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Abstract

Neuroscientists routinely use reverse inference (RI) to draw conclusions about cognitive
processes from neural activation data. However, despite its widespread use, the method-
ological status of RI is a matter of ongoing controversy, with some critics arguing that
it should be rejected wholesale on the grounds that it instantiates a deductively invalid
argument form. In response to these critiques, some have proposed to conceive of RI as a
form of abduction or inference to the best explanation (IBE). We side with this response
but at the same time argue that a defense of RI requires more than identifying it as a form
of IBE. In this paper, we give an analysis of what determines the quality of an RI conceived
as an IBE and on that basis argue that whether an RI is warranted needs to be decided on
a case-by-case basis. Support for our argument will come from a detailed methodological
discussion of RI in cognitive neuroscience in light of what the recent literature on IBE has
identified as the main quality indicators for IBEs.

Keywords: abduction; explanation; functional magnetic resonance imaging; inference to
the best explanation; neuroscience; reverse inference.

1 Introduction

Functional Magnetic Resonance Imaging (fMRI) is one of the main neuroscientific techniques
for studying associations between neural evidence (i.e., the observed activation of certain brain
regions) and cognitive hypotheses (i.e., hypotheses about the recruitment of certain cognitive
processes during some task). Practitioners of this technique tend to rely on amode of reasoning
known as “reverse inference” (RI for short; see Poldrack 2006). Specifically, RI is used to draw
conclusions about the engagement of a certain cognitive process or function from the registered
activation of a certain brain region. Despite its prevalent use, the methodological status of
RI is a subject of ongoing debate (for critical discussion, see Poldrack 2006, 2011; Bourgeois-
Gironde 2010; Hutzler 2014; Machery 2014; Glymour and Hanson 2016; Nathan and Del Pinal
2017; Coraci, Calzavarini, and Cevolani 2022), with some critics proposing that neuroscientists
abstain entirely from using it (e.g., Anderson 2010).

In aneffort to validate its use, some scholars havepositedRI as a formof abductive reasoning
or inference to the best explanation (IBE for short; see Bourgeois-Gironde 2010; Poldrack 2011;
Calzavarini and Cevolani 2022), which, although not deductively valid, has been heralded as
the cornerstone of scientific methodology (e.g., Boyd 1984; McMullin 1992). However, simply
acknowledging RIs as IBEs is not enough to justify their use in neuroscience, given that even
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some of the staunchest advocates of IBE have argued that we are licensed to use it only if certain
conditions are met (e.g., Lipton 1993; Bird 2010; Douven 2022).

In this paper, we side with previous work which proposes to view RI as a form of IBE.
However, we go beyond that work by presenting a more nuanced and qualified defense of
RI as IBE, most notably by giving an accurate analysis of what determines the quality of an
RI conceived as IBE. Doing so will help us argue that whether an RI is warranted needs to
be decided on a case-by-case basis and also is not always a matter of yes or no; rather, RIs
can be warrantedmore or less strongly. Support for our argument will come from a detailed
methodological discussion of RI in cognitive neuroscience in light of what the recent literature
on IBE has identified as the main conditions for an IBE to be warranted. The discussion will
involve some case studies from the neuroscientific literature which jointly show that whether,
and if so to what extent, RI satisfies those conditions crucially depends on the specific method
or methods it relies on.

Section 2 delineates RI in cognitive neuroscience, underscoring the inadequacies of current
discussions of RI as an IBE. Section 3 compares the major methods used in implementing RIs
based on fMRI data,with a distinct focus on the differences betweenunivariate andmultivariate
methods. Here,weplace special emphasis onRepresentational SimilarityAnalysis (Kriegeskorte
2008), amultivariate technique that has so far received little attention in theRI debate. Section 4
reviews recent theoretical and empirical work on IBE, highlighting several principles suggested
by philosophers for evaluating the quality of competing explanations and, more generally,
the validity of an abductive inference. Section 5 illustrates how these principles can advance
methodological discussions surrounding RI in cognitive neuroscience.

2 The Status of Reverse Inference

According to Poldrack (2006), the most common version of RI has the following structure:

P1. In the literature, when cognitive process Cog was engaged (during task T), then brain
area Act was active.

P2. In the present study, brain area Act was active.
C. The activity of area Act in the present study demonstrates the engagement of cognitive

process Cog (during task T).

Thus schematized, RI appears to instantiate a form of reasoning generally referred to as “af-
firming the consequent” (AC):

P1. If Cog then Act
P2. Act
C. Cog

AC is known to be a fallacy. If it rains the streets will be wet, but it would be wrong to infer
from the streets being wet that it has rained: the streets could be wet for any number of reasons.
Specifically in relation to RI, this problem has been referred to as “the problem of selectivity
of brain regions” (Poldrack 2006; Nathan and Del Pinal 2017), which is the fact that, often, the
activity of a region Act can be associated with a number of different cognitive functions rather
than just with a single cognitive function Cog. Due to this “multifunctionality” of brain areas,
which is crucially acknowledged in neuroscience, inferring from Act to a specific cognitive
function Cog is always risky, since Act could currently contribute to a another function different
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from Cog.1 As a result, there is much scepticism among researchers about reasoning from
brain activations to cognitive functions via RI (e.g., Anderson 2010; Bourgeois-Gironde 2010;
Poldrack 2011; Glymour and Hanson 2016; Nathan and Del Pinal 2017; Calzavarini and Cevolani
2022).

More optimistic proposals conceptualize RI as a fallible but still useful form of inference.
Some of these viewRI as an instance of probabilistic or inductive reasoning, alongBayesian (Pol-
drack 2006; Hutzler 2014) or likelihoodist (Machery 2014) lines. But, as previouslymentioned,RI
has also been analyzed as a form of IBE, that is, roughly, as an inference from observed evidence
to putative explanations or causes (Poldrack 2011; Glymour and Hanson 2016; Calzavarini and
Cevolani 2022).2 From these more optimistic perspectives, RI appears as an inferential strategy
useful for figuring out, and even confirming one of, a number of competing neuroscientific
hypotheses able to account for a given body of fMRI evidence.

