of the function
determining the expectation of the bias at the next step, i.e. E [st+1 | st = seq] = seq.

Our results show that the 3-Majority dynamics is less resilient to noise compared to the
Undecided-State dynamics, despite allowing more communication per-round. Indeed, in [18]
(conference version [19]), it is demonstrated that the phase transition for the Undecided-State
dynamics has a threshold at p = 1/2.2 In the Undecided-State dynamics, at each round, each
agent pulls a single neighboring opinion x uniformly at random. If the agent’s former opinion y

1An event holds with high probability (w.h.p. in short) with respect to n if the probability that it occurs is at
least 1− n−Θ(1).

2We remark that in [18], the threshold for the Undecided-State dynamics is p′ = 1/6 and corresponds to
p = 1/2 in our model. In fact, in the cited work, each sampled opinion is non-noisy with probability 1 − 2p′,
otherwise it turns into the opposite opinion with probability p′ and into the undecided state with probability p′.
This corresponds to a framework where with probability 1 − 3p′ the opinion is non-noisy, while with probability
p = 3p′ the received opinion is sampled u.a.r. among the possible ones.

3



differs from x, the agent becomes undecided. Once undecided, the agent will adopt any subsequent
opinion it encounters.

The behavior of the Undecided-State dynamics with noise is similar to the one of the 3-
Majority dynamics stated in the above theorem. If p is below the threshold value, the dynamics
w.h.p. rapidly breaks the symmetry and converges in logarithmic time to a metastable phase of
almost-consensus. If otherwise p is above the threshold, no form of consensus is possible, since the
bias keeps bounded by O

(√
n log n

)
for a polynomial number of rounds, w.h.p. In comparison to

our work, [18] do not find the precise value at the equilibrium point, but we believe that also the
Undecided-State dynamics has an equilibrium point if p is below the threshold, as the authors
show in the experimental section ( [18, Figure 1E]).

In Section 6, we provide some experiments, which confirm our theoretical results. In addi-
tion, we simulate the 3-Majority dynamics over communication graphs sampled as Erdős Rényi
random graphs with different parameters. The latter results provide experimental evidence that
the 3-Majority dynamics is fast and resilient even in sparser communication graphs with strong
connection properties, and phase transitions similar to the fully connected case are exhibited. For
this reason, we believe that sparser topologies are worth to be analyzed. Furthermore, it would
be interesting to see whether the 3-Majority dynamics with an arbitrary number of possible
opinions, with the same noise model, has the exact same phase transition at the noise threshold
value p = 1/3. We remark that when p = 1/3, this corresponds to the fact that, for each node
and at each round, exactly one communication among the three ones is noisy in expectation.

1.2 Related Works

Consensus problem. The study of the 3-Majority dynamics arises on the ground of the
results obtained for the Median dynamics in [21]. The Median dynamics considers a totally
ordered opinion set, in which each agent pulls two neighbor opinions i, j u.a.r. and then updates
its opinion k to the median between i, j, and k. The Median dynamics is a fault-tolerant,
efficient dynamics for the majority consensus problem. However, as pointed out in [6], theMedian
dynamics may not guarantee with high probability convergence to a valid opinion in case of the
presence of an adversary, which is needed for the consensus problem. Moreover, the opinion set
must have an ordering, property that might not be met by applicative scenarios such as biological
systems [6]. These facts naturally lead researchers to look for efficient dynamics that satisfy the
above requirements.

To the best of our knowledge, [1] is the first work analyzing the h-Majority dynamics. In
detail, in the h-Majority dynamics we have n nodes and, at every round, every node pulls the
opinion from h random neighbors and sets his new opinion to the majority one (ties are broken
arbitrarily). More extensive characterizations of the 3-Majority dynamics over the complete
graph are given in [7, 8, 10,29].

In [7] it is shown that the 3-Majority dynamics is a fast, fault-tolerant protocol for (valid)
majority consensus in the case of k ≥ 2 colors, provided that there is an initial bias towards some
majority opinion. Furthermore, [7] shows an exponential time-gap between the 3-Majority
consensus process and the median process in [21], thus establishing its efficiency. In [8], the
analysis is extended to any initial configuration in the many-color case, in the presence of a
different kind of bounded adversaries. The authors of [8] emphasize how the absence of an initial
majority opinion considerably complicates the analysis, in that it must be proved that the process
breaks the initial symmetry despite the presence of the adversary. Indeed, before the symmetry
breaking, the adversary is more likely to cause undesired behaviors. The strongest result about
the convergence of the 3-Majority is in [29]. The authors show that in the case of k opinions,
the process converges in time O(k log n) rounds, and this result it is tight when k = O(

√
n). The

3-Majority dynamics is also studied in different graph topologies: [32] analyzes the 3-Majority
process in graphs of minimum degree nα, with α = Ω

(
(log log n)−1

)
, starting from random biased

binary configurations.

4



Another efficient opinion dynamics for the majority consensus problem is the 2-Choices
dynamics, in which each agent samples two neighbors u.a.r. and updates its opinion to the majority
opinion among its former opinion and the two sampled neighbor opinions if there is any, otherwise
it keeps its opinion. We remark that the expected round-by-round behaviors of the 2-Choices
dynamics and that of the 3-Majority are the same, while the actual behaviors differ substantially
in high probability [10]. For example, we have run simple experiments that suggest that our
uniform noise model on the 2-Choices dynamics yields a threshold noise value p = 1/2, just like
the Undecided-State dynamics.

As the 2-Choices and the 3-Majority dynamics, the Undecided-State dynamics is an
efficient majority consensus protocol, with the difference that it requires only one communication
per-round for each agent. Further description was already given in the previous section. It is
worth mentioning the more recent work [3], which analyzes a variant of the Undecided-State
dynamics in the many-color case starting from any initial configuration. For an overview on the
state of the art about opinion dynamics we defer the reader to [6].

General consensus algorithms in the GOSSIP model. In [11,30], the authors address the
majority consensus problem in the GOSSIP model where the underlying communication network
is fully connected and the agents may support k different opinions. In the GOSSIP model, at
each round every node samples a constant number of neighbors u.a.r. and exchanges B bits with
it, where B usually is O (log n). In [30], the authors propose an algorithm achieving majority
consensus in O(log k log n) rounds, where the agents have local memory of size log k +O(1) bits
and can send messages of size log k+O(1) bits. The majority consensus is reached provided that
the initial bias is at least Ω(

√
n log n). In [11], the authors extend the result by [30] and provide a

first algorithm achieving the majority consensus in O(log k log log n) rounds, where each agent uses
log k + Θ(log log k) bit of memory, and a second algorithm with runtime O(log n log logn) which
uses log k+4 bit of memory for each agents. Both algorithms require an initial bias of Ω(

√
n log2 n).

