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Abstract
Similarity spaces are standardly constructed by collecting pairwise similarity judg-
ments and subjecting those to a dimension-reduction technique such as multidimen-
sional scaling or principal component analysis. While this approach can be effective, 
it has some known downsides, most notably, it tends to be costly and has limited 
generalizability. Recently, a number of authors have attempted to mitigate these 
issues through machine learning techniques. For instance, neural networks have 
been trained on human similarity judgments to infer the spatial representation of 
unseen stimuli. However, these newer methods are still costly and fail to general-
ize widely beyond their initial training sets. This paper proposes leveraging prebuilt 
semantic vector spaces as a cheap alternative to collecting similarity judgments. Our 
results suggest that some of those spaces can be used to approximate human similar-
ity judgments at low cost and high speed.

Keywords Conceptual spaces · Deep learning · Multidimensional scaling · 
Psychological representations · Similarity judgments

1 Introduction

Over the past two decades, the conceptual spaces framework (CSF) has been gain-
ing popularity in cognitive science and beyond (Gärdenfors, 2000, 2014; Nosof-
sky, 1986, 1987, 1992; Shepard, 1964, 1987). This is in large part because it offers 
researchers a mathematical framework for modeling concepts, concept learning, and 
the use of concepts in categorization and induction (see, among many other publica-
tions, Douven, 2016, 2023, 2024a, b; Douven & Gärdenfors, 2020; Douven et al., 
2023; Gärdenfors, 2000; Gärdenfors & Osta-Vélez, 2023; Gärdenfors & Warglien, 
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2012; Gärdenfors & Williams, 2001; Osta-Vélez & Gärdenfors, 2020, 2022). 
According to the CSF, concepts can be represented geometrically, as regions in sim-
ilarity spaces, which are one- or multidimensional structures with a metric defined 
on them (for an overview, see Gärdenfors, 2000). The metric measures dissimilarity 
between items, in that the farther apart two items are in the space, the more dis-
similar they are in the respect represented by the space (e.g., the more dissimilar 
their colors are, if the relevant space is color space; see below). The dimensions of 
a similarity space aim at representing measurable properties items may have, so that 
items can be mapped onto points in the space according to the values they assume 
on these properties.

The conceptual spaces approach has been applied across diverse domains of var-
ying complexity. Examples of simple conceptual spaces are temporal space, which 
is represented by a singular dimension (time), and auditory space, which is charac-
terized by the dimensions of pitch and loudness. Somewhat more complex are color 
spaces like CIELAB and CIELUV, which are three-dimensional, with hue, luminos-
ity, and saturation as their dimensions. Still more complex conceptual spaces to be 
found in the literature are ones for actions, events, faces, tastes, scents, moral val-
ues, socio-economic status, pain, and much else (see, e.g., Bendifallah et al., 2023; 
Bourdieu, 1989; Castro et al., 2013; Churchland, 2012; Deauvieau et al., 2014; Dou-
ven, 2016; Gärdenfors & Warglien, 2012; Petitot, 1988; Valentine et al., 2016).

As intimated, conceptual spaces are built on top of similarity spaces. Similar-
ity spaces can be constructed in a number of different ways. The most common 
approach entails gathering pairwise similarity judgments for a set of items and then 
using these judgments as input for a dimension-reduction technique. Multidimen-
sional Scaling (MDS) is the most commonly used technique for this purpose (Borg 
& Groenen, 1999), while others such as Principal Component Analysis (PCA) and 
Non-Negative Matrix Factorization (NMF) are employed less frequently (Abdi & 
Williams, 2010; Castro et al., 2013). Other types of input data, such as confusion 
probabilities (indicating the likelihood of different items being mistaken for each 
other) and correlation coefficients (depicting the strength of correlation between 
items), are also occasionally used. A more recent alternative technique used for 
building similarity spaces is the spatial arrangement method (SpAM). This method 
requires participants to position items on a surface such that the distances among the 
items reflect the participant’s similarity judgments, providing an intuitive and visual 
representation of perceived similarities (Goldstone, 1994).