Interestingly, suchproposalsmoved fromconceptualizingRI as an instance of abductive rea-
soning in Peirce’s sense—so as having a place in the context of discovery (e.g., Deeley 1994)—to
viewing RI as an instance of IBE, so as having a place in the context of justification. For instance,
Poldrack (2006) was the first to link RI to abduction as originally conceived by Peirce, noticing
that RI may be a useful strategy for discovering new hypotheses concerning the recruitment
of certain cognitive processes on the basis of the observed neural activation. In line with this
view, Bourgeois-Gironde (2010) analyzes RI as a form of abduction leading to the formulation
of tentative hypotheses in need of further testing. Similarly, Glymour and Hanson (2016) argue
that the real problem of RI “is not confirmation but search: how to find among the huge number
of alternatives the hypothesis, or hypotheses, that best explain the data” (p. 1150), even if this
statement can be read as to point both to a discovery or a justification role for RI. In general
however, none of these authors provide a definitive word about the status of RI. Rather, they
open the way for further discussion of RI not only within the context of discovery but also
within that of the justification of cognitive hypotheses. Thus, the debate appears to follow the
same path of the philosophical discussion that, historically, concerned the interpretation of the
notion of abduction, with some authors pointing toward its exploratory component and others
stressing its justificatory role as IBE.

In this connection, Calzavarini and Cevolani (2022) represents the first attempt to system-
atically discuss RI with respect to the philosophical notion of abductive inference, suggesting
to distinguish between a weak and a strong version of RI in order to disentangle the “heuristic”
or “discovery” role of RI and its “justificatory” or “confirmatory” role as a form of IBE. As these
authors show, this distinction is important to properly understand the current debate about
RI, and especially to appreciate the role and pervasiveness of weak RI in the neuroscientific
literature. As far as strong RI is concerned, however, Calzavarini and Cevolani (2022) do not go
beyond discussing an (interesting) case study; in particular, they do not provide any general
analysis of how to assess the reliability of RI as IBE.3

1Thismotivates what Burnston (2016) calls “contextualism” in connection to the localization of cognitive func-
tions in brain areas.

2Thismight seem unhelpful, given that IBE has itself been said to instantiate AC. That is a mistake, however,
for more than one reason (as will be seen), but one obvious reason is that, at a minimum, one would want to add a
premise to the schema given in the main text to the effect that Cog itself, and also the connection between Cog and
Act, is to satisfy certain criteria for the inference to go through. The resulting schema would no longer be the one
used to characterize AC.

3The same is true of the recent overview of RI offered by Coraci, Calzavarini, and Cevolani (2022). In Section 5.2,
we will provide a critical reassessment of the case study discussed by Calzavarini and Cevolani (2022), by specifically
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Therefore, up to this point, the debate about the status of RI misses a detailed and qualified
analysis of RI as a form of IBE. For reasons to be given in Section 4, we hold that inferring to the
best explanation can be warranted, depending on whether certain conditions or desiderata are
met. Accordingly, we argue for a qualified rather than a blanket endorsement of RI,meaning
that, in our view, there is no general answer to the question of whether, and if so, to which extent,
we arewarranted in accepting a cognitive hypothesis on the basis of neural evidence. The reason
for this is that much depends on the specific (statistical and experimental) methods applied to
perform RIs, as well as on the details of concrete cases and studies. Even so, it is still possible to
derive from the literature on IBE general guidelines for how to decide the said question in a
given context. In Section 5, we illustrate the usefulness of these guidelines by discussing and
comparing different applications of RI. To this purpose, we first need to see in some detail how
RI is routinely performed in cognitive neuroscience, in order to appreciate the extent to which
the quality of the provided explanation depends on the specific method used to analyze fMRI
data.

3 FromLocation-based Reverse Inference to Representational Simi-
larity Analysis

Current research in neuroscience employs various forms of analysis even among experimental
studies based on fMRI. A relevant distinction, which is the focus of this section, depends on
whether “univariate” or “multivariate” statistical techniques are applied to analyze the available
fMRI data. This leads to two different forms of RI, to wit, “location-based” versus “pattern-
based” reverse inference (followingDel Pinal andNathan 2017; Nathan andDel Pinal 2017). Here,
we briefly present the twomethods, paying special attention to one prominent multivariate
technique, viz., Representational Similarity Analysis. Further on, this will help us assess the
impact of the various methods on the quality of the inferred cognitive explanations and discuss
whether and to what extent those explanations meet the guidelines suggested in the literature
on IBE.

3.1 Location-based Reverse Inference

Themore conventional, and still more widely used, form of RI is the one wemay call “location-
based” or “voxel-based RI,” since it is performed via a univariate statistical analysis of fMRI
data concerning individual voxels.4 To get an idea of how it works, suppose we are interested in
locating thebrain areas that showhigher activationduringa specific experimentalmanipulation
(e.g., a task involving face perception). The initial scanning stage consists in acquiring the
neural signal from the same participants both under the experimental manipulation and at
rest (or, more generally, during a contrast condition). Then, a statistical analysis is performed
on the acquired neural signal to compare the average neural activity recorded during the two
conditions. Those brain areas that show a statistically significant difference will be interpreted
as having beenmore active due to the manipulation. Whenmany voxels report a positive and
significant change in their neural activity, these are gathered together in clusters or regions,

focusingon thequality of theRIdrawn in that study (LiebermanandEisenberger 2015) in the light of thephilosophical
literature about IBE.

4A voxel can be thought of as a three-dimensional pixel and represents the minimal unit at which the MRI
scanner can record the neural signal. The size of the voxel, usually between 1 and 4millimeters, defines the resolution
of the brain image. Even in high-resolution imaging, a single voxel includes thousands of neurons.
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and inferences about the engagement of the cognitive function at issue are drawn at the cluster
level.

While the majority of currently published fMRI studies rely on this type of data analysis,
various criticisms have been raised recently against location-based analysis, and especially
against RI based on this technique (see especially Davis, LaRocque, et al. 2014; Del Pinal and
Nathan 2017; Nathan and Del Pinal 2017). One point of critique is that this kind of RI relies on a
prior assumption about the neural localizability of cognitive processes, which is problematic in
light of the lack of selectivity of brain regionsmentioned previously (Del Pinal andNathan 2017).
A second point of critique concerns the association between the cognitive process engaged in
the experimental task and the observed activation, which, according to the critics, is difficult
to establish in a precise and quantitative manner. Indeed, in many univariate studies, the
“association laws” between cognitive processes and brain regions appears to rest on potentially
biased and unsystematic reviews of the available literature (Nathan and Del Pinal 2017, p. 10 f).5

Finally, one of the main limitations of univariate methods is that neuropsychological variables
putatively elicited during experimental manipulations are fully coded by the activity of a single
voxel (e.g., Davis, LaRocque, et al. 2014). This assumption makes the mapping of potentially
multidimensional characteristics of experimental stimuli much harder, in particular when
the investigated cognitive function appears so complex andmultifaceted that it requires the
analysis of a combination of neural information coming frommultiple loci.