Notice that the algorithms provided by [11,30] are more complex algorithms w.r.t. the consensus
dynamics we mentioned before (e.g. 3-Majority, 2-Choices, Undecided-State), as they work
in phases: the rules defining local computations and communications change over time and, hence,
require higher local memory and communication bandwidth. Hence, such algorithms violate the
constraints of Definition 1.

Consensus problem in the presence of noise or stubborn agents. The authors of [48]
initiate the study of the consensus problem in the presence of communication noise. They consider
the Vicsek model [47], in which they introduce a noise feature and a notion of robust consensus.
Subsequently, dynamics for the consensus problem with noisy communications have received con-
siderable attention. This direction is motivated, among many reasons, by the desire to find models
for the consensus problem in natural phenomena [25].

The communication noise studied in this type of problem can be divided into two types:
uniform (or unbiased) and non-uniform (or biased). The uniform noise wants to capture errors
in communications between agents in real-world scenarios, in which communication noise affects
all opinions in the same way. The non-uniform communication noise instead describes the case in
which opinions are affected differently from one another.

The authors of [25] are the first to explicitly focus on the uniform noise model. In detail,
they study the broadcast and the majority consensus problem when the opinion set is binary. In
their model of noise, every bit in every exchanged message is flipped independently with some
probability smaller than 1/2. As a result, the authors give natural protocols that solve the
aforementioned problems efficiently. The work [26] generalizes the above study to opinion sets of
any cardinality.

As for the non-uniform communication noise case, in [17] it is considered the h-Majority
dynamics with a binary opinion set {alpha,beta}, with a probability p that any received message
is flipped towards a fixed preferred opinion beta, while with probability 1− p the former message
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keeps intact. They suppose there is an initial majority agreeing on alpha, and they analyze the
time of disruption, that is the time the initial majority is subverted. They prove there exists a
threshold value p⋆ = p⋆(h) such that, if p < p⋆ the time of disruption is at least polynomial w.h.p.,
and if p > p⋆, the time of disruption is constant, w.h.p. Their result holds for any sufficiently
dense graph.

The noise feature affecting opinion dynamics, when the underlying communication network is
complete, has been shown to be equivalent to a model without noise, in which communities of
stubborn agents (i.e. they never change opinion) are added to the network [18]. For this reason,
we discuss some previous works that consider such a model.

In [49], the authors show that, in the voter model, the presence of stubborn agents with
opposite opinions precludes the convergence to consensus. The work [42] studies the asynchronous
voter rule and the asynchronous majority rule dynamics with Poisson clocks when the opinion
set is binary. The authors use mean-field techniques, and focus on two different scenarios: In
the first, some agents have a probability (which depends on their current opinion) not to update
when the clock ticks. In the second, there are stubborn agents. In the second case, which directly
relates to our work, they show that for the 3-Majority dynamics, there are either one or two
possible stable equilibria, depending on the sizes of the stubborn communities, which are reached
in logarithmic time. If the two sizes are close to each other and not too large, then agreement on
both opinions is possible. Otherwise, either no agreement is possible, or the process converges to
an agreement towards a single opinion, which is that of the largest stubborn community. The case
in which the two stubborn communities have equal size corresponds to the uniform communication
noise model.

We remark, however, that in our work we consider a different setting: First, we consider
the synchronous version of the 3-Majority dynamics, which cannot be analyzed with the same
tools of the asynchronous version. Furthermore, the mean-field arguments do not capture several
aspects of the process, such as metastability, which in [42] is shown only through simulations. For
example, the actual behavior of the process in the long term is oscillating in a very small interval
around the equilibrium values, spending long times in those intervals, and eventually switching
between the two. We characterize the width of the oscillation interval and show there is high
probability of convergence, providing also a lower bound on the time the process spends in the
equilibrium interval.

Structure of the paper

Section 2 contains the preliminaries for the analysis and the result statements. Section 3 contains
the victory of majority case, i.e. where p < 1/3 and there is large enough initial bias. Section 4
contains the symmetry breaking result, i.e. where p < 1/3 but we have no condition on the initial
bias. In Section 5 we analyze the victory of noise case, i.e. where p > 1/3. Finally, in Section 6
we show some simulation results.

2 Preliminaries

We consider the complete graph G = Kn = (V,E) of n nodes (the agents), where each node is
labelled uniquely with labels in [n] := {1, . . . , n}. Each node supports a binary opinion from a set
of opinions Σ = {alpha,beta}. The 3-Majority dynamics defines a Markov Chain {Mt}t∈N
which is described by the opinion of the nodes at each time step, i.e. Mt = (i1(t), . . . , in(t)) ∈ Σn

for every t ≥ 0, where ij(t) is the opinion of node j at time t. The transition probabilities are
characterized iteratively by the majority update rule as follows: given any time t ≥ 0, let Mt ∈ Σn

be the state of the process at time t. Then, at time t+ 1, each node u ∈ V samples three agents
independently uniformly at random (with replacement) and updates its opinion to the majority
one among the sampled neighbor opinions. For the sake of clarity, we remark that when u samples
a neighbor node twice, the corresponding opinion counts twice.
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Communication noise. To this dynamics, we introduce a uniform communication noise fea-
ture. Let 0 < p < 1 be a noise probability. When a node pulls a neighbor opinion, with probability
p the received opinion is sampled u.a.r. in Σ and instead, with probability 1−p, the former opinion
is kept intact as it is received.

Since the communication network is complete, knowledge of the graph’s size implies that the
process’s state is fully characterized by the number of nodes supporting a given opinion. Hence,
we can write Mt = (at, bt), where at is the number of the nodes supporting opinion alpha at time
t, and bt is the analogous for opinion beta.

