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In mathematics courses, the use of examples is often reduced to illustrating concepts
(Bills et al., 2006). Since more than four decades, the international didactic community 
has investigated the potential of examples (Balacheff, 1988; 
Zaslavsky, 2018). Considering the difficulties regarding proof and proving experienced 
by students at the transition to university mathematics (Selden, 2012), such use of 
examples is promising insofar as it reduces the level of abstraction and suspends or 
even eliminates the need to deal with formalism and symbolism (Zaslavsky, 2018, p. 
290). Although flourishing, the research has not stabilized the vocabulary
(interchangeable use of the terms generic example, generic proof, generic argument
and even proof by generic example) and it is often unclear what the authors speak about 
(Dogan and Williams-Pierce, 2021). We have contributed to clarify those terms by 
defining different levels of genericity in (Trouvé, 2023). An acceptation within this 
polysemy echoes to Steiner stance it is not, then, the general proof which 
explains; it is the generalizable , emphasis in the original). As part 
of our research on the use of examples for teaching and learning proof, we focus on 
generalizing from examples.

To get insight into this use of examples, we choose to work in the first-order predicate 
calculus to be able to take over the instantiation processes (Barrier, 2016). Given a
deductive theory , the statement will be said more general than the 
statement if and only if . We describe 
and illustrate three proof processes for obtaining by generalization:

1. by using (and possibly changing) a proof of , for elements of ,
2. by using the statement in a proof of , and
3. by identifying the generic character (Trouvé, 2023) of (part of) a proof of the 

statement .

As exploring is important to think the didactical transposition, 
we wonder if and how mathematicians generalize from examples. To address these 
research questions, we analyze the answers of 13 mathematicians to a questionnaire
designed to tackle more generally the question of genericity. It leads to the following 
results. The second process is not mentioned in any answer. In contrast, the first and 
the third processes are respectively cited in 3 and 5 answers. The corresponding
answers illustrate the complexity of these processes, both in terms of the diversity of 
their shape and their possible interaction. 2 of the 14 mathematicians speak about 
generalizing from examples without involving them in a proving process. For 3 others,



the description is not precise enough to decide whether the examples are used for 
generalizing, and if they are involved in a proof process or not.

This study enhances our understanding of proof processes in mathematics and stresses 
the relevance of incorporating them in the learning and teaching of proof. In a didactic 
perspective, we wonder if such processes live in the curriculum and if teachers 
recognize them as goals of the mathematics class. Besides, we question the possibility
to devolve situations involving such processes. If so, what are their specificities? How 
can (or should) they be implemented? We plan to study these issues in our future 
research.
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