3.2 Pattern-based Reverse Inference

The issues with standard, location-based analysis mentioned abovemotivated the development
of other methods, leading to what may be called “pattern-based” or “pattern-decoding” RI. This
second form of RI is based on so-called multivariate pattern analysis (MVPA) of fMRI data.6

Introduced in a seminal work by Haxby and colleagues (Haxby, Gobbini, et al. 2001), MVPA has
received increasing attention in the fMRI community, since it allows researchers to investigate
how populations of voxels, rather than single units, encode information. MVPA encompasses
different steps, which it is useful to describe in some detail to understand how this method
differs from standard univariate analysis (Norman et al. 2006; Haynes and Rees 2006).

After fMRI data acquisition,MVPA starts by selecting a subset of the measured signals, for
instance, a specific region of the brain corresponding to a three-dimensional grid of N vox-
els. Next, through so-called pattern assembly (Norman et al. 2006), these neuroimaging data
are sorted into pattern vectors reporting the change in the neural activity for each of the se-
lected voxels over the time course of the experiment. Such vectors can be represented in an
N-dimensional feature space and are labeled according to the experimental conditions that

5The tools and software for conducting large-scale, automated syntheses of the fMRI literature that have become
available to neuroscientists over the past ten years (see, e.g., Yarkoni et al. 2011; Poldrack 2011; Costa et al. 2021) have
somewhat helped to undercut Nathan and Del Pinal’s criticism. These authors are aware of this development, but
they claim that—at least at the time of their writing, viz., 2017—machine-learning decodingmethods that would
provide the automated syntheses of the fMRI literature, as discussed for instance in Poldrack (2011), are “still largely
ignored in critical andmethodological discussions of reverse inference” (Nathan and Del Pinal 2017, p. 8 f).

6The terminology is not entirely settled in the literature. For a discussion concerning the use of the partially
overlapping and interconnected concepts of “multivariate analysis,” “multi-voxels analysis,” “pattern analysis,” “mind-
reading,” and the “encoding/decoding” distinction, see Kriegeskorte and Bandettini (2007) and Ritchie, Kaplan, and
Klein (2020). For a technical introduction to MVPA, see Haynes and Rees (2006), Norman et al. (2006), Davis and
Poldrack (2013), and Haxby, Connolly, and Guntupalli (2014).
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generated the pattern. Then, the data pattern vectors are split into two sets, the training set
and the test set.

At this point, a statistical classifier (e.g., amachine learning algorithm able to automatically
classify data into clusters) is applied in order to find an optimal partition of the neural data
within theN-dimensional space, according to which experimental conditions can be effectively
discriminated.7 The training set is used to feed the algorithm for the classification: if the
classifier’s algorithm is able to distinguish between different populations of voxels based on
their activity, such populations can be interpreted as responding to the experimental conditions
with which they have been previously labeled. The trained classifier is then validated on the test
set in order to assess its accuracy in predicting the experimental conditions when “new,” unseen
neural data are taken as input. The performance is usually assessed through a cross-validation
procedure, which averages across multiple rounds of validation taking as training and test sets
different portions of the data (Ritchie, Kaplan, and Klein 2020, p. 587).

The outcome of the classification reveals how different populations of voxels encode dif-
ferent stimuli. This represents one of the main advantages of MVPA over univariate methods,
given that the lattermay fail to capture the processing of psychological variables that elicitmulti-
dimensional effects on neural activity. By analyzing the neural signal over a distributed pattern
of voxels at the same time rather than in a single unit,MVPA results aremore fine-grained than
those from univariate methods and, thus, more sensitive in distinguishing the activity of those
voxels that, even within the same brain region, do not carry identical information and respond
differently to the same experimental variable (Davis, LaRocque, et al. 2014). Therefore,MVPA
enriches the available neural information about the cognitive function under investigation,
providing qualitatively better results than univariate methods.

For the previously mentioned reasons, it has been suggested that the pattern-based form of
RI is generally more reliable than location-based RI. It can be schematized as follows (Nathan
and Del Pinal 2017, p. 9):

P1. Cognitive process Cog1 is associated by a classifier with a class of multi-voxel pattern Act1,
while Cog2 is associated by a classifier with a class of multi-voxel pattern Act2.

P2. In a neuroimaging experiment, during task T, multi-voxel pattern Act1 is obtained.
C. During task T, process Cog1 (rather than Cog2) is engaged.

While the advantages of pattern-based RI over location-based RI are easily appreciated, study-
ing cognitive states at the level of populations of voxels instead of at the level of individual voxels
faces its own set of challenges. According to Ritchie, Kaplan, and Klein (2020), for instance,
multivariate methods suffer from the “decoder’s dictum” (p. 582), which is the assumption that
the decoder (i.e., the classifier) reflects how the brain actually processes information.8 Indeed,
the simple fact that information can be accurately decoded from patterns of neural activity by
means of a classifier is not a solid basis for inferring that those neural patterns actually represent
the decoded information. Furthermore,Weiskopf (2021) notices that pattern-based RI is unable
to fulfill the main theoretical aim of RI, viz., explaining the functional role of brain regions.
Given the highly prediction-oriented purposes of classification algorithms, pattern-based RIs

7Of course, exactly how the classification is performed depends on the specific algorithm that is used. For
example,manyMVPA studies use linear classifiers such as linear support vector machines (for an introduction to
the different classifiers used to analyze fMRI data, see Kriegeskorte and Bandettini 2007; Mahmoudi et al. 2012;
Davis and Poldrack 2013; Wright 2018).

8See alsoDeWit et al. (2016) for a similar distinctionbetweenneuroimagingdata as interpretedby experimenters
(“experimenter-as-receiver”) and by the brain (“cortex-as-receiver”).
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would not investigate the relationships between cognitive functions and their neural realizers,
but would only offer a window on the potential biomarkers of cognitive processes. These are
some of the issues motivating the explicit skepticism of a number of authors (e.g., Ritchie,
Kaplan, and Klein 2020) about RI as based onMVPAmethods, which do not seem sufficient to
escape the weaknesses of conventional inferences in neuroscience.

3.3 Reverse Inference based onRepresentational Similarity Analysis

Asmentioned above, it seems fair to say that themere application ofmultivariatemethods to the
analysis of fMRI data is not enough to solve themethodological doubts concerning RI. However,
as suggested by Ritchie, Kaplan, and Klein (2020) andWeiskopf (2021), specific multivariate
methods can be instrumental in developing cognitive hypotheses with greater explanatory
power, especially when enriched by further types of evidence such as behavioral and compu-
tational data. A case in point is a multivariate method known as “Representational Similarity
Analysis” (RSA, for short; Kriegeskorte and Kievit 2013), which also presents interesting con-
nections with the theoretical and methodological considerations from the recent philosophical
and psychological literature on IBE to be discussed in the next section.9

The basic idea of RSA is to model measurements by means of a space whose dimensions
reflect different features of the stimuli presented during the experiment. A virtue of RSA,
as compared to other MVPA methods, is that it allows one to focus on more detailed and
informative relationships holding between the data represented within the feature space.