To keep track of the progress of the dynamic towards the consensus, we define the bias of the
process at time t as the difference between the number of agents supporting the opinion beta and
the number of agents supporting alpha, i.e.

st = bt − at = 2bt − n, (1)

which takes value in {−n, . . . , n}. We notice that, once n is fixed, the process can be fully
characterized only by the values of the bias, i.e. {st}t≥0. We remark that st > 0 if the majority
opinion at time t is beta and st < 0 if it is alpha. We say that configurations having bias
st ∈ {n,−n} are monochromatic, meaning that every node supports the same opinion, while
a configuration with st = 0 is symmetric. We finally remark that the random variable bt (and,

analogously, at) is the sum of i.i.d. Bernoulli random variables. In detail, if X
(t)
i is the r.v. yielding

1 if node i adopts opinion beta at round t+1, and 0 otherwise, then bt =
∑

i∈[n]X
(t)
i . Therefore,

for (1),

st = 2
∑
i∈[n]

X
(t)
i − n =

∑
i∈[n]

(2X
(t)
i − 1), (2)

where (2X
(t)
i − 1) are i.i.d. taking values in {−1, 1}. For this reason, we can apply the Hoeffding

bound (Lemma 17) to the bias.

Further notation. For any function f(n), we make use of the standard Landau notation
O (f(n)), Ω (f(n)),Θ (f(n)). Furthermore, for a constant c > 0, we write Oc (f(n)),Ωc (f(n)),
and Θc (f(n)) if the hidden constant in the notation depends on c.

We first compute the expectation of the bias at time t, conditional on its value at time t− 1.

Lemma 1. Let {st}t≥0 be the process induced by the 3-Majority dynamics with uniform noise
probability p ∈ (0, 1). The conditional expectation of the bias is

E [st | st−1 = s] =
s(1− p)

2

(
3− s2

n2
(1− p)2

)
. (3)

Proof. Let b = bt and a = at. Then s = b − a and n = a + b, which implies b = (n + s)/2
and a = (n − s)/2. The probability that, when a node samples a neighbor, it receives opinion
beta is b′ = (b/n) · (1 − p) + p/2, where (b/n) · (1 − p) is the probability to receive a non-noisy
message which contains opinion beta, and p/2 is the contribution of the noise. Analogously, the
probability that it receives opinion alpha is a′ = (a/n) · (1− p) + p/2. Then, the probability the
node updates its opinion to beta is (b′)3 + 3a′(b′)2. For the sake of the calculations, we define
s′ = b′ − a′ = (s/n)(1 − p). Since 1 = b′ + a′, we have b′ = (1 + s′)/2 and a′ = (1 − s′)/2. So,
Eq. (1) implies that

E [st | st−1 = s] = 2n
(
(b′)3 + 3a′(b′)2

)
− n

= n
(
2(b′)2(b′ + 3a′)− 1

)
=

n

2

(
(1 + s′)2(2− s′)− 2

)
7



=
n

2

(
3s′ − (s′)3

)
=

s(1− p)

2

(
3− s2

n2
(1− p)2

)
.

By the lemma above, we deduce that there are three fixed points of the conditional expectation
of the bias in the next step. The first one corresponds to s = 0, and the other (possible) equilibrium
correspond to the condition

1− p

2

(
3− s2

n2
(1− p)2

)
= 1.

The latter condition results in

s = ± n

(1− p)
·

√
3(1− p)− 2

(1− p)

= ± n

(1− p)
·
√

1− 3p

1− p
,

which is well defined if only if p ≤ 1/3. We will denote the absolute value of the latter two values
by seq.

3 Victory of the majority

The aim of this section is to prove the following theorem, which shows how the dynamics solves
the majority consensus problem when p < 1/3 in a weak form, since only an almost-consensus is
reached.

Theorem 2 (Victory of the majority). Let {st}t≥0 be the process induced by the 3-Majority
dynamics with uniform noise probability p < 1/3. Let ε > 0 be any arbitrarily small constant such

that ε < 1/3 and ε ≤ 2(1−3p)
3(1−p) , and let γ > 0 be any constant. Let seq =

n
(1−p)

√
1−3p
1−p . Then, for any

starting configuration s0 such that s0 ≥ γ
√
n log n and for any sufficiently large n, the following

holds w.h.p.:

(i) there exists a time τ1 = Oγ,ε,p(log n) such that (1− ε)seq ≤ sτ1 ≤ (1 + ε)seq;

(ii) there exists a value c = Θγ,ε,p(1) such that, for all k ≤ nc, (1− ε)seq ≤ sτ1+k ≤ (1 + ε)seq.

In each of the following statements we assume that {st}t≥0 is the bias of the process induced
by the 3-Majority dynamics with uniform noise probability p < 1/3.

We first show a lemma which states that, for any small constant ε > 0, whenever st−1 ̸∈
[(1− ε)seq, (1 + ε)seq], then st gets closer to the seq.

Lemma 3. For any constant 0 ≤ ε ≤ 2(1−3p)
3(1−p) and for any γ > 0, if s ≥ γ

√
n log n, the following

statements hold

(i) if s ≤ (1− ε)seq, then P
[
st ≥ (1 + 3ε2/4)s | st−1 = s

]
≥ 1− 1

nγ2ε4/32
;

(ii) if, s ≥ (1 + ε)seq, then P
[
st ≤ (1− 3ε2/4)s | st−1 = s

]
≥ 1− 1

nγ2ε4/32
.

Proof. We first notice that

(1− ε)seq ≤ n

1− p

√
1− 3p− 2ε2

1− p
. (4)
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Indeed,

1− 3p− 2ε2 − (1− ε)2(1− 3p) = ε (2(1− 3p)− 3ε(1− p))

is non-negative if and only if 0 ≤ ε ≤ 2(1−3p)
3(1−p) .

From Lemma 1, if each s ≤ (1− ε)seq, then

E [st | st−1 = s] =
s(1− p)

2

(
3− s2

n2
(1− p)2

)
≥ s

(
3− 3p

2
− 1− 3p− 2ε2

2

)
= s(1 + ε2).

where the inequality follows by (4). By (2) and by the Hoeffding bound (Lemma 17), it holds
that

P
[
st ≤ s(1 + ε2)− sε2/4 | st−1 = s

]
≤ e−s2ε4/(32n) ≤ e−γ2ε4 logn/32 ≤ 1

nγ2ε4/32
.

The second inequality in the lemma follows by a symmetric argument, observing that

(1 + ε)seq ≥ n

1− p

√
1− 3p+ 2ε2

1− p
,

Indeed, the expression

(1 + ε)2(1− 3p)− (1− 3p+ 2ε2) = ε (2(1− 3p)− ε(1 + 3p))

is non-negative if and only if 0 ≤ ε ≤ 2(1−3p)
1+3p , which is guaranteed since ε ≤ 2(1−3p)

3(1−p) .