A common procedure for transforming a similarity space into a conceptual space 
involves locating the prototypes of the concepts one wishes to represent within the 
relevant similarity space (Gärdenfors, 2000; Gärdenfors & Williams, 2001). For 
instance, color prototypes would be situated in CIELAB or CIELUV space. Follow-
ing the identification and placement of prototypes, the mathematical technique of 
Voronoi tessellations (Okabe et al., 2000) is applied to segment the similarity space 
into distinct regions, by associating with each prototype all points in the space that 
are at least as close to it as they are to any of the other prototypes (Douven, 2016). 
Each of these regions represents a different concept (e.g., a different color concept if 
the underlying similarity space was CIELAB or CIELUV space).
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Part of the appeal of the CSF stems from the fact that it is typically fairly straight-
forward to derive empirical predictions from a conceptual space (e.g., about issues 
like concept acquisition, or category-based induction, or graded membership, or a 
variety of other issues), thereby giving theories about those issues clear empirical 
content. That requires, of course, that the conceptual space is described in some 
detail. Ideally, one can load it onto one’s computer and use modern software to inter-
act with it (e.g., to measure distances in it, or to measure volumes of regions in the 
space). In practice, however, there is still only a limited number of conceptual spaces 
that are easily accessible for researchers, or even accessible at all. The root problem 
really concerns similarity spaces. For once we have a similarity space, its conversion 
into a conceptual spaces is generally rather straightforward. However, the construc-
tion of the underlying similarity space can be both very time-consuming and very 
expensive. In addition to this, many of the similarity spaces that are available are 
not readily generalizable to items that were not used in the process of generating the 
space.

Recently, a number of authors have attempted to mitigate these issues through 
machine learning techniques. Most notably, neural networks have been trained on 
human similarity judgments to infer the spatial representation of unseen stimuli 
(Attarian et al., 2020; Bechberger & Kühnberger, 2021; Nosofsky et al., 2017; Patel 
& Pavlick, 2021; Peterson et al., 2018; Sanders & Nosofsky, 2020). However, these 
newer methods are still costly and also do not generalize as much as would often 
be useful. In this paper, we look into a potentially cheap and simple alternative to 
collecting similarity judgments which leverages prebuilt semantic vector spaces and 
other tools from artificial intelligence. Our results suggest that from at least some of 
these spaces we can extract similarity judgments which approximate human similar-
ity judgments to a satisfactory extent. Thereby, we can arrive at similarity spaces for 
some types of stimuli quickly and inexpensively.

In the following sections, we explore the prospects of constructing similarity 
spaces by recruiting large language models (LLMs) and word embeddings. Section 2 
provides theoretical background on similarity spaces and the traditional methods for 
constructing such spaces. Section 3 presents our methodology and starts by illustrat-
ing it using GPT-4 as the currently top LLM. In Sections 4 and 5, we look at slightly 
older or less powerful models which, however, have the advantage of being open 
source and thereby offer a more direct approach to retrieving similarity judgments.

2  Practical Limitations

A similarity space that informs us of the similarities among only a small number of 
items will, in general, be of merely limited theoretical interest. To make sure a simi-
larity space has a sufficiently broad scope, it will have to be constructed on the basis 
of judgments concerning the similarities among a relatively large set of items. This 

can easily cause practical problems, however. For n items, there are 
(
n

2

)
 pairwise 

similarity judgments to be made (assuming that order of appearance plays no role; 
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otherwise we would need twice as many). Thus, the number of similarity judgments 
that are required increases quadratically with n.