RSA is a three-step procedure. First, the patterns of brain activation associated with each
of theN stimuli presented during the experiment are arranged in amatrix. Second, the various
neural patterns in the matrix are pairwise compared and their dissimilarities computed. This
leads to a representational dissimilarity matrix (RDM), which can be spatially represented
using a dimension-reduction technique such as multi-dimensional scaling or non-negative
matrix factorization (e.g., Borg and Groenen 2005). An individual RDM comparing neural
signals allows one to assess how a property putatively shared by a set of experimental stimuli is
reflected in the activity of populations of voxels.

Up until this point, RSA appears similar to other MVPAmethods. Characteristically, how-
ever, RSA involves different RDMs that can be constructed starting from the specific type of data
available for the same stimuli; moreover, it does not necessarily require a classification task.
Suppose, for instance, that researchers have conducted a behavioral experiment in which they
recorded a certain behavioral variable (e.g., latencies, skin conductance responses, or similarity
judgments) on the same stimuli used during the fMRI acquisition. Then, as a second step, a
behavior-based RDM can be constructed for these responses.

The final step of RSA involves comparing the two (or more) RDMs in order to establish
second-order dissimilarities between neural and behavioral data (Kriegeskorte,Mur, and Ban-
dettini 2008; Kriegeskorte and Kievit 2013). While the neural and the behavioral RDMs respec-
tively analyze the dissimilarities between neural and behavioral data for the stimuli at issue, the
comparison of the two RDMs leads to a third, second-order matrix showing the dissimilarities
between the dissimilarity patterns of the neural and the behavioral RDMs.10 Therefore, rather

9For an introduction to the main differences betweenMVPAmethods, see Kriegeskorte (2011) and Yang, Fang,
andWeng (2012).

10The key idea of RSA reflects the concept of second-order isomorphism as first studied in Shepard (1968)
and Shepard and Chipman (1970). Second-order isomorphism establishes a particular type of similarity between
different kinds of data, such as behavioral responses and patterns of neural activity, as elicited by the same group of
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than a simple association between properties of experimental stimuli and the (brain) responses
to them,RSA allows researchers to establish, for those properties, the correspondences between
patterns of behavioral responses and patterns of neural responses, providing a more detailed
and integrated perspective for investigating the different pieces of evidence at hand.

There are no specific restrictions on the type of evidence to use within each RDM, leading to
a variety of potential comparisons for the same stimuli, ranging fromneural and behavioral data
to computational models, recordings based on neuroimaging techniques other than fMRI (e.g.,
electroencephalography, magnetoencephalography), and interspecies data (Kriegeskorte, Mur,
Ruff, et al. 2008). Therefore, RSA represents a remarkablemethod for connecting evidence from
different areas of neuroscientific research (Kriegeskorte,Mur, and Bandettini 2008) and for
developing richer explanations about the processing of a certain class of stimuli. In particular,
as compared to other multivariate methods, RSA does not simply predict which experimental
condition is more likely associated with the brain activity taken as input for a classifier but
provides a detailed, integrated, and similarity-based model of how stimuli are processed.

The recent neuroscientific literature has widely discussed the pros and cons of univariate,
multivariate, and RSAmethods (see, among others, Davis, LaRocque, et al. 2014; Kriegeskorte
2011; Kriegeskorte and Kievit 2013; Hebart and Baker 2018). Here, we focus on the differences in
the explanatory quality that studies based on RSA as compared to other methods may offer. We
argue that, given its specific characteristics, RSA-backed hypotheses are more likely to satisfy
the application criteria for IBE as put forward in the recent literature. In Section 5, we support
this claim using a case study from the fMRI literature that relies on RSA. But, first, we give an
overview of the most relevant parts of the discussion about IBE.

4 Inference to the Best Explanation and Explanatory Quality

Broadly put, IBE is amode of inference grounded in the idea that explanation is a guide to belief,
in the sense that if a hypothesis explains the available evidence better than its competitors,
that gives reason to believe that the hypothesis is true. Philosophers have long thought this
idea to be a cornerstone of modern scientific methodology, which they also took to provide
all the justification of IBE one could ask for. But in the 1970s, some philosophers started to
voice concerns over IBE, and in the 1980s and 1990s, especially with the advent of Bayesian
confirmation theory,many philosophers of science had grown wary of IBE.

Presentations of IBE in older textbooks made it an easy target for critics. For instance, it
was common to find IBE presented as licensing an inference to the truth of that member of a
set of rival hypotheses that explains the available evidence best. But—critics (e.g., van Fraassen
1989) pointed out—what if the truth is not among the currently known candidate explanations?
In general, there is no guarantee that we have been able to conceive of all possible explanations

experimental stimuli. Notably, RSA differs frommethods relying on first-order isomorphism, allowing researchers
to establish a relation between the property of a certain stimulus and the related brain or behavioral response
(e.g., the eccentricity of an image in the visual field, its representation in the visual cortex, or its categorization
during a behavioral task). Indeed, second-order isomorphism and, consequently, RSA allow researchers to analyze
similarities between relations occurring among data of one type and relations occurring among data of another
type, for the same set of stimuli (Kriegeskorte, Mur, and Bandettini 2008). A clear illustration of second-order
isomorphism is the relationship occurring between a group of images ordered according to their eccentricities
and their corresponding retinotopic representations in the visual cortex. While a comprehensive defense of RSA is
beyond the scope of this work, it seems fair to say that RSA presents significant advantages over alternativemethods
for investigating multivariate data and supporting neuroscientific explanations.
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of our evidence. To the contrary, often it will be reasonable to think we have not, as for instance
argued by Stanford (2006) in his work on unconceived alternatives. Or what if the best available
explanation strikes us as being still a quite unsatisfactory explanation of the evidence, or if
perhaps it is fine, but there is another possible explanation that strikes us as being almost as
fine? Should we still be happy, in those cases, to infer to the best explanation?

These and related, seemingly equally valid, concerns about IBE led its advocates to propose
a number of fixes. Lipton (1993) argued that IBE should be understood as requiring that the best
explanation be good enough for an inference to be warranted. And Bird (2010) added to this the
requirement that the best explanation be considerably better than the second-best explanation.11

Of course, even if our best explanation appears excellent, and is alsomuchmore satisfactory
than our second-best explanation, that in general is still no guarantee that the truth is among
the hypotheses we are considering. But note that an inference to the best explanation need not
be an all-or-nothingmatter, in thatwe canmakeour confidence in that explanationproportional
to our confidence that the truth is included in the designated set of hypotheses.

