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Social Learning in Neural Agent-basedModels*

Igor Douven
IHPST / CNRS / Panthéon–Sorbonne University

Abstract

Agent-basedmodels (ABMs) are widely used in examining how interactions at the individual
level shape the behaviors of collectives. It has recently been argued that ABMs tend to be too
simple and abstract to capture the complexity and variability of real-world actors engaging
in social interactions. We address this criticism by integrating artificial neural networks into
ABMs, specifically focusing on enhancing the Hegselmann–Krause (HK) model. By replacing
standard HK agents with multilayer perceptrons, we obtain a more realistic kind of ABM,more
closely capturing the nature of actual agents. The approach yields more than one newmodel,
given that, with multilayer perceptrons as agents, the core elements of the HKmodel can be
defined in a number of ways. Through two computational studies, we compare the resulting
models with each other and with a traditional individual-learning paradigm.

1 Introduction

Agent-based models (ABMs) have become a popular tool for studying macro-properties of social
systems which, although typically arising from simple micro-level interactions, cannot be fully
understood by strictly analytical means. They are used across a range of domains, from economics
and political science to epidemiology and urban planning (Crosscombe & Lawry, 2016; Deffuant
et al., 2000; Dittmer, 2001; Douven & Hegselmann, 2021; Lorig, Johansson, & Davidsson, 2021;
O’Connor &Weatherall, 2019; Schelling, 1971), and philosophers of science have recruited ABMs to
argue that social learning is key to the production and acquisition of scientific knowledge (Douven,
2010; Glass & Glass, 2021; Hegselmann et al., 2015; Huang, 2023; Kummerfeld & Zollman, 2016;
Olsson, 2013; Olsson & Vallinder, 2013; Rosenstock, O’Connor, & Bruner, 2017; Zollman, 2007, 2010).

Although popular, agent-based modeling has recently come under a cloud. According to various
authors, ABMs tend to oversimplify agent behavior, decision-making processes, and environments,
which—these authors argue—undermines their ability to adequately capture the complexity and
variability of real-world behavior and, thus, to yield accurate predictions when applied to actual
social processes (see, e.g., Borg et al., 2019; Cristelli, 2014; Frey & Šešelja, 2018, 2020; Rosenstock,
O’Connor, & Bruner, 2017; Šešelja, 2019;Thicke, 2020).

An obvious response to this critique is to make ABMs more realistic, which can be done, for
instance, by letting interactions among agents be governed by more complex rules and making
the agents’ environment more like the real world in relevant respects. Several agent-based COVID-
19 models were successful because of this approach. Not only did these models capture relevant
population differences (in terms of age, health status, social behavior, mobility patterns, and so
on) as well as the resulting heterogeneity of the interactions among agents, they were also able
to incorporate data about the evolving pandemic almost in real time, features which made them

*The paper has supplementary materials consisting of an online-only appendix as well as the data and code used for
the simulations. The Jupyter notebook containing the code also includes extra analyses of the simulation outcomes and a
short tutorial on defining neural networks using the Flux.jl package for the Julia language (Bezanson et al., 2017). All
materials can be downloaded from this repository: https://osf.io/fs29h/?view_only=71c0534b3bef4651aad8e68f88eb22f5.
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valuable tools for policymakers in managing the pandemic (see, e.g., Adam, 2020; Douven, 2024b).
A different approach, taken in this paper, is to make the agents intrinsicallymore human-like, by
endowing themwith some artificial form of intelligence. We aim to accomplish this by integrating
ABMs with artificial neural networks (ANNs). The resulting neural agent-basedmodels (NABMs)
allow agents to learn from and adapt to their environment and interactions in a manner more akin
to how humans learn and adapt.

This is still a very broad proposal, given the number of different ANN architectures on themarket
as well as the number of different ABMs with which they could be combined. As for ABMs, our focus
will be on the Hegselmann–Krause (HK) model (Hegselmann & Krause, 2002, 2006, 2015, 2019), a
well-established framework for studying opinion dynamics which enjoys considerable popularity
in philosophy and beyond. We will combine this model with multilayer perceptrons (MLPs), which
are among the oldest types of ANNs. The HKmodel captures the process of opinion formation and
evolution within a society of agents, where the agents’ opinions are influenced both by evidence
obtained directly from the world and by the opinions of their peers, which are the agents whose
opinions are close to their own opinion. By populating the HKmodel withMLPs, we aim to simulate
the behavior of agents which form their opinions, or more generally update their doxastic states,
not on the basis of simple arithmetic operations (as the agents in the HKmodel do) but rather by
leveraging an ability to process complex information in a human-like way. Nevertheless, the dual
updatingmechanism characteristic of the HKmodel remains in tact in our NABMs, in that updating
will still be one part data-driven, one part based on social interactions, where the latter is achieved
through either parameter-averaging or prediction alignment or both (in ways to be explained).

Our primary goal is to present what we believe to be a promising approach to making ABMs
more realistic, thereby also addressing the recent critique of such models. A secondary goal is to
assess what remains of the seeming support from ABMs for the efficacy of social learning when this
issue is considered in more realistic settings. We provide some theoretical background on the two
main components of our NABMs (the HKmodel andMLPs) in Section 2. The HK-based NABMs are
then presented in Section 3. Sections 4 and 5 report computational studies conducted using these
models, the first study centering on a classification task, the second involving probabilistic updating
in the context of medical diagnostics. Both studies address the question of the significance of social
learning by comparing forms of such learning with each other as well as with individual learning.

As a preliminary note, we emphasize that the framework to be presented is meant as a blueprint
for combining ABMs and ANNs generally, and that our methodology can be adapted to integrate
ABMs with ANNsmore sophisticated and state-of-the-art thanMLPs, including the large language
models (LLMs) that have beenmuch in the limelight lately. At present, the requisite adaptations of
the framework would encounter practical obstacles, for instance, due to the limited accessibility
of cutting-edge LLMs—themost impressive ones being proprietary software—and the substantial
computational resources required for training extensive numbers of larger networks. But anyone
who has been following developments in the field of artificial intelligence will find it reasonable to
expect that such challenges will be overcome sooner rather than later.