The following lemma serves to bound how far the bias can get from the interval [(1+ε)seq, (1−
ε)seq].

Lemma 4. For any constants ε > 0 and γ > 0, if s ≥ γ
√
n log n, the following statements hold

(i) if s ≤ (1 + ε)seq, then P
[
st ≥ (1− ε− ε2)s | st−1 = s

]
≥ 1− 1

nγ2ε2/16
;

(ii) if s ≥ (1− ε)seq with ε < 1, then P [st ≤ (1 + ε)s | st−1 = s] ≥ 1− 1

nγ2ε2p2
.

Proof. The proof is similar to that of the previous lemma. From Lemma 1, we get that

E [st | st−1 = s] ≥ s

(
1− ε− ε2

2

)
,

which follows since s ≤ (1+ε)seq by simple calculations. By using the Hoeffding bound (Lemma 17),
we get

P
[
st ≤ s

(
1− ε− ε2

2

)
− ε2 · s

2

∣∣∣∣ st−1 = s

]
≤ e−

γ2ε4

16 =
1

n
γ2ε2

16

.

The second claim follows symmetrically from Lemma 1 by observing that, since s ≥ (1− ε)seq

E [st | st−1 = s] ≤ s (1 + (1− 3p)ε) .

The Hoeffding bound implies

P [st ≥ s (1 + ε) | st−1 = s] ≤ P [st ≥ s (1 + (1− 3p)ε) + 2pε · s | st−1 = s]

≤ e−γ2ε2p2 =
1

nγ2ε2p2
.

9



We provide another lemma to control the behavior of the bias. The proof consists in the
application of simple concentration bounds.

Lemma 5. For any constant k > 0, the following statements hold:

(i) if s ≥ seq, then P [st ≥ 2seq/3 | st−1 = s] ≥ 1− 1/nk.

(ii) if 0 ≤ s ≤ 2seq/3, then P [st ≤ seq | st−1 = s] ≥ 1− 1/nk.

Proof. Let k be any arbitrarily large constant. As for (i), Lemma 1 gives that

E [st | st−1 = s] ≥ s(1− p) ≥ seq(1− p),

since seq ≤ s ≤ n. Then, let δ = (1− 3p)/3 > 0. By using the Hoeffding bound, it holds that

P [st ≤ seq(1− p)− δ · seq | st−1 = s] ≤ e−
δ2s2eq

4 ≤ 1

nk
,

where the latter inequality holds since seq = Θ(n) and seq > (2k/δ) log n for a sufficiently large
n. As for (ii), Lemma 1 implies that

E [st | st−1 = s] ≤ 3s(1− p)

2
≤ seq(1− p),

which is true since 0 ≤ s ≤ 2seq/3. The Hoeffding bound then gives

P [st ≥ seq(1− p) + pseq | st−1 = s] ≤ e−
p2s2eq

4 ≤ 1

nk
,

where the latter inequality holds since seq = Θ(n) and so seq > (2k/p) log n for a sufficiently large
n.

We can piece together the above lemmas, which imply the following corollary.

Corollary 6. For any constant ε > 0 such that ε < 2(1−3p)
3(1−p) ,

(i) If |seq − s| ≤ (ε/4)seq, then

P [|seq − st| ≤ εseq | st−1 = s] ≥ 1− 1

nγ2ε2p2/25
;

(ii) If (ε/4)seq ≤ |seq − s| ≤ seq/3, then

P
[
|seq − st| ≤ |seq − s| ·

(
1− 3ε2

25

) ∣∣∣∣ st−1 = s

]
≥ 1− 1

nγ2ε4p2/(21832)
.

Proof. First, we prove (i). By using Lemma 4 and the union bound, we have that

P
[(

1− ε

4
− ε2

16

)
·
(
1− ε

4

)
seq ≤ st ≤

(
1 +

ε

4

)
·
(
1 +

ε

4

)
seq

∣∣∣∣ st−1 = s

]
≥ 1− 1

nγ2ε2p2/25
.

The claim follows by osberving that[(
1− ε

4
− ε2

16

)
·
(
1− ε

4

)
seq,

(
1 +

ε

4

)
·
(
1 +

ε

4

)
seq

]
⊆ [(1− ε)seq, (1 + ε)seq] .

As for claim (ii), we divide the proof in two different cases. Suppose, first, that 2seq/3 ≤ s ≤
(1 − ε/4)seq. A constant ε/4 ≤ δ ≤ 1/3 exists such that s = (1 − δ)seq. Then, from Lemmas 3
and 4, we have that

P
[
(1− δ)

(
1 +

3ε2

26

)
seq ≤ st ≤ seq

∣∣∣∣ st−1 = s

]
≥ 1− 1

nγ2ε4p2/214
.

10



Notice that ∣∣∣∣seq − (1− δ)

(
1 +

3ε2

26

)
seq

∣∣∣∣ = seq − (1− δ)

(
1 +

3ε2

26

)
seq

= (seq − (1− δ)seq) ·

(
1−

(1− δ) · 3ε2

26
· seq

δ · seq

)
≤ (seq − s) ·

(
1− 3ε2

25

)
,

where in the last inequality we used that δ ≤ 1/3. Hence,

P
[
|seq − st| ≤ |seq − s| ·

(
1− 3ε2

25

) ∣∣∣∣ st−1 = s

]
≥ 1− 1

nγ2p2ε4/214
. (5)

Second, suppose (1 + ε/4)seq ≤ s ≤ 3seq/2. A constant ε/4 ≤ δ ≤ 1/3 exists such that s =
(1 + δ)seq. From Lemmas 3 and 4, it holds that

P
[
(1 + δ)

(
1− δ − δ2

)
seq ≤ st ≤ (1 + δ)

(
1− 3ε2

26

)
seq

∣∣∣∣ st−1 = s

]
≥ 1− 1

nγ2ε4p2/(21832)
,

where we used the union bound and the fact that δ ≤ 1/3. Notice that∣∣seq − (1 + δ)
(
1− δ − δ2

)
seq
∣∣ = seq − (1 + δ)

(
1− δ − δ2

)
seq

= ((1 + δ)seq − seq) ·
(
(1 + δ)(δ + δ2)seq

δseq
− 1

)
≤ ((1 + δ)seq − seq) ·

(
16

9
− 1

)
= ((1 + δ)seq − seq) ·

(
1− 2

9

)
,

where the inequality holds since δ ≤ 1/3. By simple calculations, it can be seen that (1 +