Whileplausible, this response createsproblemsof its own. For if IBE is conceivedas a rule for
determining degrees of confidence, it is in direct competition with Bayes’ rule, the centerpiece
of what has in the past decades become the dominant confirmation theory. According to this
rule, upon the receipt of a piece of evidence, what until now were our degrees of confidence
conditional on that piece of evidence occurring should become our new unconditional degrees of
confidence. Bayesians have argued that any rule for changing one’s degrees of confidence that
is at variance with Bayes’ rule is bound to lead to irrationality. Specifically, they have argued
that anyone who changes their degrees of confidence via some non-Bayesian rule is liable to a
dynamic Dutch book, that is, a set of bets, offered at various points in time, that all seem fair at
the time they are offered but that collectively ensure a negative net pay-off. Using Bayes’ rule
instead—the rest of the argument goes—protects one from such bets. Given that—Bayesians
claim—this liability can be figured out a priori, it is irrational to use any rule for changing
degrees of confidence other than Bayes’ rule (e.g., van Fraassen 1989). Another, currently more
popular critique of non-Bayesian rules is that using such rules leads one to have degrees of
confidence that should be expected to be less accurate than they could have been had one used
Bayes’ rule instead (with accuracy defined in terms of some so-called scoring rule; e.g., Greaves
andWallace 2006).

Both arguments have been contested, however, on two grounds. One is that they make
unwarranted assumptions, or at least assumptions that opponents of Bayesianism need not
buy into. For instance, the Dutch book argument assumes the Bayesian principle of expected
utility maximization, which is controversial (see, e.g., Simon 1982), and the accuracy argument
only takes one kind of accuracy (expected next-step accuracy) into account and fails if other,
arguably more relevant, notions of accuracy are assumed (Douven 2022, Ch. 4). The second
ground concerns a more elementary point, viz., that even granting both arguments, they only
show that there are costs attached to using a non-Bayesian rule for changing one’s degrees of
confidence and entirely leave open the possibility that using such a rule has advantages that well
outweigh the costs. And it has recently been shown that, in certain contexts, versions of IBE
are indeed able to strike a better balance between two desiderata that typically pull in different

11In experimental studies, Douven andMirabile (2018) found confirmation for the descriptive adequacy of Bird’s
and Lipton’s amendments to IBE in that their participants were, ceteris paribus, reliably the more inclined to infer to
the best explanation the better that explanation was, as judged by the participants, and were also, ceteris paribus,
reliably the more inclined to infer to the best explanation the greater the difference in explanatory power between
the best and the second-best explanation, again as judged by the participants.
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directions, to wit, that of converging to the truth quickly (i.e., coming to hold a high degree of
confidence in the truth quickly) and that of being accurate.12

It thus appears thatwe can consistentlymaintain that our confidence in the best explanation
should reflect our confidence that the truth is among the candidate explanations we were able
to conceive of. Arguably, that should not be the only determinant of our confidence in the best
explanation. Once we think of IBE as a rule for changing degrees of confidence, rather than just
asking whether the best explanation is good enough, and whether it is sufficiently much better
than the second-best explanation, we should ask how good the best explanation is, the answer
allowing for less andmore, and similarly we should ask howmuch better than the second-best
explanation the best explanation is.

Asking these questions makes a lot of sense, in fact, given how, according to philosophers
of science, we are to judge explanatory goodness. For the properties that are supposed to
factor in such judgments are the so-called theoretical virtues, which are almost all graded, and
not categorical. To be sure, we want an explanation to be consistent with the evidence, and
consistency is, on all of the better-known logics, an all-or-nothing matter. But explanatory
goodness is also commonly assumed to be a matter of coherence,most notably coherence with
background knowledge, and coherence famously permits of degrees (Bovens and Hartmann
2003; Douven andMeijs 2007).

A theoretical virtue that merits especial emphasis, because it will be particularly relevant in
the next section, is whatWhewell (1847) calls “consilience of inductions,” by which hemeans
the finding that a theory is able to explain several bodies of data that previously appeared
unconnected to each other. If it happens, that brings about a “unificationof twoormorehitherto
disparate areas of understanding beneath one or a few high-level hypotheses or established
laws” (Ruse 1975, p. 2 f), which can be taken as an indication that those hypotheses or laws are
true. As Ruse (1975) andThagard (1977) note, this idea had a strong influence on Darwin, who
argued for his theory of individual variation and selective retention precisely on the basis that
the theory was able to explain a great variety of what had appeared to be completely disparate
facts (Darwin 1876, p. 421). Just like coherence and simplicity can be realized to different degrees,
consilience of inductions can, because the number of different areas that the explanation is
able to connect can vary, and also because these areas can have appeared independent from
one another to different degrees before we came to see them as connected, due to the new
explanation.

What all of this shows, we believe, is that IBE is best thought of not as a rule that invariably
compels us to infer the truth of the best explanation of our evidence. Despite its name, IBE
need not involve an outright inference but may instead make us more confident in the best
explanation, where the exact degree of confidence can depend onmany factors: how coherent
the best explanation is with background knowledge, how simple it is, how varied the evidence
is it is able to explain, howmuch better it is than the next best alternative, andmore.

From this, it should also be clear that, whichever epistemic attitude an application of IBE
warrants, that attitude is revisable, again for a number of reasons. Most obviously, wemay be
able to come up with a better explanation still, and even if not, we may be able to come up with
a rival that is about as good, qua explanation, which may weaken our confidence in the best
explanation.

12Douven (2022, Chs. 6 and 7) shows that whether or not a probabilistic version of IBE beats Bayes’ rule in the
said respect depends on how it assigns bonus weights for explanatory quality; the details of these versions need not
detain us here, however.
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Wementionedpreviously thatwe viewRI as a formof IBE,andwebelieve all of the foregoing
to apply to RI as well. Specifically, we believe that it is wrong to see RI as necessarily involving
an outright inference. Rather, it is a principle that helps us determine howmuch confidence to
invest in a cognitive hypothesis given our evidence, and taking into account at least two key
factors, namely,

1. how well the hypothesis explains the evidence, specifically, whether it is a sufficiently
good explanation; and

2. howmuch better (if at all) the hypothesis explains the evidence than its rivals, specifically,
for a best-explaining hypothesis, whether it is sufficiently much better than the second-
best explanation.

And in answering these two questions, we will especially want to consider howwell the given
hypothesis coheres with existing knowledge and also how varied the body of evidence is that
it is able to explain. Tomake the proposed view on RI concrete, we look in some detail at two
specific applications of this form of inference.