2 Theoretical background

2.1 TheHegselmann–Krausemodel

The Hegselmann–Krause (HK) model is among the most popular frameworks in the domain of
agent-based computational modeling. While the model admits of a variety of interpretations (see,
e.g., Hegselmann, 2023), it is most commonly interpreted to encapsulate the interplay between two
key aspects of human epistemic behavior: the assimilation of information from social peers and
the direct acquisition of knowledge from empirical evidence. On this interpretation, it serves as a
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mathematical abstraction of opinion dynamics, where agents iteratively adjust their beliefs about
the value of some parameter τ ∈ [0, 1], whose meaning remains unspecified.

Formally, each agent i starts at time 0 with an estimate xi(0) of τ and revises this estimate over
discrete time steps, where at each time t the revision process is influenced by two primary factors:
evidence about τ the agent receives directly from the world at t, and the opinions of its peers at t,
which are formally defined to be the agents within its bounded confidence interval (BCI) at t, that is,
whose estimates of τ at t differ by nomore than some small value ε from the agent’s own estimate
at t. Then agent i’s opinion concerning τ after the (n + 1)-st update (i.e., at time n + 1) is defined to be

xi(n + 1) =
1 – α

|Xi(n)|
∑
j∈Xi(n)

xj(n) + α τ,

with xj(n) being the opinion of agent j after update n, and

Xi(n) := { j : |xi(n) – xj(n)| 6 ε }

the set of agents within agent i’s BCI after update n. The parameter α ∈ [0, 1] balances the weight
given to social versus evidential information. (For illustrations, see the supplementary materials.)

A key virtue of the HK model is that it can be easily extended or adapted for the purpose of
addressing specific research questions. For instance, researchers have explored scenarios with
“noisy” evidence, where agents receive imperfect signals from the world (Douven, 2010), and have
considered agents with interval-valued beliefs to account for vagueness (Crosscombe & Lawry, 2016)
as well as agents which can simultaneously hold beliefs about multiple issues (Jacobmeier, 2004;
Lorenz, 2008; Pluchino, Latora, & Rapisarda, 2006).

In line with the general critique of ABMs cited in the introduction, one could argue that the HK
model, and even the aforementioned extensions of the model, feature agents whose intellectual
capacities are, for all we know, unrealistically impoverished. Proponents of the HK model could
respond that this does notmean their model cannot be descriptively adequate at themacro-level, for
instance, in predictingwhen a community of agents will reach a consensus andwhen not. While that
is true, we believe a more productive, and independently interesting, response is to consider ways to
make the HKmodel more realistic. One way is to endow the agents in the model with something
like a brain, which is capable of learning much in the manner in which we humans learn. This is the
approach to be taken here.

2.2 Multilayer perceptrons

The “brains” we are going to equip the agents with are going to be ANNs, specifically multilayer
perceptrons (MLPs). Or rather, our agents are going to beMLPs,where theseMLPs formcommunities
and attend both to worldly evidence and to their peers.

ANNs not only have a brain-inspired architecture (Goodfellow, Bengio, & Courville, 2016, Ch. 1);
they also reflect, to some extent, how the human brain operates (Caucheteux & King, 2022; Glorot,
Bordes, & Bengio, 2011; Goldstein et al., 2021). More importantly for present purposes, ANNs have
been shown to be an adequate tool for simulating various higher-level cognitive processes such as
categorization, language learning, and reasoning (Battleday, Peterson, & Griffiths, 2021; Buckner,
2018, 2023; Douven, 2024a; Hoffman,McClelland, & Lambon Ralph, 2018; Hosseini et al., 2023).

MLPs are a specific type of ANNs, belonging to the family of feedforward ANNs, which are
characterized by the unidirectional flow of data through the network. TheMLP architecture dates
back to the late 1950s and early 1960s, but it was not until the 1980s, with the introduction of the
backpropagation algorithm (Rumelhart, Hinton, &Williams, 1986), that MLPs became able to learn
from complex data patterns.
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AnMLP consists of several densely connected layers: an input layer, one or more hidden layers,
and an output layer. Each layer is made up of nodes or neurons, with all neurons in the hidden and
output layers being characterized by their weights (one for each neuron in the previous layer) and
biases as well as by their activation function. The weights and biases are the adjustable parameters
of the network, governing the strength of connections and the threshold for neuron activation,
respectively, and the activation function is typically a nonlinear function, such as a sigmoid function
or Rectified Linear Unit function (ReLU; this was used in the studies to be reported), which calculates
the neuron’s output on the basis of its inputs and the weights and bias associated with it.

MLPs are trained using a supervised learning technique (i.e., on the basis of labeled data) and
learn through the aforementioned backpropagation algorithm. Specifically, the learning process in
anMLP involves two phases, viz., propagation and weight update. During propagation, unlabeled
input data is passed through the network, and each neuron processes the incoming data to produce
an output, based on its associated weights, bias, and activation function. This output is then passed
on to the next layer until it reaches the output layer, producing the network’s prediction. Next, this
prediction is compared to what the output should have been (i.e., the label that was not provided
as input). The discrepancy between prediction and label is the “error” or “loss” from the output
layer, which serves as input for the backpropagation algorithm. In backpropagation, the network
adjusts its weights and biases tominimize the error between its predictions and the actual outcomes.
This involves calculating the gradient of the loss function with respect to each parameter (weights
and biases). The network then updates its weights and biases, using gradient descent or a similar
optimization algorithm, to improve its performance.

MLPs have been used for a variety of tasks (e.g., image and speech recognition, natural language
processing, and time-series prediction), and they have found application in a great number of areas,
including financial forecasting andmedical prognosis, where they aid in uncovering patterns and
relationships in data that are not readily apparent to the human eye. In one of our studies, the agents
(i.e., MLPs) engage in a multi-class classification task, in the other study, they are employed in the
context of medical diagnostics.