δ)
(
1− 3ε2

26

)
≥ 1. Then, we have also that∣∣∣∣seq − (1 + δ)

(
1− 3ε2

26

)
seq

∣∣∣∣ = (1 + δ)

(
1− 3ε2

26

)
seq − seq

= ((1 + δ)seq − seq) ·

[
1−

(1 + δ) · 3ε2

26
seq

δseq

]
(a)

≤ ((1 + δ)seq − seq) ·
[
1− 3

(
1 +

ε

4

)
· 3ε

2

26

]
(b)

≤ ((1 + δ)seq − seq) ·
[
1− 9ε2

26

]
,

where (a) holds since ε/4 ≤ δ ≤ 1/3, and (b) holds since ε > 0. Thus,

P
[
|seq − st| ≤ |seq − s| ·

[
1− 9ε2

26

] ∣∣∣∣ st−1 = s

]
≥ 1− 1

nγ2ε4p2/(21832)
. (6)

Combining Eqs. (5) and (6), we get that, whenever (ε/4)seq ≤ |seq − s| ≤ seq/3, then

P
[
|seq − st| ≤ |seq − s| ·

[
1− 3ε2

25

] ∣∣∣∣ st−1 = s

]
≥ 1− 1

nγ2ε4p2/(21832)
.

We are finally ready to prove the theorem.
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Proof of Theorem 2. We divide the proof in different cases. First, suppose that (ε/4)seq ≤
|seq − s| ≤ εseq. Let T1 = nγ2ε4p2/(21932). Then, from Corollary 6.(i) and (ii), and by using
the chain rule, we have that

P

[
T1⋂
k=1

{|seq − st+k| ≤ εseq}

∣∣∣∣∣ st = s

]
≥ 1− 1

nγ2ε4p2/(22032)
.

This proves statement (ii) of the theorem.
Second, suppose that εseq ≤ |seq − s| ≤ seq/3. Then, from Corollary 6.(ii) and by using the

chain rule, a time T2 exists, such that

T2 = O

− log n

log
(
1− 3ε2

25

)
 = O

(
log n/ε2

)
such that

P [|seq − st+T2 | ≤ εseq | st = s] ≥ 1− 1

nγ2ε4p2/(22032)
.

Third, suppose that s ≤ 2seq/3. From Lemma 3.(i) and Lemma 5.(ii), by the chain rule and
the union bound, there is a time

T3 = O

 log n

log
(
1 + 3ε2

4

)
 = O

(
log n/ε2

)
such that

P [2seq/3 ≤ st+T3 ≤ seq | st = s] ≥ 1− 1

nγ2ε4/26
.

Then, we are in one of the first two cases, and we conclude by using the chain rule.
Fourth, suppose that s ≥ (1 + 1

3)seq. From Lemma 3.(ii) and Lemma 5.(i), and by using the
chain rule, a time T4 exists, with T4 = O (log n), such that

P [|seq − sT4 | ≤ seq/3 | st = s] ≥ 1− 1

nγ2/(3426)
.

Statement (i) of the theorem follows by setting τ1 = T2 + T3 + T4.

4 Symmetry breaking

The following theorem shows how the dynamics quickly break the initial symmetry. Combining
this result with Theorem 2, it shows that the consensus problem is solved.

Theorem 7 (Symmetry breaking). Let {st}t≥0 be the process induced by the 3-Majority dy-
namics with uniform noise probability p < 1/3, and let γ > 0 be any constant. Then, for any
starting configuration s0 such that |s0| ≤ γ

√
n log n and for any sufficiently large n, w.h.p. there

exists a time τ2 = Oγ,p(log n) such that |sτ2 | ≥ γ
√
n log n.

In each of the following statements, we assume that {st}t≥0 is the process induced by the
3-Majority dynamics with uniform noise probability p < 1/3. The symmetry breaking analysis
essentially relies on the following lemma, which has been proved in [15].

Lemma 8. Let {Xt}t∈N be a Markov Chain with finite-state space Ω and let f : Ω 7→ [0, n] be a
function that maps states to integer values. Let c3 be any positive constant and let m = c3

√
n log n

be a target value. Assume the following properties hold:

12



(i) for any positive constant h, a positive constant c1 < 1 (which depends only on h) exists, such
that for any x ∈ Ω : f(x) < m,

P
[
f(Xt) < h

√
n
∣∣ Xt−1 = x

]
< c1;

(ii) there exist two positive constants δ and c2 such that for any x ∈ Ω : h
√
n ≤ f(x) < m,

P [f(Xt) < (1 + δ)f(Xt−1) | Xt−1 = x] < e−c2f(x)2/n.

Then the process reaches a state x such that f(x) ≥ m within Oc2,δ,c3(log n) rounds with probability
at least 1− 2/n.

Our goal is to apply the above lemma to the 3-Majority process, which defines a Markov
chain. In particular, we claim the hypothesis of Lemma 8 are satisfied when the bias of the system
is o

(√
n log n

)
, with f(x) = s (x), m = γ

√
n log n for any constant γ > 0. Then, Lemma 8 implies

the process reaches a configuration with bias greater than Ω
(√

n log n
)
within time O (log n),

w.h.p. We need to prove that the two hypotheses hold.

Lemma 9. For any constant c3 > 0, let s be a value such that |s| < c3
√
n log n. Then,

(i) For any constant h > 0, there exists a positive constant c1 < 1 depending only on h, such
that

P
[
st < h

√
n
∣∣ st−1 = s

]
< c1;

(ii) Two positive constants δ, c2 exist (depending only on p), such that if |s| ≥ h
√
n, then

P [st < (1 + δ)s | st−1 = s] < e−
c2s

2

n .

Proof. As for the first claim, a simple domination argument implies that

P
[
|st| < h

√
n
∣∣ st−1 = s

]
≤ P

[
|st| < h

√
n
∣∣ st−1 = 0

]
. (7)

As shown in Section 2, st is a sum of n i.i.d. Rademacher r.v.s with zero mean and unitary variance.
We can hence make use of the Lemma 18 (Berry-Essen inequality). In particular, let Φ(x) be the
cumulative function of a standard normal distribution. A constant C > 0 exists such that∣∣P [st ≤ h

√
n
∣∣ st−1 = 0

]
− Φ(h)

∣∣ ≤ C√
n
.

Since Φ(h) = c for some constant c > 0 which depends only on h, we have that

c− C√
n
≤ P

[
st ≤ h

√
n
∣∣ st−1 = 0

]
≤ c+

C√
n
.