To make this concrete, we take as an example the first study from Douven (2016), 
which used as materials 49 items to arrive at a shape space, specifically a space for 
representing container concepts such as vase and bowl. While 49 is not an exces-
sively large number of stimuli for the task at hand, had a participant had to judge 

each pair they would effectively have had to make 
(
49

2

)
= 1176 pairwise similarity 

judgments—which is practically infeasible, given that, in all likelihood, such a task 
would lead to participant fatigue (and accordingly low-quality responses) and prob-
ably also to a high participant attrition rate. The problem is known in the literature, 
and one workaround, which was also used in Douven (2016), is to recruit a large 
group of participants and let each participant make a “doable” number of similarity 
judgments instead of having each of a small number of participants judge the entire 
set of items. Specifically, for the relevant study in Douven (2016), each of over 1000 
participants was asked to judge the similarity of 25 pairs of items selected randomly 
per participant. That guaranteed that each pair of items received a fair number of 
similarity ratings (at minimum). For each pair of items, the responses it had received 
were then averaged, and these averages served as input for the MDS procedure that 
yielded the container space used in the further studies reported in Douven (2016). 
(These further studies tested hypotheses about graded membership and are unrelated 
to our present purposes.)

This type of workaround still comes with a downside. Specifically, given the large 
number of participants it requires, studies using the workaround will typically be 
very costly, which—especially in view of the small research budgets that are com-
mon in the humanities and also in many of the social sciences—often presents an 
obstacle in itself. The study from Douven (2016) that was just described was at the 
time it was conducted already quite expensive, but at today’s rates, with Prolific—
currently the main crowdsourcing platform for academic research—recommending 
paying participants at least £ 9 per hour, the cost would have been over £ 800 (given 
that participants spent on average over 5 min on the survey).

There is another way to build similarity spaces, this one quick and cheap, which 
uses the spatial arrangement method (SpAM). As already briefly mentioned, SpAM 
lets participants directly construct a similarity space by allowing them to position 
items on a two-dimensional surface (usually virtually on a computer screen). But 
SpAM has its own limitations. For one, the task is known to be cognitively demand-
ing, meaning that the number of items that participants can be asked to locate rela-
tive to each other must be on the smaller side. For another, the task forces a par-
ticipant’s similarity space to be two-dimensional, even though a standard MDS 
procedure on the basis of pairwise similarity judgments could have shown that the 
participant’s similarity judgments are best represented by a three- or even four-
dimensional space. (For further critical discussion, see Verheyen et al. (2016); Ver-
heyen and Storms (2021); Verheyen et al. (2022)).

Here, we want to focus on a limitation shared by the MDS method and SpAM, 
to wit, the problem that the spaces resulting from applications of these methods 
tend to generalize poorly to stimuli that are of the same type as those used to build 
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the similarity spaces—which were used to elicit pairwise similarity judgments in 
the case of the MDS method and which were to be placed relative to each other 
in the case of SpAM—but that were not seen by the participants. To illustrate, we 
use the study that Douven et al. (2023) conducted to build a mammal space. This 
study relied on SpAM and used as stimuli mammals from the set of mammals that 
had been previously used by Henley (1969). However, because—as mentioned—
SpAM presents participants with a cognitively demanding task, Douven and col-
leagues selected twenty mammals from Henley’s set instead of using the full set of 
thirty. That was enough for these authors’ purpose, which was to use the individual 
spaces created by the participants to predict the degrees to which these participants 
were willing to accept various similarity-based inferences involving mammals taken 
from the set of twenty. Not only were those predictions largely successful, when the 
authors aggregated the individual spaces, they found that the aggregate space (repro-
duced in Fig. 1 here) did an even better job predicting the said degrees.