5 Reverse Inference as Inference to the Best Explanation: TwoCase
Studies

In the previous section, we summarized recent philosophical work on abduction to isolate
the factors that contribute to the credibility of the hypothesis that best explains the available
evidence. These factors are conceived as general virtues meant to be compatible with any
model of explanation—whether mechanistic, causal, unificationist, teleological, or otherwise—
discussed by philosophers of science, philosophers of mind and cognitive neuroscientists. In
line with this, the aim of our analysis is to scrutinize the degree to which adhering to cer-
tain principles, such asWhewell’s consilience of inductions, can assure the quality of a given
explanation, regardless of the favored model of explanation.13

In the present section, we discuss and compare two different case studies from recent
neuroscientific research. While both aim at supporting, through an RI, a specific hypothesis
concerning the involvement of a cognitive process as an explanation of the available evidence,
the degree of confidence in their conclusions differs widely, precisely because the principles
highlighted in the previous section are satisfied either not at all or to a much lesser extent by
one study rather than the other.

5.1 Kriegeskorte et al.’s studies on object categorization

In two separate studies, Kriegeskorte and colleagues investigated the role of the inferior tem-
poral cortex (ITC) in object representation and categorization by comparing neuroimaging
data frommacaque monkeys with neuroimaging data from humans (Kriegeskorte,Mur, Ruff,
et al. 2008; Kriegeskorte, Mur, and Bandettini 2008). Relying on previous research, the authors
hypothesized that this region plays an analogous role in humans andmonkeys and, in particular,
that it is possible to infer the presence of a process of object categorization from ITC activity.

13See Douven (2022, Ch. 1) and Prasetya (forthcoming) for arguments to the effect that proponents of IBE, as
understood here (i.e., as serving ampliative purposes), need not commit to any specific model of explanation. See
also Colombo (2017) for why we should be open to pluralism with regard to models of explanation. Therefore, our
proposal is compatible with various accounts of explanation that weigh explanatory virtues differently. However,
the detailed discussion of this aspect extends beyond the scope of the present work.
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To test their hypothesis, these authors made crucial use of RSA. They designed and ran
a neuroimaging experiment in which single-cell recording and fMRI are used to register the
neural activity, respectively, ofmonkeys and humans during the presentation of a set of pictures
representing isolated real-world objects, including natural and artificial inanimate objects and
faces or body parts of humans and nonhuman animals (Kriegeskorte, Mur, Ruff, et al. 2008,
p. 1138). Researchers utilized single-cell recording to measure changes in voltage or current
extracellularly, through an electrode implanted into the animal’s skull close to the area of
interest. The recorded signals of each stimulus were pairwise compared and an RDM showing
the dissimilarity of the single-cell recordings elicited in the ITC of monkeys was calculated. The
very same strategy was used to analyze fMRI-based data from the human ITC. Then another,
independent, human-related RDMwas built.

The RSA based on the resulting RDMs showed amatching between neural data frommon-
keys and from humans, in other words, the dissimilarities among the representations of ex-
perimental stimuli in monkey ITC reflected analogous trends in human ITC. As attested by
the authors, results this clear were unexpected both for the different types of techniques used
to acquire data in monkeys and humans and for the original, inter-species method employed
(p. 1128). However, these inter-species results appear to strongly support Kriegeskorte and
colleagues’ explanation of the role of the ITC in processing object categories across species.

A look at Kriegeskorte, Mur, and Bandettini (2008) brings the potential of RSA further
into relief. In this work, the authors took the set of stimuli for the experiment reported in
Kriegeskorte,Mur, Ruff, et al. (2008) and used them as input for several computational models.
The aim of this new analysis was to explore how similarity patterns found at the level of neural
regions both in humans andmonkeys are reflected in the processing steps of artificial models
meant to simulate parts of the visual process. For instance, the authors used a model of the
primary visual cortex employing a series of Gabor filters14 for analyzing spatial frequencies
and orientations of stimuli (Kriegeskorte, Mur, and Bandettini 2008, p. 7) as well as other
models implementing more complex categorical discrimination between pictures, such as
the “animate–inanimate model,” which classifies two stimuli as being alike if they are either
both animate or both inanimate and else as different (Kriegeskorte, Mur, and Bandettini 2008,
p. 7). From eachmodel, an RDMwas obtained and further compared to neural and behavioral
RDMs obtained from the same experimental stimuli to detect potential similarity patterns.
The comparative analysis of the various RDMs reveals the importance of RSA in underlining
potential similarities between artificial and biological processing of the stimuli, for instance,
by detecting whether information representations in specific models, or parts of them (e.g.,
specific layers in a Deep Neural Network), resemble those in human brain regions or particular
portions of them (Kriegeskorte,Mur, and Bandettini 2008, p. 16).

These two studies by Kriegeskorte and colleagues offer a particularly interesting case for
discussing someaspects fromthe recent literature on IBEand thenotionof explanation. Indeed,
we believe the aforementioned studies do exceptionally well in light of the considerations
discussed in Section 4, and to domuch better than other studies in the same field. To support
our claim, we below briefly discuss in turn the criteria of explanatory quality mentioned in
Section 4, emphasizing how they are crucially met in the studies of Kriegeskorte and colleagues
as compared to other studies from the same field.

14A Gabor filter is a specific transformation used in image processing for texture analysis and feature extraction.
Many studies in visual neuroscience (e.g., Kay et al. 2008) use Gabor filters for modeling the activity of voxels within
the primary visual cortex associated with the processing of visual features.
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First, Kriegeskorte and colleagues’ hypothesis about the interspecies role of the ITC in visual
processing and category discrimination coheres well with background knowledge accumulated
since the early stages of neuroimaging research (see, among others, Puce et al. 1995; Kanwisher,
McDermott, and Chun 1997; Haxby, Gobbini, et al. 2001; Van Essen et al. 2001; Tsao et al. 2003;
Kiani et al. 2007) and has been further confirmed by recent studies (e.g., Huth et al. 2012; Bao
et al. 2020). That research found evidence supporting the hypothesis that both human ITC and
monkey ITC are sensitive to the processing of real-world objects, by associating the average
neural response registered at the level of the ITC to stimuli of predefined object categories, such
as human faces. These results motivated the specific question addressed by Kriegeskorte,Mur,
Ruff, et al. (2008), that is, whether the ITC—both in humans and in monkeys—does not simply
respond to specific real-world object categories but plays a more general function in processing
categorical knowledge, rather than purely visual properties about objects. Indeed, Kriegeskorte
and colleagues’ conclusion that the dominant factor determining ITC activity is the category of
the stimulus and,more broadly, semantic and higher-level properties of objects (such as their
animacy; Kriegeskorte,Mur, Ruff, et al. 2008, p. 1127 f) seems to provide a quite detailed and
complete understanding of the role of the ITC, given the available evidence and the ongoing
research.