3 HKupdating for neural networks

The key elements of the HKmodel are the notion of peerhood, regulated by the ε parameter, and the
operation of mixing worldly and social information, where the exact mixture depends on the value
of the α parameter. We want to retain both elements in our newmodel, but, given that our agents
are going to be MLPs, these elements need to be adapted.

In the original HKmodel, every agent is, at every point in time, fully characterized by its estimate
of τ, making a definition of peerhood in terms of similarity of opinion the only plausible option.
Accordingly, the model lets agents i and j be each other’s peers at t precisely if |xi(t) – xj(t)| 6 ε. But
with MLPs as agents, one agent can be similar to another agent in more than one respect. Most
notably, while in the original HKmodel there is no meaningful distinction between an agent’s state
at a given point in time and its output (i.e., its estimate of τ) at that point in time, in the newmodel
there is. At any point in time, an agent is in a certain state, fully characterized by its parameters (its
weights and biases) at that time (architecture, including activation functions,will always be the same
for all agents in a community), but it can also be characterized by its output (i.e., the predictions it
would thenmake, if prompted). As a result, we can distinguish between state-based similarity and
output-based similarity; and of course agents can be similar to each other in both respects at the same
time, which would make them state- and output-based similar.

Because MLPs can be used for various purposes, the output of an MLP can be many things: a
single number, as in the HKmodel, or a grouping of items of interest into different classes (if the

4



0.11
1.26
0.43

0.9
8

1.25
0.63

0.18

0.80

0.44

0.89

1.12

0.37

0.94

0.87
0.64
1.22

0.8
4

0.12
0.68

0.58

1.08

0.93

0.77

1.37

0.45

0.81

Figure 1:Multilayer perceptrons sharing the same architecture butwith differentweights and biases. (Weights
are annotated on the edges connecting the neurons; biases appear inside the neurons.)

MLP is a classifier), or an assignment of probabilities to a set of competing hypotheses (e.g., if the
MLP is used for a multinomial regression task), and so on. How to make the notion of output-based
similarity precise will depend on the type of output we are dealing with. If, for instance, it is a single
number, output-based similarity could again be defined in terms of absolute difference, as in the HK
model; if the MLP is a classifier, there are a number of different metrics of classification similarity
one can consider, such as the mutual information index, which we will use in the first study to be
reported below; or if the output is a probability distribution, there are again a number of options
available, such as the Kullback–Leibler (KL) divergence or the Jensen–Shannon (JS) divergence, the
latter of which we will use in the second study; and so on. Two agents will then be said to be each
other’s output-based peers precisely if they are close enough to each other in terms of the appropriate
criterion.

The notion of state-based similarity requires more explanation. Given that, in our models, all
agents (i.e.,MLPs) will have the same architecture—the same number of layers, corresponding layers
having the samenumberofnodes, correspondingnodeshaving the sameactivation function—wecan
measure their similarity by comparing their parameters, node per node. A commonmetric for this
purpose is the cosine similarity, which requires that we vectorize the parameters first.1 Gathering,
in some order, the weights and biases of agent i in a vector paramsi and proceeding analogously for
the weights and biases of agent j, obtaining paramsj, their cosine similarity is calculated as

cossim(i, j) =
paramsi · paramsj

‖paramsi‖ × ‖paramsj‖
,

which will be a value between –1 and 1, with 1 indicating maximum similarity and –1maximum
dissimilarity.

To illustrate, consider the MLPs shown in Figure 1. We lay out sequentially the parameters of
each network from top to bottom and from left to right, and we calculate the dot product of the
resulting vectors:

0.11 · 0.87 + 1.26 · 0.64 + 0.43 · 1.22 + · · · + 0.94 · 0.81 ≈ 7.35.

We further calculate that the norm of the first vector equals
√
0.112 + 1.262 + 0.432 + · · · + 0.942 ≈ 2.94

and that of the second vector equals
√
0.872 + 0.642 + 1.222 + · · · + 0.812 ≈ 3.09.

1To compare networks with different architectures, other metrics than the cosine similarity are recommended; see
Chen et al. (2021).
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Figure 2:Multilayer perceptron with weights and biases resulting from averaging the corresponding weights
and biases from the multilayer perceptrons shown in Figure 1.

Thus, the cosine similarity for the above MLPs equals (approximately) 7.35/(2.94 × 3.09) ≈ 0.81.
We will say that agents i and j are state-based peers precisely if cossim(i, j) > 1 – ε, for the chosen

ε ∈ [0, 1]; so, for instance, if ε = .2, then the agents in the above illustration are each other’s peers.
Note that, as in the original HKmodel, a larger value of εmeans a more liberal or inclusive notion
of peerhood, which does not require agents to be as similar with respect to their parameters to
qualify as peers; conversely, the smaller the value of ε, the more similar the agents have to be, with
the limiting case of ε = 0meaning that the agents must be maximally similar, also analogous to the
original HKmodel.

It merits emphasis that being able to differentiate types of peerhood—based on state, outcome,
or a combination of the two—is already an enrichment compared to the original HKmodel. For, as
social scientists have shown (e.g., Eysenbach et al., 2004; Laninga-Wijnen & Veenstra, 2023), in real
life peer selection is influenced by a multitude of criteria: we may want to team up with people who
share our views, but also with people who look like us or have the same educational background or
socio-economic status. State-based peers could be regarded as corresponding somewhat to peers
who “look like us,” output-based peers as corresponding to peers who “have views like ours.”