To come to the problem, we note that among the mammals in Henley’s set not 
used for Douven et  al.’s 2023 study are chipmunks, beavers, and raccoon. The 
problem immediately becomes clear when we ask where, in the mammal space 
shown in Fig. 1, we should place these mammals. If the dimensions of the space 
corresponded to measurable properties of mammals, like their average life span, 
or their average weight, then it would be easy to locate them in the space: look 
up the average life span of a raccoon, look up their average weight, and find the 
corresponding coordinates in the space; similarly for chipmunks, beavers, and all 
other mammals in Henley’s set left out by Douven and colleagues. But although 
in the present case the dimensions are somewhat interpretable—the x-axis seems 

Fig. 1  Aggregate conceptual space for the Henley set, from Douven et al. (2023)
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to correlate roughly with size, the y-axis with ferocity—it appears that they can-
not be plausibly mapped 1  to 1 onto any measurable property of mammals. As 
a result, it is not obvious where in the space to put “chipmunk,” or “beaver,” or 
“raccoon.” This problem is actually quite common: while in the ideal case the 
dimensions of similarity spaces correspond to measurable properties that items 
may have, in practice this ideal is often not met (Fig. 2).

Naturally, we could take recourse to a brute force solution by simply extend-
ing the set of items and rerunning the experiment, but that would be a bad idea 
precisely for the reason why Douven et  al. (2023) chose only a subset of Hen-
ley’s items. A more sensible approach, which is more in line with the proposal 
to be made in this paper, would be to follow Sanders and Nosofsky (2020), who 
trained a deep neural network on a similarity space and then used the trained net 
to predict where unseen items are to be placed in the space. While we believe 
their approach to be an important step forward, it could be argued that it still does 
not offer an optimal solution to the aforementioned problems. After all, in their 
approach, one still needs to construct a similarity space—which, as said, can be 
costly—and then train a neural net on the stimuli and similarity space, which is 
likely to add further costs.

We here would like to draw attention to the possibility of cutting down on 
expenses by using pre-trained models to obtain similarity judgments and letting 
them serve as input for an MDS procedure, or even to extract similarity spaces 
directly from those models. This could work on the assumption that, after pre-
training, the models have come to already encapsulate what Sanders and Nosof-
sky’s net was specifically trained to predict. It is worth considering this possibil-
ity, given that a wide variety of models have become available in recent years, 
some only as paid services, but some also for free thanks to open source contribu-
tions. In the remainder of the paper, we have a look at a number of the best-known 

Fig. 2  Aggregate conceptual 
space for the Henley set based 
on GPT-4 similarity judgments
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pre-trained models and will be interested in the extent to which they are able to 
help overcome the problem highlighted in this section.

3  Prompting GPT

The obvious model to start with is, of course, the currently widely popular, even 
if only commercially available, GPT-4, which is a state-of-the-art language model 
developed by OpenAI and based on the transformer deep learning architecture (Ope-
nAI, 2023). Precisely because this is proprietary software, however, we are not able 
to inspect its layers and their activation functions, the importance of which will 
become relevant later on. But we can still ask it to generate similarity matrices for 
us—which is what we did, specifically for the set of twenty mammals used in the 
experiments reported in Douven et al. (2023).

Previous studies have shown encouraging results obtained from comparing 
GPT-4 with human judgments in inductive reasoning tasks through direct prompt-
ing (Han et al., 2024). These findings suggest a potential for similar success in tasks 
involving similarity judgments. We prompted GPT-4 five times, at different points 
in time, to create a similarity matrix for this set of mammals, explicitly asking it to 
use a scale from 0 to 10, with 0 indicating maximum dissimilarity and 10 indicating 
maximum similarity, and also to assign 10 only in the case of identity. We received 
each time a symmetric matrix, though the results differed slightly each time. By way 

Fig. 3  Aggregate conceptual spaces for the Henley set based on human similarity judgments (in blue) 
and based on similarity judgments elicited from GPT-4 (in red) after Procrustes coordination
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of example, Fig. 3 shows the space we obtained by conducting an MDS procedure 
with one of the matrices as input.1