Since P [|st| < h
√
n | st−1 = 0] ≤ P [st ≤ h

√
n | st−1 = 0], for n large enough we get

P
[
|st| < h

√
n
∣∣ st−1 = 0

]
< 2c.

By setting c1 = c/2, we get claim (i) from Eq. (7).
As for the second claim, assume s > 0 and h

√
n ≤ s ≤ h

√
n log n. By Lemma 1 and the fact

that h
√
n ≤ s ≤ h

√
n log n ≤ (1−

√
ε)seq, we have (as in Lemma 3)

E [st | st−1 = s] =
s(1− 2p)

2

(
3− s2

n2
(1− 2p)2

)
≥ s

(
3

2
− 3p− 1− 6p− 2ε

2

)
13



= s(1 + ε).

By the Hoeffding bound (Lemma 17), we get that

P [st ≤ s (1 + ε)− sε/4 | st−1 = s] ≤ e−s2ε2/(32n).

Observe that P [|st| ≤ s (1 + 3ε/4) | st−1 = s] ≤ P [st ≤ s (1 + 3ε/4) | st−1 = s]. Thus, we have
the claim by setting δ = 3ε/4 and c2 = ε2/32.

The symmetry breaking is then a simple consequence of the above Lemma.

Proof of Theorem 7. Apply Lemmas 8 and 9 with h = c3 = γ.

5 Victory of noise

The following theorem shows that no form of consensus is possible when p > 1/3.

Theorem 10 (Victory of noise). Let {st}t≥0 be the process induced by the 3-Majority dynamics
with uniform noise probability p > 1/3. Let ε > 0 be any arbitrarily small constant such that
ε < min{1/4, (1 − p), (3p − 1)/2} and let γ > 0 be any positive constant. Then, for any starting
configuration s0 such that |s0| ≥ γ

√
n log n and for any sufficiently large n, the following holds

w.h.p.:

(i) there exists a time τ3 = Oε,p(log n) such that sτ3 = Oε(
√
n) and, moreover, the majority

opinion switches at the next round with probability Θε(1);

(ii) there exists a value c = Θγ,ε(1) such that, for all k ≤ nc, it holds that |sτ3+k| ≤ γ
√
n log n.

In each of the following statements, we assume that {st}t≥0 is the process induced by the
3-Majority dynamics with uniform noise probability p > 1/3.

We apply tools from drift analysis (Lemma 15) to the absolute value of the bias of the process,
showing that it reaches magnitude O (

√
n) quickly. Then, since the standard deviation of the bias

is Θ (
√
n), we have that the majority opinion switches with constant probability (Lemma 13).

Finally, with Lemma 14, we show that the bias keeps bounded in absolute value by O
(√

n log n
)
.

Lemma 11. For any constant ε > 0 such that ε < (1− p), if s ≥ 2
√
n/
(
ε2
)
, the following holds

E [|st| | st−1 = s] ≤ E [st | st−1 = s] ·
(
1 +

ε

2

)
.

Proof. It holds that

|st| ≤ |st − E [st | st−1 = s]|+ |E [st | st−1 = s]| .

Furthermore, from Lemma 1, it follows that E [st | st−1 = s] ≥ 0 as long as s ≥ 0. By writing

|st − E [st | st−1 = s]| =
√
(st − E [st | st−1 = s])2,

and by using the Jensen’s inequality, it follows that

E [|st| | st−1 = s] ≤
√
E
[
(st − E [st | st−1 = s])2

∣∣∣ st−1 = s
]
+ E [st | st−1 = s]

= σ (|st| | st−1 = s) + E [st | st−1 = s] , (8)

where σ(x) represents the standard deviation of a r.v. x. As pointed out in Section 2, the bias

can be written as the sum of i.i.d. random variables Y
(t)
i taking values in {−1,+1}. For such sum

of variables, the variance is linear:

σ (|st| | st−1 = s)2 =
n∑

i=1

σ
(
Y

(t)
i

∣∣∣ st−1 = s
)2

≤ n ,
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where the latter inequality holds since σ
(
Y

(t)
i

∣∣∣ st−1 = s
)2

≤ 1 for every i. From Lemma 1, we

deduce that

E [st | st−1 = s] ≥ s(1− p)(3− (1− p)2)

2
≥ s(1− p).

Since s ≥ 2
√
n

ε2
≥ 2

√
n

ε(1−p) , we get that E [st | st−1 = s] ≥ 2
√
n

ε . Combining the latter facts with (8),
we obtain

E [|st| | st−1] ≤ E [st | st−1 = s] ·
(
1 +

σ (|st| | st−1 = s)

E [st | st−1 = s]

)
≤ E [st | st−1 = s] ·

(
1 +

√
n

2
√
n

ε

)
≤ E [st | st−1 = s] ·

(
1 +

ε

2

)
.

With next lemma, we show that the absolute value of the process quickly becomes of magnitude
O (

√
n).

Lemma 12. For any constant ε > 0 such that ε < min{(1−p), (3p−1)/2} we define smin =
√
n/ε2.

Then, for any starting configuration s0 such that s0 ≥ smin, with probability at least 1− 1/n there
exists a time τ = Oε(log n) such that |sτ | ≤ smin.

Proof. Let h(x) = ε·x
2 be a function. Let Xt = |st| if st ≥ smin, otherwise Xt = 0. We now

estimate E [Xt −Xt−1 | Xt−1 ≥ smin,Ft−1], where Ft is the natural filtration of the process Xt.
We have that

E [Xt −Xt−1 | Xt−1 ≥ smin,Ft−1]

= E [Xt | Xt−1 ≥ smin,Ft−1]−Xt−1

(a)

≤ E [|st| | st−1 ≥ smin,Ft−1]− st−1

(b)

≤ E [st | st−1 ≥ smin,Ft−1] ·
(
1 +

ε

2

)
− st−1

(c)

≤ st−1(1− ε)
(
1 +

ε

2

)
− st−1

≤ − ε · st−1

2
,

where (a) holds because Xt ≤ |st|, (b) follows from Lemma 11, and (c) from Lemma 1. Thus,

E [Xt−1 −Xt | Xt−1 ≥ smin,Ft−1] ≥ h (Xt−1) .