However, as noticed by Conway (2018, p. 12), the extent to which semantic and higher-level
properties of objects (e.g., animacy) should be considered as the organizing principle of the
activity of the ITC is not completely uncontroversial in the literature. Indeed, Baldassi et al.
(2013) argue that the ITC processes reflect similarity rather than categorical membership of
objects, that is, the activity of the ITC is better accounted for by lower-level visual properties of
stimuli, such as their shape and the presence of specific geometrical patterns. While the conclu-
sion of Kriegeskorte and colleagues does not seem to encounter any rival explanation regarding
the general role of the ITC in object discrimination, once the specific type of information the
ITC is supposed to process comes into question, other explanations do become available, the
hypothesis provided by Baldassi et al. (2013) being a particularly notable rival to Kriegeskorte
and colleagues’ proposal.

The two studies are also very similar from a methodological perspective. Both refer to
very similar datasets of experimental stimuli (i.e., pictures of isolated real-world objects from
different categories), rely on electrophysiological recordings frommonkeys as evidence, and use
multivariate approaches to analyze their data (RSA in the case of Kriegeskorte and colleagues
and a machine-learning approach based on an unsupervised clustering algorithm in Baldassi
and colleagues). And as Conway (2018) shows, the work reported in Baldassi et al. (2013) also
cohereswellwith backgroundknowledge. So far,wewould seem tohave twogood yet conflicting
explanations of specific activities of ITC.

However, a key difference, which makes Kriegeskorte et al.’s explanation a clear winner in
our eyes, concerns the variety of evidence the two studies take into account. While Baldassi and
colleagues analyze neuronal recordings frommonkeys only, Kriegeskorte and colleagues are
able to merge different types of data, such as animal-based neuronal recordings, human fMRI,
and data from computational models, through RSA. It is worth elaborating on this virtue of
Kriegeskorte et al.’s work.

The authors infer from the close match between human and primate RDMs that neural
patterns within the ITC respond to conventional category boundaries (e.g., animate versus
inanimate objects) and process features that appear interspecifically relevant for grouping
stimuli into different categories. In particular, the ITC activity reveals—both in humans and
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monkeys—a categorical distinction between animate-related and inanimate-related stimuli,
and, among the former, between stimuli depicting faces and those depicting body parts. The im-
portance of ITC for categorical representation is further highlighted by evidence from artificial
models meant to simulate parts of the visual process (Kriegeskorte,Mur, and Bandettini 2008).
Most notably, a comparison between the RDMs of computational models and the neural RDMs
associated with brain regions involved in different steps of visual processing—that is, early
visual cortices located outside ITC and the fusiform face area (FFA), within the ITC—shows that
complex artificial models proposed for simulating category discrimination match the response
of the FFA (and thus of the ITC) better than simpler models used for processing low-level visual
information (whose RDMs, on the contrary, fit better the RDMs based on the activity of early
visual brain regions, located outside the ITC).

The strength of Kriegeskorte and coauthors’ work is due, to a large extent, to the fact that
they use the RSAmethod in their data analysis, specifically, that they use it as a crucial tool for
connecting evidence from different neuroscientific sub-fields. As emphasized in Section 3.3,
while other inferential patterns in cognitive neuroscience only rely on neural evidence, RSA
is explicitly meant to take into account different types of evidence, specifically, data that are
acquired via different techniques and that, independently from each other,may point to the
same explanation. Even though fMRI data are radically different from neuronal recordings
(Kriegeskorte, Mur, Ruff, et al. 2008, p. 1128) and outcomes of computational models, provided
the experimental stimuli are the same across techniques andmodels, RSA offers a framework
for assessing the convergence of distinct pathways of reasoning based on different types of
evidence. In other words, RSA allows researchers to determinewhether seemingly independent
pieces of evidence support the very same explanation, typically relying on different kinds of
observation at the cognitive, behavioral, and computational level. Thereby, RSA can establish
the kind of consilience of inductions thatWhewell saw as indicating the truth of a hypothesis.15

As seen in Section 4, a relevant caveat for inferring to the best explanation is represented by
the impact of competing hypotheses, and howmuchmore satisfactory the target explanation
appears than its competitors. As for our case study, the conclusion of Baldassi et al. (2013) ap-
pears weaker, in terms of explanation quality, than the conclusion provided by Kriegeskorte and
colleagues. To assess whether object representation in the ITC depends either on the semantic
membership of objects, their shape features or other, low-level visual properties, Baldassi et al.
(2013, p. 18) rely only on the outcome of different unsupervised clustering algorithms trained on
neural recordings frommonkeys. When Baldassi et al. (2013) and Kriegeskorte and colleagues’
2008 study are compared in terms of richness and variety of evidence considered, it is clear
that the explanation provided by the latter does substantially better than that provided by the
former.

To be clear, that Kriegeskorte et al.’s hypothesis is supported via a successful application
of RSA does not exclude the possibility that hypotheses will emerge which are able to explain
the current relevant data better still. Also, wemay obtain further data which will favor other
hypotheses over Kriegeskorte et al.’s. As a result, we could revise our verdict about Kriegeskorte
et al.’s conclusion, or could at least lose some of our confidence in it. But this is no different
than for any other form of non-deductive inference.

15RSA is not the only method that matches the criteria we discussed in Section 4, nor is it necessarily the best;
some other notable multi-method approaches are mentioned in Section 5.2. Nevertheless, we do believe that, when
compared to these other approaches, RSA represents the clearest illustration of how the criteria contributing to the
quality of IBEs are applied in neuroscience.
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5.2 Lieberman and Eisenberger’s study on pain

To better illustrate the extent to which, in line with viewing RIs as IBEs, the confidence to invest
in a cognitive hypothesis depends on the factors presented in Section 4, it is useful to discuss
another study that recently triggered a critical debate among neuroscientists.

In a paper titled “The dorsal anterior cingulate cortex is selective for pain: Results from
large-scale reverse inference,” Lieberman and Eisenberger (2015) claim to have shown that
the dorsal anterior cingulate cortex (dACC), a region generally associated with a variety of
cognitive functions, is actually mainly devoted to pain processing. Interestingly, the authors
do not perform experiments, but run a meta-analysis using the tools provided by NeuroSynth
(henceforth NS), a large-scale automated platform that synthesizes data frommore than 14,000
published fMRI studies (Yarkoni et al. 2011).