The space certainly makes sense. But it will be more informative to compare it 
formally with the aggregate space from Douven et  al. (2023) shown earlier. This 
might seem difficult, if only because the two spaces are on different scales. Also, 
while, for instance, “chimpanzee” and “gorilla” appear close together in both spaces, 
they appear in the bottom right corner in the GPT-4 space but in the upper right cor-
ner in the space from Douven et al. (2023). There is a way around these difficulties, 
however, stemming from the fact that similarity spaces are identical up to similar-
ity transformations, meaning that they are not affected by any combination of the 
operations of shifting, rescaling, rotating, and mirroring, all of which preserve rela-
tive distances. This fact is exploited by a technique known as “Procrustes analysis” 
(Schönemann, 1966), which uses similarity transformations to align different spaces 
as closely as possible. The technique thus allows for the adjustment and alignment 
of the spaces, thereby addressing variances in orientation, position, and scale, and, 
as a result, facilitating a meaningful comparison.

More specifically, using the protest function from the vegan package for the 
statistical computing language R, we can compute correlations between similarity 
spaces after Procrustes coordination. For each of the five similarity matrices given 
by GPT-4, we find a very high and significant correlation between that space and the 
aggregate space from Douven et al. (2023); all correlations are at least close to .9, 
and two matrices even yielded a correlation of  .92 (all ps < .0001 ). To formally 
check the consistency of GPT-4, we also looked at the correlations among spaces 
from different GPT-4 matrices, finding correlations of .95 and higher (all ps < .0001

).
Instead of comparing the similarity spaces, we can also compare more directly 

the matrices on which they are based, that is, compare the similarity matrices from 
GPT-4 with the one we can extract from the aggregate space shown in Fig. 1. To 
do this, we can use the so-called Mantel test (Mantel, 1967), which is specifically 
meant to determine the correlation between pairs of matrices with the same dimen-
sions. This test showed that the similarity matrices obtained from GPT-4 all cor-
related highly with the similarity matrix based on the aggregate space from Douven 
et al. (2023): correlations were all close to .85 and highly significant (all ps < .001 ), 
with one exception for which r = .78 (which is still high).

These results strongly suggest that GPT-4 may help us solve both the generaliz-
ability problem and the cost problem described earlier: instead of running another 
experiment with a larger set of materials (e.g., including the items from Henley’s set 
of mammals, if we are interested in extending the mammal space from Douven et al. 
(2023)), or of training a neural net in the manner of Sanders and Nosofsky (2020), 
we can simply ask GPT-4 to create a similarity matrix for our materials. At least at 
today’s prices, the latter method would not only be significantly faster than the for-
mer but also much less expensive.

1 To be more exact, we used the MutlivariateStats.jl package for the Julia language (Bezanson 
et al., 2017) to carry out classical MDS.
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Alas, our “Just Ask GPT” approach quickly hit a roadblock when we asked it to 
generate a similarity matrix for the full set of Henley items. GPT-4 then let us know 
that our set of mammals is too large and that it is only able to generate similarity 
matrices for smaller sets. Although the inner workings of GPT-4 itself have not been 
described, it is known that transformer architectures depend upon an inner represen-
tation which typically scales quadratically with the number of tokens in both prompt 
and generation (Lin et al., 2022; Vaswani et al., 2017). Because each token attends 
to all other tokens, scaling the size of the desired output can easily become unman-
ageable. While we expect this issue to be overcome in future versions of GPT, at the 
moment no fix appears to be available.2 ,3

Of course, GPT-4 is not the only available commercial LLM. Another well-
known LLM is Bard, Google’s state-of-the-art transformer model. Rerunning the 
above experiment with this model gave disappointing results, however. We had to 
try repeatedly just to get a symmetric similarity matrix, and once we had a couple, 
they turned out to correlate poorly with the similarity matrix from Douven et  al. 
(2023) (for details, see the Supplementary Materials). Other commercial LLMs, 
such as Cohere’s Command or Llama2 70b, did not do any better. These findings 
motivated us to look at a simpler approach, which we describe in the following.

4  Spaces from Embeddings

At the core of the simpler approach is the idea that we can extract vector repre-
sentations (or embeddings) from language models and compare these directly with 
human similarity judgments, instead of asking the model to generate a similarity 
matrix. For GPT-4 or Bard, this is unfortunately not possible: because they are not 
open source, there is no way to access the underlying vector representation of the 
input. The good news is that there are several similar models that are open source, 
although these models are known to be less powerful than the two aforementioned 
ones.