Since h′(x) = ε/2 > 0, we can apply Lemma 15.(iii). Let τ be the first timeXt = 0 or, equivalently,
|st| < smin. Then

P [τ > t | s0] < exp

[
−ε

2
·
(
t− 2

ε
−
∫ s0

smin

2

ε · y
dy

)]
≤ exp

[
−ε

2
·
(
t− 2

ε
−
∫ n

smin

2

ε · y
dy

)]
= exp

[
−ε

2
·
(
t− 2

ε
− 2

ε
(log n− log smin)

)]
= exp

[
−ε

2
·
(
t− 2

ε
− 2

ε
((log n)/2 + 2 log ε)

)]
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≤ exp

[
−ε · t

2
+ 1 +

log n

2

]
.

If t = 4(log n)/ε, then we get that P [τ > t | s0] < e−3(logn)/2+1 < 1/n.

Next lemma states that, whenever the absolute value of the bias is of order of O (
√
n), then

the majority opinion switches at the next round with constant probability.

Lemma 13. For any constant ε > 0 such that ε < 1/4, and let st−1 be a configuration such
that |st−1| = s ≤

√
n/ε. Then, the majority opinion switches at the next round with constant

probability.

Proof. Without loss of generality, we assume that st−1 > 0. Now, st−1 = bt−1 − at−1, with
n/2 < bt−1 ≤ n/2 +

√
n/(2ε) and n/2 −

√
n/(2ε) ≤ at−1 < n/2. Both bt−1 and at−1 can be

expressed as the sum of i.i.d. Bernoulli r.v.s. Since E [at | n/2−
√
n/(2ε) ≤ at−1 < n/2] ≤ n/2,

we have

P
[
at ≥

n

2
+

√
n

2ε

∣∣∣∣ st−1 = s

]
= P

[
at ≥

n

2
·
(
1 +

1

ε
√
n

) ∣∣∣∣ st−1 = s

]
≥ e−

9
2ε2 ,

where the latter inequality holds by using the reverse Chernoff bound (Lemma 19), whose hy-
pothesis is satisfied since ε < 1/4. Thus, there is at least constant probability that the majority
opinion switches.

Next lemma shows that the signed bias decreases each round.

Lemma 14. For any constant ε > 0 such that ε ≤ (3p− 1)/2, the following statements hold

(i) if s ≥ γ
2

√
n log n, then P [st ≤ (1− 3ε/4)s | st−1 = s] ≥ 1− 1

nγ2ε2/27
;

(ii) if s ≥ 0, then P
[
−γ

2

√
n log n ≤ st ≤ s+ γ

2

√
n log n | st−1 = s

]
≥ 1− 2

nγ2/8
.

Proof. From Lemma 1, for each s ≥ 0 it holds that

E [st | st−1 = s] ≤ 3s(1− p)

2
≤ (1− ε)s, (9)

where the second inequality is true since ε ≤ (3p − 1)/2. We now apply the Hoeffding bound
(Lemma 17) to st:

P [st ≥ (1− ε)s+ ε · s/4] ≤ e−s2ε2/(32n) ≤ e−γ2ε2 logn/27 ≤ 1

n
γ2ε2

27

.

As for the second claim, we notice that, from Eq. (9), E [st | st−1 = s] ≤ s. The Hoeffding bound
(Lemma 17) now implies that

P
[
st ≥ s+

γ

2

√
n log n

]
≤ e−γ2 logn/8 ≤ 1

nγ2/8
.

Moreover, from Lemma 1, for any 0 ≤ s ≤ n, E [st | st−1 = s] ≥ 0. Applying again the Hoeffding
bound, we get that

P
[
st ≥ −γ

2

√
n log n | st−1 = s

]
≤ e−γ2 logn/8 ≤ 1

nγ2/8
,

By the union bound, we get the second claim.

We are ready to prove Theorem 10.

Proof of Theorem 10. Claim (i) follows directly from Lemmas 12 and 13. As for claim (ii), when-
ever the bias at some round t = τ + k becomes |st| ≥ (γ/2)

√
n log n, from Lemma 14.(ii) (and

its symmetric statement), we have that |st| ≤ γ
√
n log n with probability 1− 2/n

γ2

8 . Then, from
Lemma 14.(i) it follows that the bias starts decreasing each round with probability 1− 1/nγ2ε2/27

until reaching (γ/2)
√
log n. This phase in which the absolute value of the bias keeps bounded by∣∣γ√n log n

∣∣ lasts for at least nγ2ε2/28 with probability at least 1− 1/(2nγ2ε2/28) by using the chain
rule.
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6 Experiments

In this section, we describe the experiments we conducted on the 3-Majority dynamics to show,
in practice, the behavior of the bias for different input sizes and noise parameters.

In Fig. 1 we show the average convergence time of the 3-Majority dynamics to almost-
consensus in s and also Erdös-Rényi graphs Gn,q (with q = 1.25 · ln(n)/n to ensure connectivity
with high probability). Interestingly, even though our theorems give asymptotic bounds, the
convergence time behaves as expected even for small input sizes (e.g. n = 210 nodes). Furthermore,
the asymptotic convergence time to almost-consensus seems to be logarithmic even in the Erdös-
Rényi graph.

We also test the dynamics against expanders that have low degree: random regular graphs
with degrees d ∈ {3, 5} (Fig. 2). It seems that the convergence time is still logarithmic but
quantitatively very different from the case of s: e.g. in Fig. 2b the convergence time for the
random regular graph of degree d = 5 with 216 nodes is around 700, whereas for s and Erdös-
Rényi graphs it is between 60 and 80 (Figs. 1b and 1d). Notably, we also found out that the
dynamics over the random regular graph with d = 3 doesn’t seem to converge when the noise
parameter is any value p ≥ 1/5 (Fig. 3d). This phenomenon suggests that the noise values
determining the phase-transition can depend on the expansion and/or sparsity of the underlying
graph: these values seem to be reduced whenever the expansion of the graph decreases and its
sparsity increases, as noticeable in Fig. 3. For future work, it would be interesting to study the
relation between expansion/sparsity of the graph and the behavior of the 3-Majority dynamics.
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(a) Average convergence time to almost-
consensus in a with noise parameter p =
1/8.

(b) Average convergence time to almost-
consensus in a with noise parameter p =
1/4.

(c) Average convergence time to almost-
consensus in an Erdos-Rényi graph Gn,q

with q = 1.25 · ln(n)/n and noise param-
eter p = 1/8.

(d) Average convergence time to almost-
consensus in an Erdos-Rényi graph Gn,q

with q = 1.25 · ln(n)/n and noise param-
eter p = 1/4.