The averaging operation can take different forms as well, again due to the fact that, with MLPs
as agents, we can make a state–output distinction. Supposing we have determined an agent’s peers
at a given point in time (be these state-based, output-based, or state- and output-based peers), one
plausible option is to average the parameters of those peers and calculate the output of the network
with the resulting averages as parameters, given the input at the point in time; another, equally
plausible option is to calculate the outputs of all peers at the point in time and average those outputs.
In general, the results will be different. Suppose, for instance, the twoMLPs depicted in Figure 1
are both given as input the vector (2/3, 1/3). Then it is an easy (if somewhat tedious) exercise to
calculate that the left MLP will give as output (approximately) 3.70 and the right one will give as
output (approximately) 5.33, yielding an average of (approximately) 4.52. But applying the procedure
of the first option to the same MLPs results in the network shown in Figure 2. And this network
yields (approximately) 4.46 when given (2/3, 1/3) as input.2

The different definitions of peerhood and averaging can be combined in a variety of ways to
obtain NABMs whose agents update in a HK-like fashion. We will make no attempt to be exhaustive
here and confine ourselves to studying threemodels that could all be plausibly regarded as extensions
of the HKmodel, the main difference in all three cases being that the traditional HK agents have
been replaced by MLPs. Roughly, the first model assumes a state-based notion of peerhood and
also averages agent parameters instead of outputs. The second model assumes an output-based
notion of peerhood and averages outputs. And the thirdmodel combines the first and second, which
means that it proceeds by averaging parameters of state-based peers but also by averaging outputs

2We are assuming ReLU activation functions here.
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of output-based peers. In the remainder of this section, we describe each of the models in more
detail, and in the next two sections we use computer simulations to compare their performance on
standard machine learning benchmarks.

All three models require as input a community of agents, which will be MLPs but could also be
different types of networks; input data, split into a training and a test set; and values for parameters
regulating peerhood and themixing of worldly and social factors in updating. There is no restriction
on the exact architecture of the MLPs, except that (i) it must be the same for all MLPs in a given
community, meaning that they must have the same number of layers and that corresponding layers
must have the same number of nodes as well as the same activation function, and (ii) the input
and output layers must (of course) fit the data and task, respectively. In the first twomodels to be
considered, the parameter ε regulates the criterion for peerhood (which, however,means different
things in the two models) and the parameter α regulates the weighting of the worldly versus the
social factor in updating (the weighing operation alsomeans different things in the twomodels). The
third model, which as said combines the first two, has two parameters regulating peerhood—one
regulating state-based peerhood (ε1), the other output-based peerhood (ε2)—as well as two weight
parameters, one pertaining to the weighing of states (α1), the other pertaining to the weighing of
outputs (α2).

The first model consists of three main parts. The first part calculates a cosine similarity matrix
for all agents in the community and, on that basis, selects peers for each agent (i.e., the agents
which are ε-similar to it). It then calculates the averages of those parameters, in the way illustrated
previously, and it stores these parameter averages. The second part, which can be thought of as the
worldly part of the updating process, trains for one training round every agent (i.e., MLP) on the
data it received, where it is left open at this point whether all agents receive the same data or receive
different (possibly partly overlapping) subsets of the data. The third part, finally, takes a weighted
average of the parameters of the agent that resulted from the training process in the second part
and the parameter averages of the agent’s peers that were calculated in the first part, the weighing
depending on the value of α . The parameters that result from this weighted averaging are then
set as the new parameters of the agent. Algorithm A.1 in Appendix A.2 presents pseudo-code for
the updating method defined by this model. In that presentation, the procedure outputs both the
updated agents and the results from evaluating the updated agents on the relevant data (the training
set, or the test set, or both, whichever is most useful for one’s purposes).3

The building blocks of the secondmodel are basically the same as those of the first model, but
they appear in a different order: First, all agents are trained onwhatever the relevant data are (where
it is again left openwhether all agents are trained on the same data or whether each agent receives its
own data set); then they make predictions, whether for their training data or their test data or both
(e.g., if the task at hand is one of classification, they predict, after being trained, how each data point
will be classified); in a next step, the peers of each agent are determined on the basis of how similar
their predictions are (the similarity cut-off depending on ε); and finally, some α-weighted average of
the agent’s predictions after theworldly update and the averaged predictions of its peers is calculated
and then evaluated. Algorithm A.2 in Appendix A.2 presents the pseudo-code for the secondmodel.
As presented there, the procedure gives the result of the final step (i.e., of the weighted averaging) as
output, together with the updated agents.

The notion of averaging, as it is used in the secondmodel, requires a comment. Parameters are
always numbers and we knowwhat it means to average numbers. So, in the first model, averaging
always means taking the arithmetic average of whatever the relevant numbers are. But as already
explained, given themany kinds of tasksMLPs can fulfill, the outputs in the case of the secondmodel

3For a still better understanding of the computational details, readers are invited to consult the Jupyter notebook in
the supplementary materials, which contains the Julia code of the simulations reported in the following sections.
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need not be numeric. As a result, the operations of averaging and weighted averaging, as carried
out in the model, may differ, depending on the nature of the data or the task at hand. For instance,
in the first study below averaging consists in determining the modal responses for the various data
points, in a way to be detailed. Nevertheless, the intendedmeaning of averaging in this algorithm
should be clear: the average is always some kind of best compromise of whatever different responses
are under consideration.

The thirdmodel combines the previous two. Specifically, it proceeds as follows: (i) for each agent,
select its state-based peers (depending on ε1) and take the averages of their parameters; (ii) train
all agents on their training data; (iii) for each agent, set its parameters equal to a weighted average
of its parameters after the training and the averaged parameters of their state-based peers (before
training; the weighting of the average is determined by α1); (iv) let all agents make predictions on the
relevant data; (v) for each agent, select its output-based peers (based on ε2), in light of the predictions
obtained in the previous step; and finally (vi) for each agent, take an α2-weighted average of its own
predictions and the averaged predictions of its output-based peers.

While in the description of the models we have not explicitly referred to an equivalent of the
parameter τ in the HKmodel, the references to agents’ making predictions and being evaluated
all refer implicitly to such an equivalent, that is, a target that the agents are aiming at and can get
right to differing degrees; also, the data will, ideally, be informative of that equivalent, meaning
that they will help the agent approximate the target, or even hit it. But precisely because MLPs can
be used for a variety of purposes, it is impossible to characterize the target generally. If the MLPs
are trained on a classification task, the aim is to classify correctly whatever data they are given as
input; their predictions concern the classification of those data—they are their best guess of how the
data are classified in reality—and they are evaluated in light of how closely their predictions match
the correct classification. Similarly if the MLPs are trained to assign probabilities to a set of rival
theories, or to predict time series, or to encrypt data. In all those cases, there is a target that they are
trying to come as close as possible to and with respect to which they can be evaluated, but the nature
of the target is different each time, unlike in the HKmodel, where it is always a number (or set of
numbers, in some extensions).