The landscape of open source language models is vast, presenting a broad array 
of architectures and functionalities. The ones that seem most relevant to our pur-
poses are the so-called word embedding models (Almeida & Xexéo, 2019; Incitti 
et al., 2023; Mikolov et al., 2013). Word embedding models are trained to represent 

2 For instance, there is no way for users to change the attention mechanism used by GPT-4. But even if 
that were possible, it might be inadvisable, given that the currently available alternative attention mecha-
nisms appear to yield less accurate results (Niu et al., 2021).
3 Independent of the limitation mentioned here, there is a concern one may have about the “Just Ask 
GPT” approach, and about the approach proposed in this paper more generally. As a referee noted, if 
we had added “rose” to the set of mammals, GPT-4 might have rated the similarity between roses and 
each of the mammals in the set, which we could then have turned into a similarity space in which roses 
also would have been represented, together with the mammals, which intuitively would make little sense. 
Here, it is to be noted that there are general adequacy criteria for similarity spaces, one of which is the 
interpretability of the resulting dimensions (see, e.g., Borg & Groenen, 1999; Douven, 2021; Douven 
et al., 2022). It is safe to speculate that the said similarity space would not satisfy this criterion.
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inputs which tend to co-occur in linguistic corpora, which as an objective already 
sounds somewhat similar to what similarity spaces aim to achieve.

One of the first major neural word embedding models was Word2Vec (Mikolov 
et  al., 2013). The model was trained on the Google New Dataset, which contains 
about 6 billion words, and it aims to predict surrounding words for a given input 
word. It tries to achieve this objective by minimizing the so-called Skip–Gram loss 
function4:

where T is the total number of words used for training, c is the context window size 
(i.e., the chunks of text preceding and following the center word), and Pr(wt+j ∣ wt) is 
the probability of predicting word wt+j given center word wt.

To see whether Word2Vec might be able to help where GPT-4 had to pass, we 
started by obtaining the Word2Vec embeddings for each item in the materials from 
Douven et al. (2023), which yielded an array of twenty vectors. While it would not 
be wrong to think of the Word2Vec vector space as a Euclidean space, it is standard 
in the literature to measure distances among vectors in this space using the cosine 
distance (Manning, 2009; Manning & Schutze, 1999; Mikolov et al., 2013), which 
is defined as

for vectors u and v . We followed standard practice and used this distance in our 
experiments.

We applied an MDS procedure to the thus obtained similarity matrix, which 
yielded the space shown in the left panel of Fig. 4. For a formal comparison with 
the similarity matrix from Douven et  al. (2023), we conducted again both a Pro-
crustes analysis and a Mantel test. While not as good as for the GPT-4 matrices, the 
results were still quite satisfactory, getting a correlation of .83 out of the Procrustes 
analysis and one of .61 from the Mantel test (both ps < .0001 ). And with Word2Vec, 
there is no impediment to obtaining similarities for larger sets of items. Indeed, we 
were able to get similarities for the full set of thirty items in the materials of Henley 
(1969) without any difficulty. Using the matrix of the larger set as input for an MDS 
procedure gave us the space shown in the right panel of Fig. 4.