Figure 1: Average convergence times to almost-consensus in s and Erdos-Rényi graphs. The
average is computed over 1000 different runs, and the random underlying graph is sampled at
each run. The shaded areas represent the sample standard deviations.
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(a) Average convergence time to almost-
consensus in a configuration graph with de-
gree d = 5 with noise parameter p = 1/8.

(b) Average convergence time to almost-
consensus in a configuration graph with de-
gree d = 5 with noise parameter p = 1/4.

(c) Average convergence time to almost-
consensus in a configuration graph with de-
gree d = 3 and noise parameter p = 1/8.

(d) Average convergence time to almost-
consensus in a configuration graph with de-
gree d = 3 and noise parameter p = 1/6.

Figure 2: Average convergence times to almost-consensus in random regular graphs with degrees
5 and 3. The average is computed over 1000 different runs, and the random underlying graph is
sampled at each run. The shaded areas represent the sample standard deviations.
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(a) Behavior of the bias in a clique for dif-
ferent noise values.

(b) Behavior of the bias in an Erdos-Rényi
graph Gn,q with q = 1.25 · ln(n)/n for dif-
ferent noise values.

(c) Behavior of the bias in random regular
graph with degree d = 5 for different noise
values.

(d) Behavior of the bias in a random reg-
ular graph with degree d = 3 for different
noise values.

Figure 3: Behaviors of the bias ratio
∣∣bias
size

∣∣ in different topologies and for different noise
values over a single run of the dynamics. The noise parameter p is chosen from set
{1/8, 1/6, 1/5, 1/4, 5/12, 1/2}. The dotted colored lines represent the bias ratio’s equilibria in
cliques, depending on the corresponding noise value. All graphs have 216 nodes. For the sake of
readability, we report here the values of the noise parameters for each colored line: red = 1/8,
blue = 1/6, green = 1/5, purple = 1/4, gold = 5/12, brown = 1/2.
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A Tools

We make use of the following general result on (super/sub)-martingales, which can be found
in [35].

Lemma 15. Let {Xt}t∈N be a stochastic process adapted to a filtration {Ft}t∈N, over some state
space S ⊆ {0} ∪ [xmin, xmax], where xmin ≥ 0. Let h : [xmin, xmax] → R+ be a function such that
1/h(x) is integrable and h(x) differentiable on [xmin, xmax]. Define T := min{t | Xt = 0}. Then,
the followings hold.

(i) If E [Xt −Xt+1 | Xt ≥ xmin,Ft] ≥ h(Xt) and
d
dxh(x) ≥ 0, then

E [T | X0] ≤
xmin

h(xmin)
+

∫ X0

xmin

1

h(y)
dy.

(ii) If E [Xt −Xt+1 | Xt ≥ xmin,Ft] ≤ h(Xt) and
d
dxh(x) ≤ 0, then

E [T | X0] ≥
xmin

h(xmin)
+

∫ X0

xmin

1

h(y)
dy.

(iii) If E [Xt −Xt+1 | Xt ≥ xmin,Ft] ≥ h(Xt) and
d
dxh(x) ≥ λ for some λ > 0, then

P [T > t | X0] < exp

(
−λ

(
t− xmin

h(xmin)
−
∫ X0

xmin

1

h(y)
dy

))
.

(iv) If E [Xt −Xt+1 | Xt ≥ xmin,Ft] ≤ h(Xt) and
d
dxh(x) ≤ −λ for some λ > 0, then

P [T < t | X0] <
eλt − eλ

eλ − 1
exp

(
−λ

(
xmin

h(xmin)
+

∫ X0

xmin

1

h(y)
dy

))
.

For an overview on the forms of Chernoff bounds see [23].

Lemma 16 (Multiplicative forms of Chernoff bounds). Let X1, X2, . . . , Xn be independent {0, 1}
random variables. Let X =

∑n
i=1Xi and µ = E [X]. Then:

(i) for any δ ∈ (0, 1) and µ ≤ µ+ ≤ n, it holds that

P [X ≥ (1 + δ)µ+] ≤ e−
1
3
δ2µ+ ; (10)

(ii) for any δ ∈ (0, 1) and 0 ≤ µ− ≤ µ, it holds that

P [X ≤ (1− δ)µ−] ≤ e−
1
2
δ2µ− . (11)

We also make use of the Hoeffding bounds [37].

Lemma 17 (Hoeffding bounds). Let 0 < a < b be two constants. Let X1, X2, . . . , Xn be inde-
pendent random variables such that P [a ≤ Xi ≤ b] = 1 for all i ∈ [n]. Let X =

∑n
i=1Xi and

E [X] = µ. Then:

(i) for any t > 0 and µ ≤ µ+, it holds that

P [X ≥ µ+ + t] ≤ exp

(
− 2t2

n(b− a)2

)
; (12)
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(ii) for any t > 0 and 0 ≤ µ− ≤ µ, it holds that

P [X ≤ µ− − t] ≤ exp

(
− 2t2

n(b− a)2

)
. (13)

We make use of the following result which makes explicit the convergence “speed” in the
central-limit theorem.

Lemma 18 (Berry-Esseen). Let X1, . . . , Xn be n i.i.d. (either discrete or continuous) random
variables with zero mean, variance σ2 > 0, and finite third moment. Let Z the standard normal
random variable, with zero mean and variance equal to 1. Let Fn(x) be the cumulative function
of Sn

σ
√
n
, where Sn =

∑n
i=1Xi, and Φ(x) that of Z. Then, there exists a positive constant C > 0

such that

sup
x∈R

|Fn(x)− Φ(x)| ≤ C√
n

for all n ≥ 1.

Finally, we use some anti-concentration inequalities know as reverse Chernoff bounds. The
proof can be found in the appendix of [33].

Lemma 19 (Reverse Chernoff bounds). Let X1, X2, . . . , Xn be i.i.d. {0, 1} random variables. Let
X =

∑n
i=1Xi and µ = E [X], with µ ≤ n/2. Furthermore, let δ ∈ (0, 1/2] be a constant. If

δ2µ ≥ 3, then:

(i) for any µ ≤ µ+ ≤ n, it holds that

P [X ≥ (1 + δ)µ+] ≥ e−9δ2µ+ ; (14)

(ii) for any 0 ≤ µ− ≤ µ, it holds that

P [X ≤ (1− δ)µ−] ≥ e−9δ2µ− . (15)
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