It is again to be noted that we are not aiming at exploring all possibilities of integrating the
HKmodel with ANNs. We do believe, however, that the three models defined in the foregoing are
all natural extensions of that model as originally conceived, the new characteristic element being
that the communities of agents are constituted by neural networks. While it has been shown that,
depending on an agent’s environment and its goals (epistemic or otherwise) in that environment,
social updating in themanner of theHKmodel canhavenotable epistemic advantages (Crosscombe&
Lawry, 2016; Douven, 2010, 2019; Douven&Hegselmann, 2021, 2022; Glass &Glass, 2021), it remains
to be seen whether there is any merit to HK updating for agents conceived as neural networks. To
find out, the next two sections test the three models on tasks neural networks have been commonly
used for, and we compare the performance of networks in the models with that of neural networks
carrying out the same tasks in a strictly individual fashion.

4 Study I: Classifying colors

The first study considers communities of agents (i.e., MLPs) that are trained to classify colors on
the basis of their coordinates in color similarity space, specifically CIELUV space (see the left panel
of Fig. A.1 in App. A.3; also Fairchild, 2013, for theoretical background). Both the training and the
testing materials come from the 320 chromatic Munsell chips which served as the materials for the
World Color Survey (WCS; Cook, Kay, & Regier, 2005), a large catalogue of color-naming systems
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from across the globe; the 320 chips are highlighted in the right panel of Figure A.1 in Appendix A.3
and shown in a chart in the way they were presented in theWCS in Figure A.2 in the same appendix.

Because a significant number of participants in color-naming studies for both English and
French used only ten of the eleven basic color terms (“green,” “blue,” and so on) in describing the
colors of the WCS chips, leaving out “gray” (Berlin & Kay, 1969; Claidière, Jraissati, & Chevallier,
2008), we take as the target classification which the agents should try to learn—our τ, so to speak—a
clustering of the WCS chips into ten categories. Also, because in the same color-naming studies
there was considerable interpersonal variability in how these chips were named, we use the k-means
clustering algorithm to provide a kind of objective approximation of the natural color concepts.4 The
result, which is the classification the agents should try to learn, is shown in the top row of Figure A.3
in Appendix A.3.

The MLPs that populate the models are not much more complicated than the ones used in
our earlier illustration. They also have only one hidden layer, now consisting of nine nodes and
integrating the Rectified Linear Unit (ReLU) activation function for each node.5 Given that the
task at hand is to categorize colors as belonging to one of ten classes on the basis of their CIELUV
coordinates, the input layers of theMLPs have three nodes—one for each coordinate—and the output
layers ten, each representing one of the basic colors minus gray.

We ran three sets of simulations, one for each of the models defined in the previous section,
where the communities always consisted of 50MLPs with the architecture described above. Each
simulation involved training the agents over 100 epochs, where an epoch is a single application of
the given model, with the agents being returned after epoch n serving as input for the model in
epoch n+1, for n ∈ {1, . . . , 99}.6 The training used the Adamoptimization algorithm (with a learning
rate set to 0.001) and the Multiclass Cross-entropy Loss, which computes the loss by measuring the
difference between the predicted classification probabilities (i.e., the probability that a chip should
be classified as green, the probability that it should be classified as blue, and so on) and the true class
labels.

Per epoch, the agents received a fresh batch of training data, each time sampled randomly and
for each agent individually from theWCS chips in such a way that the number of chips from each
category according to the target classification was greater than 0 but otherwise random. Thus, every
agent was assigned at the beginning of each epoch a set

{〈
〈L∗c , u∗c , v∗c 〉,Cc

〉}
c ∈ s of pairs as training

data, with each pair comprised by the CIELUV coordinates of someWCS chip c in sample s as well as
its label Cc indicating the color it has according to the target classification.7 The test data, on which
the agents were evaluated after each epoch, were always the same for all agents and consisted of the
coordinates of all 320 color chips together with their labeling according to the target classification.

The evaluation used the mutual information index, which measures the similarity of different
classifications (see Pfitzer, Leibbrandt, & Powers, 2009, for why this measure is preferable to alter-
native measures, such as the Rand index).8 To bemore precise, after each epoch wemeasured the

4See Douven (2017, 2024c) for more on this; how close the approximation is is unimportant for present purposes.
5In light of recent work on ANNs, this is an exceedingly simple and shallow architecture, which, by today’s standards,

does not even qualify as deep (see, e.g., Buckner, 2023, p. 50; Buckner and Garson, 2018). But everything said in this paper
generalizes to MLPs with any number of hidden layers and even, with some qualifications, to more recent architectures;
see Section 6.

6At start time (i.e., epoch 1), the layers of the agents were initialized using the Xavier method introduced in Glorot
and Bengio (2010).

7For amore detailed description of the procedure, see Douven (2024c). As noted in that paper, there is no fixed sample
size in this procedure, given that a random number of chips is sampled from each color category. The average sample size
was empirically determined to be 165.02 (± 31.98).

8We used the normalized version of this measure, so that mutual information values were always between 0 and 1,
with 0 indicating that the classifications are maximally dissimilar and 1 indicating that the classifications are maximally
similar (i.e., identical). For a formal definition of this measure, and for formal definitions of all other technical notions to
be used in the following, see Appendix A.1.
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accuracy of each agent by calculating themutual information between how it classified the 320 chips
in our materials and how these chips ought to be classified according to the target classification.