In a nutshell, NS works as follows. Using data-mining algorithms applied to the papers in
its database, NS automatically extracts relevant cognitive terms (such as “language” or “working
memory”) appearing in those papers together with the coordinates corresponding to brain
activations as typically reported in the papers’ figures. The former are used as proxies of the
cognitive functions and processes supposedly investigated in the papers; the latter, as possible
loci of neural realization of those processes. Then, NS provides summary statistics (z-scores
and posterior probabilities) of the associations between brain activations and terms over the
database. More specifically, it implements the Bayesian analysis of RI proposed by Poldrack
(2006, 2011) in order to estimate the probability Pr(Cog | Act) that a term Cog (as proxy of a
certain cognitive function) occurs in papers reporting the brain activation Act, as based on the
likelihood Pr(Act | Cog) and assuming an uninformative prior (i.e., that a priori Cog’s occurring
is as probable as not). NS has been specifically designed—partly in response to the worries
raised by Poldrack (2006) and others—to support large and systematic RIs, and it is now widely
employed by the community to design experiments and evaluate hypotheses about cognitive
functions (for a survey, see Coraci, Calzavarini, and Cevolani 2022).

In their study, Lieberman and Eisenberger recruit NS to show that, for papers reporting
the activation of voxels within the dACC, pain-related terms had a higher probability of being
present in the text of papers as compared to other terms, suggesting that the psychological
state that can be reliably inferred from dACC activity is pain (Lieberman and Eisenberger
2015, p. 15252). This claim attracted much criticism, with several scholars (see, e.g., Yarkoni
2015a,b; Wager et al. 2016) arguing that such a conclusion was probably mistaken and in any
case not adequately justified (for a review of the debate, see Calzavarini and Cevolani 2022).
Without going into the details of this discussion, we note that, by design, a meta-analysis
combines results frommultiple studies that focus on the same research question, in order to
spot potential convergence or disagreement between them. Therefore, despite the criticisms
that have been leveled at this methodology (e.g., Stegenga 2011), meta-analyses of the literature
represent one of the main strategies available to researchers to achieve a form of consilience
of inductions, that is, gathering different, independent experiments and provide convergent
evidence toward the same explanation. Still, as testified by the strongly critical reactions
mentioned above, Lieberman and Eisenberger’s analysis failed to gain the approval of the
community. It also presents an interesting case to further discuss the determinants of the
quality of an IBE discussed in Section 4.

Grant that Lieberman and Eisenberger’s hypothesis—that the dACC is selective for pain—is
coherent with background knowledge about the cognitive functions engaged during dACC
activity, and also that it can be considered a sufficiently good explanation of the available
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evidence, given both the number of pain-related studies from the NS database that support
such a conclusion and the significance of the statistical tests the authors conducted.16 Then their
proposal still fails to satisfy the criteria of explanation quality that, as argued in the previous
section, aremet by Kriegeskorte et al.’s analysis.

In particular, and as pointed out by several authors, while the dACC is surely associatedwith
pain, to conclude that the dACC is selective for pain—that is, that the best explanation for the
patterns we see in the data is that the function of the dACC is processing of pain stimuli and/or
generating pain responses—is highly questionable, given that many fMRI studies appear to
show that data indicating dACC activity is also compatible with other candidate explanations,
such as associations to empathy, anxiety disorders, abuse, and dysregulation (see Yarkoni
2015a,b; Wager et al. 2016). In view of this, the best explanation may even be a “disjunctive” one,
pointing to two or more cognitive processes and outcompeting any single “monofunctional”
hypothesis. Thus, differently from the case of Kriegeskorte and colleagues’ hypothesis about the
activity of the ITC, Lieberman and Eisenberger’s pain-related hypothesis—as an explanation for
dACC activation—does not seem to be by far better than all other candidates. Also, Lieberman
and Eisenberger cannot appeal to a variety of evidence their hypothesis would be able to explain
either, for even though the meta-analysis that these authors ran by means of NS takes into
account many independent experiments, it still considers only fMRI data. As a result, their
analysis does not bring about the kind of consilience of inductions found in Kriegeskorte et al.’s
work which, relying on the RSAmethodology, exploits the coherence of neural, inter-species,
behavioral, and computational evidence and thereby shows clear explanatory advantages when
compared to studies proposing rival hypotheses.

In closing, it is worthmentioningmore recent work from the same lab, in which Lieberman
and colleagues (Lieberman, Straccia, et al. 2019) report an analysis similar to the one of Lieber-
man and Eisenberger. In the new analysis, these authors draw an RI about the functional role
of the medial prefrontal cortex in social cognition and, in particular, social, self-related, and
affective processes. However, in contrast with Lieberman and Eisenberger (2015), the authors
followed a multi-method approach to support their conclusion. In addition to using meta-
analytic evidence fromNS, they assess the reliability of the associations between themedial
prefrontal cortex and the cognitive domains of interest by reviewing evidence from different
studies employing distinct methods: lesion works, studies based on transcranial magnetic
stimulation techniques, and fMRI studies using multivariate pattern analyses. From our cur-
rent perspective, this strategy of supporting neuroscientific hypotheses and strengthening the
reliability of neuroscientific inferences by relying on various and integrated types of evidence
can be interpreted as aiming at a consilience of inductions, discussed above as a theoretical
virtue central to assessing how good an explanation is. Thus, seeing the criteria for successful
applications of IBEs as applying to RIs as well, we would argue that the use of RI is muchmore
warranted in Lieberman, Straccia, et al. (2019) than it is in Lieberman and Eisenberger (2015).

6 Conclusion

While commonly used in neuroscience, the methodological status of RI has been called into
question, with some even likening this type of inference to a logical fallacy. We have proposed a
different interpretation of RI, one on which it is an instance of a graded form of IBE, according

16It is to be noted, though, that these tests have been extensively criticized; see, e.g., Yarkoni (2015a,b) andWager
et al. (2016).
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to whichwe are licensed to have confidence in the truth of the cognitive hypothesis that explains
the neural, and possibly other, evidence best. Taking inspiration from recent work on IBE,
we argued that the degree of our confidence in that hypothesis should depend on a variety of
factors, such as how satisfactory the hypothesis is qua explanation, howmuch better it is, qua
explanation, than its closest competitors, how confident we are that we are not overlooking
some superior explanation, and so on.

Thismeans that concrete RIs to be found in the literature should be neither rejected a priori
nor endorsed a priori by defending them as IBEs simpliciter. Instead, how compelling each of
them is qua IBE, is to be determined on a case-by-case basis, in light of the criteria discussed
in Section 4, and taking into account the characteristics of the relevant experimental data and
the specific methodology used for analyzing them. Thus, RI is more plausibly viewed as a
context-dependent principle than as a universal principle that applies across the board. To
buttress our proposal, we canvassed Kriegeskorte and colleagues’ studies, whose use of RI did
well in light of all relevant criteria for IBE, and we contrasted those studies with another (by
Lieberman and Eisenberger) inwhich—we argued—the use of RI should lead to amore guarded
conclusion.
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