For the first two models, which have only one ε and one α parameter, we used a grid search
strategy to approximate optimal combinations of parameters. For each combination resulting from
letting ε and α range independently over the unit interval in steps of .025, we ran 100 simulations
as described above. For state-based social updating, the parameter setting α = ε = .9 yielded, on
average, the highest mutual information at the end of the training process. For output-based social
updating, the combination of α = .1 and ε = .3 did best. For the combined social updating method,
which has four parameters, a grid search would have been computationally too costly and therefore
we ran a random search procedure to approximate the best setting (or a best setting; uniqueness
is not guaranteed). Specifically, we ran 100 simulations for 500 combinations of random choices
(all uniformly sampled from the unit interval) for the two α and the two ε parameters, finding that
the best score (i.e., the highest average mutual information) after 100 epochs was obtained for the
setting α1 = .81, ε1 = .9, α2 = .14, and ε2 = .07.9

To get a first impression of the accuracy that can be achieved using the different updating
mechanisms with their optimal parameter setting, we trained a community of 50 agents for 1,000
epochs for each of these mechanisms and compared the resulting modal classifications with the
target classification. (A modal classification is the classification which gives, for each chip in our
materials, the modal—i.e., most frequent—response for that chip in the given community.) For
completeness, we included in the comparison the modal classification obtained from a community
of 50 agents (MLPs) that do not engage in any social updating but are individually trained in the
exact same way as the agents in the communities of social updaters are. It turned out that, first, the
different updatingmethods led to modal classifications that looked almost the same, and second,
that those classifications were almost identical with the target classification (see Fig. A.3 in App. A.3).
Indeed, a comparison with the target classification yielded the same high mutual information of .97
for each modal classification.

Should we conclude that the various forms of social updating are equally good but also that
social updating, in whichever form, is not worth the extra effort of averaging (whether parameters
or predictions, let alone both)? That would be rash, because the modal classifications tell a very
incomplete story, for two reasons. First, note that modal responses can be the same even if, for one
algorithm, only a small fraction of agents got the label right at the end (but wrong responses were all
over the place), while for another, all, or almost all, agents got it right. Second, we will want to look
at more than the end state of the training process and will also be interested in how fast the agents
were able to learn. Perhaps all updating methods led to an excellent classification eventually, but
if one already got the classificationmore or less right quite early on in the training process, while
the other updating methods did not, then for many practical purposes that will make the former
preferable.

On these issues, Figure 3 offers some helpful insights. For each of the four communities of
agents under consideration (i.e., the community of nonsocial updaters, and the three communities
of social updaters, each using a different updating method with their optimal setting) and for
each epoch, the figure shows the meanmutual information obtained by the agents, together with
95 percent confidence bands. We see that the combined state-based and output-based procedure
swiftly surpasses the others, maintaining its lead throughout the training process.

We conducted one-way ANOVAs for the mutual information scores of the four groups after
each epoch. Theω2-values for each ANOVA are plotted on the alternative y-axis of Figure 3, a green
marker indicating that the ANOVA showed groupmeans to be significantly different, a red marker
that they were not significantly different. An ω2-value greater than 0.14 is conventionally taken

9See the supplementary materials for details and additional analyses.
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Figure 3: Per-epoch average mutual information (with 95 percent bootstrap confidence intervals) for the
four communities of agents (social updating always with optimal settings; see the text). Effect sizes (ω2) for
the ANOVAs that were run for each epoch are shown on the alternative y-axis. (Here and elsewhere: SB =
state-based; OB = output-based.)

to indicate a large effect size, meaning in our case that, although the modal classifications of all
communities were equally good at the end, even at the end there were large differences among the
communities in terms of average mutual information scores (i.e., how well, on average,members of
the communities did with respect to approximating the target classification).

Results of the per-epoch follow-up tests with pairwise comparisons, which are contained in the
supplementary materials, further reveal that not only does the combined updating method top all
of its rivals after virtually all epochs, but at almost every epoch a choice of the former over any of
the alternatives would largely impact the achieved accuracy (where the effect size was measured
using Cohen’s d). The only method that at times comes close and sporadically even does better is the
output-based social updating method. The pairwise comparisons also confirmwhat could already
be guessed on the basis of Figure 3, viz., that all social updating methods outperform individual
updating by far.

We can also measure the total accuracy achieved by the agents over the 1,000 epochs by using
the area under the learning curve (AULC; see, e.g., Bouckaert, 2006; Tsai, Ho, & Lin, 2010), which
plots the learning curve of a neural network andmeasures the area under that curve. Networks that
learn faster and achieve greater accuracy sooner will have a larger area under the learning curve,
while models that learn more slowly or achieve a lower level of accuracy will have a smaller area,
assuming the same number of epochs. Thus, the AULC can be interpreted as ameasure of the overall
performance of the network throughout the training process, with larger values for this metric
indicating better average performance of a network throughout the training process.

The AULC values obtained for the agents in the community using the combined social updating
method were significantly larger than those obtained for the agents in the other communities.
Specifically, a one-way ANOVA showed that type of updating had a significant and very large effect
on AULC values over 1,000 epochs; F(3, 196) = 200.58, p < .0001,ω2 = 0.75. Pairwise t-tests showed
that the AULC values for the agents using combined social updating significantly exceeded those
for the agents using any other method of updating (smallest t = 52.04, all ps < .0001), with a mean
AULC value for the combined method of 938.40 (± 0.56), for the output-based method of 921.54
(± 2.22), for the state-based method of 897.00 (± 0.90), and for the nonsocial method of 866.95
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(± 31.44). A Cohen’s d test showed that using the best method (combined updating) instead of its
closest competitor (output-based updating) still has a large impact on overall accuracy (d = 10.41).

5 Study II: Staging hypertension

The setup of the second study is broadly the same as that of the first. We look at communities of
agents which aim at a target and receive evidence relevant to that target. In this study, too, the
communities use different update methods, with one community consisting of nonsocial updaters,
and three communities consisting of social updaters, one for each of the threemodels fromSection 3.

The target is different in this study. For ease of interpretation, imagine the agents to be medical
interns tasked to predict the stages of hypertension in patients based on a variety of demographic and
lifestyle data, intentionally excluding direct blood pressure readings. For the training process, we
use data sourced from the National Health and Nutrition Examination Survey (NHANES), which is
a yearly survey conducted by the National Center for Health Statistics.10 From an initial cohort of 613
patients, we focus on the 587 adults aged 20 and above. As key variables for analysis, we include age,
gender, bodymass index (BMI), diabetic status, physical activity, alcohol consumption, and smoking
behavior. These variables present amix of continuous (such as age,BMI, and physical activity), binary
(gender), and ordinal (diabetic status, alcohol use, smoking) types. On the basis of these variables,
the interns are to predict class probabilities for hypertension stages, ranging from normotensive
(i.e., normal blood pressure) via pre-hypertensive, stage 1 and stage 2 hypertensive, to hypertensive
crisis, thus encompassing five distinct categories. Hypertension stages were determined using the
systolic and diastolic blood pressure readings included in the NHANES data set.

The agents are again modeled as MLPs, now comprising two hidden layers with 32 and 16 nodes,
respectively, employing the ReLU activation function. The input layer is designed to match the seven
input variables (age, gender, etc.), while the output layer consists of five nodes corresponding to
the hypertension stages. We use the softmax function in the output layer to model the output as a
probability distribution, ensuring that the nodes’ outputs all lie between 0 and 1 (inclusive) and that
their sum equals 1.

In the training process, an agent processes data fromone patient at a time and assigns, on the ba-
sis of this data, probabilities to each of the relevant hypotheses (i.e., that the patient is normotensive,
that she is pre-hypertensive, etc.). As in the first study, the training uses Multiclass Cross-entropy
Loss and the Adam optimization algorithm (with a learning rate of .005). This process represents
the worldly part of the update, which for one community of agents is all the updating they engage in.
Three other communities of agents also participate in social updating, each using a distinct one of
the update methods introduced in Section 3.

As noted in Section 3, state-based peers are always selected on the basis of the same criterion—
viz., similarity of weights and biases—but the criterion on whose basis output-based peers are
selected depends on the type of output generated. In the present case, the output consists of
probability functions, and so we need a similarity measure for such functions. A prominent one
is the Kullback–Leibler (KL) divergence, but here we use the Jensen–Shannon (JS) divergence,DJS,
which is based on the KL divergence but which, unlike the latter, is symmetric, bounded, and
normalized. That not only makes it easier to interpret (0 indicates that the probability functions are
identical, 1 that they are maximally different), it can also be bounded by an ε parameter whose value
lies in the unit interval. Thus, where one agent’s predicted probabilities at a given point in time are

10We used the presently most recent batch of data available on the NHANES website, namely, the data collected from
the beginning of 2017 until March of 2020. The data can be downloaded from this address: https://wwwn.cdc.gov/nchs/
nhanes/continuousnhanes/default.aspx?Cycle=2017-2020.
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represented by p and another’s by q, they will be said to be each other’s peers at that time precisely if
DJS(p ‖ q) < ε, for some specified ε ∈ [0, 1].

Relatedly, and as also previously explained, averaging of outputs will mean different things
depending on the nature of the outputs. Here, they are probability functions, and we use the best
knownmethod for averaging such functions, which is linear pooling. Given probability functions
{fi}ni=1, the weighted linear average of these functions is defined to be

∑n
i=1 ωifi, withωi > 0 for all i

and
∑n
i=1 ωi = 1 (see, e.g., Dietrich & List, 2016). In our model, peers are always weighted equally,

meaning that we always take the straight average of their probability functions.
After each update, the agents are evaluated on the patients in the test set. Because they are

makingprobabilistic predictions about thesepatients, andgiven that thehypotheses theprobabilities
get assigned to are ordered (e.g., stage 1 hypertension is closer to stage 2 hypertension than the pre-
hypertensive stage is), we evaluate the agents using the ranked probability score (RPS; see Epstein,
1969). This scoring rule is particularly suited for the kind of case at hand, given that it penalizes
predictions not only on the basis of howmuch they differ from the objective probabilities but also on
the basis of the “distance” between the hypotheses in terms of their order. For example, if an agent
incorrectly assigns a high probability to a stage that is adjacent to the true stage (e.g., assigning a
high probability to the hypothesis that the patient has stage 1 hypertension when the patient actually
has stage 2 hypertension), this is considered a less severe error than assigning a high probability
to a more distant stage (e.g., assigning a high probability that the patient is normotensive, in the
same scenario). After each update, we calculate the RPS for each agent and each patient, and then
average over all patients in the test set to obtain the overall score for the given agent after the given
update. Note that lower RPS values indicate better predictive performance, with 0 being the ideal
score, indicating perfect predictions.

We are interested in ascertaining whether social learning enhances the predictive accuracy of
the agents and, if so, which of the social learning methods introduced in Section 3 proves most
effective. To optimize the parameters for the social methods, we proceed as in the previous study,
performing grid searches for the state-based and output-basedmethods and a random search for
the combinedmethod. This yields a best setting of α = .55 and ε = .98 for the state-basedmethod,
of α = .1 and ε = .9 for the output-based method, and of α1 = .99, ε1 = .14, α2 = .05, and ε2 = .74 for
the combinedmethod. (See the supplementary materials for details.)

We use computer simulations to compare the social methods with optimal parameter settings
both with each other and with individual updating. More specifically, we run 50 simulations, each
of which starts by randomly splitting the selected NHANES data 70–30 into a training set of 410
patients and a test set of 177 patients. The 410 patients in the training set are further randomly
partitioned into 10 equally sized parts of 41 patients. Each of these parts then serves as the training
set of one of the interns in each of four communities of 10 interns, where each community uses a
different one of the four update methods we are interested in (i.e., either individual updating or one
of the three social methods).

Figure 4 shows, for the four types of communities and for each update, the average (averaged over
the 50 simulations) of the average (averaged over the 10 agents in the given community) RPS scored
at the given update. As is already clear from the graphs, the individual updaters do, on average,
worst, even by a wide margin (certainly when compared with the output-based and combined social
updaters). It is equally clear that the output-based and combined social methods do better than the
state-based social method. Although less clear, it seems that the output-based method does, at least
for most of the updates, slightly better than the combinedmethod.

All of this is confirmed by the ANOVAs with post hoc t-tests that we conducted for the simula-
tion results per update. The outcomes are reported in the supplementary materials, which show,
among other things, that the ANOVAs were all highly significant and that they all had ω2-values
well above 0.16. (As mentioned earlier, values for this statistic above 0.14 indicate a large effect
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Figure 4: Per-update average (with 95 percent bootstrap confidence intervals) over 50 simulations of mean
RPS achieved by agents, shown separately for the four communities of 10 agents. (See the text for further
explanation.)

size.) These outcomes were to be expected in light of Figure 4, given the notable differences between,
on the one hand, the nonsocial and, on the other, all of the social updating methods. The results
from the Cohen’s d-tests that were also part of the follow-up tests are more informative and show
that choosing a social method over nonsocial updatingmostly has a large (d > 0.8), and always at
least a medium (d > 0.5), impact on accuracy. And choosing the output-basedmethod over either
of the other social methods has at least ultimately a medium impact on accuracy. (See again the
supplementary materials for further details.)

As we did in the first study, we end by looking at the total accuracy the agents achieved during
the training process, using again the AULC. Themeasure of accuracy in the second study is a scoring
rule, which assigns penalties to agents. So, while in the first study we were interested in which
updating method achieved the largest AULC, in this study better performance is indicated by a
smaller area under the learning curve. A one-way ANOVA reveals a significant and substantial effect
of the updating method on the accuracy of predictions; F(3, 1996) = 189.73, p < .0001, ω2 = 0.22.
Follow-up t-tests confirm that all types of social updaters achieved significantly greater accuracy than
individual updaters, which achieved a mean AULC of 11.61 (± 5.02; smallest t = 11.71, all ps < .0001,
smallest d = 0.68). Furthermore, the state-based method users, which achieved a mean AULC of
8.74 (± 2.14), did significantly worse than both the output-based method users, with a mean AULC
of 7.83 (± 1.09; t = 8.63, p < .0001, d = 0.96) and the combinedmethod users, with a mean AULC of
8.75 (± 2.14; t = 6.56, p < .0001, d = 0.39). Finally, the output-basedmethod users did significantly
better than the combinedmethod users, though the size of the effect is small in this case (t = 3.28,
p < .005, d = 0.18).
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6 Conclusion

In this paper, we introduced three neural agent-basedmodels (NABMs) that extend the traditional
Hegselmann–Krause (HK) model by integrating multilayer perceptrons (MLPs). Our models go
beyond the scalar opinion representation in the HKmodel, enabling agents to perform complex
learning tasks. The agents of the new type have not just enhanced learning capabilities individually
but are also capable of richer social interactions, which were seen to further improve learning.

Our computational studies, focusing on the classification ofMunsell color chips and probabilistic
predictions about hypertension stages, demonstrated the effectiveness of these new extensions of
the HKmodel. Agents employing social updating consistently outperformed individual learners,
underscoring the value of social learning. The results also suggested task-specific nuances in the
efficacy of different updating strategies, highlighting the importance of context in social learning.

The results from our computational studies not only validate our models but also help to address
the criticisms directed at agent-basedmodeling in, for instance, Cristelli (2014), Frey and Šešelja
(2018, 2020), and Borg et al. (2019). For many ABMs, it may well be true that, as these critics allege,
they are too simplistic and idealized for real-world applications. We hope to have shown, however,
that this need not be the case and that, by equipping ABMs with ANNs, we canmodel realistic forms
of learning and adaptation, far beyond the limitations imposed in traditional models like the HK
model. Not only that: using the new models, we obtained results showing the efficacy of social
learning, in line with previous studies, which however relied on models whose validity had been
called into question by the aforementioned critique.

We have limited our attention to extending one specific ABM by populating it with one specific
type of artificial neural network (ANN). It would be wrong to state that our proposal generalizes
swiftly to any kind of ABM and any kind of ANN. However, there are many ABMs close enough to
the HKmodel (e.g., Deffuant et al., 2000; Friedkin & Johnsen, 1990; Olsson, 2013) that combining
them with ANNs in the manner of this paper should be straightforward. As for other network
architectures, the key operations of the models proposed in this paper—judging similarity on the
basis of state and on the basis of output, and averaging states and outputs—apply as readily to, for
instance, convolutional neural networks (CNNs) and recurrent neural networks (RNNs) as they do
to MLPs. Thus, an obvious avenue for future research would be to study the HKmodel and similar
ABMs with either CNNs or RNNs as agents and see how well they do in solving tasks appropriate for
the type of network used (e.g., image recognition if the agents are CNNs, or predicting time series
data if the agents are RNNs).

More challenging follow-up research would focus on advancing the complexity of ANNs inte-
grated within ABMs beyond that of the ones just mentioned. Recent work has shown how large
languagemodels (LLMs) can bemade to communicate, in that one LLM’s output serves as the prompt
for one or more other LLMs, and so on, recursively (Du et al., 2023). That could be the basis for devel-
oping NABMs structurally similar to, but muchmore powerful than, the ones studied in this paper.
Naturally, comparing the internal states of LLMs is not nearly as straightforward as comparing the
internal states of MLPs, andmeasuring the similarities between the outputs of LLMsmay also be
harder. But there is some work onmeasuring the similarity of LLMs (Chen et al., 2021), and how
to compare outputs is something that will have to be decided on a case-by-case basis anyhow, as
we saw already for the simple MLPs we used. Supposing these hurdles can be overcome, NABMs
featuring LLMs as agents may hold the potential to enhance our understanding of complex social
behaviors by enabling the study of the interplay between social learning and advanced forms of
reasoning (see, e.g., Liu, Neubig, & Andreas, 2024, on inductive and abductive reasoning in LLMs)
within agent-based simulations.11

11I am greatly indebted to Rainer Hegselmann, Christopher von Bülow, and two anonymous referees for valuable
comments on previous versions of this paper.
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