These results are especially encouraging in view of the fact that Word2Vec dates 
back to 2013. It is reasonable to expect that newer models are able to give better 
results still. A popular later model is FastText, launched by Facebook Research 

JSkip–Gram = −
1

T

T∑

t=1

∑

−c≤j≤c, j≠0

log Pr(wt+j ∣ wt),

1 −
u ⋅ v

‖u‖‖v‖

4 The function stated here is simpler than the one proposed in Mikolov et al. (2013), but it is commonly 
used in many popular machine learning libraries. We also note that the Skip–Gram architecture is only 
one of two primary versions of Word2Vec. The other version is known as “Continuous Bag-of-Words” 
(CBOW). While Skip–Gram predicts context words from a target word, CBOW predicts a target word 
from a bag of context words. The difference between the two architectures is immaterial for our present 
purposes.
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in 2017 (Bojanowski et al., 2017), which preserves the overall approach of Word-
2Vec but also takes subword information into account. Rerunning the procedure 
just described for Word2Vec yielded results that were better indeed, with a correla-
tion of  .89 from the Procrustes analysis and one of  .72 from the Mantel test (both 
ps < .0001 ). The similarity spaces for the limited and the full Henley set are shown 
in Fig. 5.

Thus, although already a bit dated, Word2Vec and FastText offer promising 
results. The correlations with the similarity matrix and aggregate space from Dou-
ven et al. (2023) are high enough to make us at least somewhat confident in their 
predictions of the locations of mammals in a more encompassing mammal space.5 

Fig. 4  Word2Vec results for the set of mammals used in Douven et al. (2023) (left) and for the full Hen-
ley set (right)

Fig. 5  FastText results for the set of mammals used in Douven et al. (2023) (left) and for the full Henley 
set (right)

5 These results are also in line with those obtained for similar tasks in previous research. While testing 
on the UCLA Verbal Analogy Test (UCLA VAT), Snefjella et al. (2022) tasked Word2Vec to choose the 
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Although the correlations are lower than those achieved with GPT-4, there are sev-
eral important advantages. Not only do we have the ability to inspect the model’s 
internals, but we also obtain precise, context-independent embeddings for each 
word. This differs significantly from GPT-4, where the typical process of sam-
pling the next token introduces variability into the results. Might we be able to get 
closer to those results by using more recent models that share GPT-4’s architecture 
(i.e., transformer models) but are open source? We turn to these models in the next 
section.

5  Open Source LLMs

GPT-4 was seen to do an excellent job of predicting human similarity judgments for 
the mammals in the materials from Douven et al. (2023). However, currently we can 
only access GPT-4 via its prompt, and when we prompted it for similarity judgments 
for the full set of mammals from Henley (1969), it let us know that we were asking 
too much.

The word embedding models considered in the previous section are open source 
and, as a result, we have access to their layers. From these, we can readily obtain 
vector representations for all mammals in Henley’s set, and from these representa-
tions we can then, in turn, derive similarities. It was seen that the similarities for all 
pairs of mammals from the set used by Douven and colleagues were, especially in 
the case of FastText, quite close to the human similarity judgments as documented 
by these authors.

Both Word2Vec and FastText count as old in the fast-moving field of AI. Since 
these models became available, language modeling has come to increasingly rely 
on the very different transformer architecture (Vaswani et  al., 2017) and has pro-
gressively moved from modeling simple inputs (e.g., words as in Word2Vec) to 
much more complex ones like sentences and even longer text fragments. GPT-4 is a 
transformer model but offers, as seen, limited accessibility. However, there are open 
source transformer models which are not as powerful as GPT-4 but which are still 
much more modern than Word2Vec and FastText and which, precisely because they 
are open source, do allow us to access their layers directly, so that we can obtain 
vector representations (e.g., of all mammals in Henley’s set) from them as easily as 
these could be obtained from Word2Vec and FastText.

It is at least a priori reasonable to expect the newer transformer models to improve 
on the older word embedding models. Perhaps the most innovative feature of the 
former type of architecture, and the feature that most clearly distinguishes it from 
Word2Vec and FastText, is the attention mechanism mentioned previously, which 
dynamically computes the importance of context words (the “surrounding” words) 

Footnote 5 (continued)
correct analogy between two competing choices. The authors report that Word2Vec managed to correctly 
predict the right analogy with an accuracy of  .69, compared to an accuracy of  .84 achieved by human 
participants.

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



Cheaper Spaces  Page 13 of 21     6 

for a given center token (i.e., the token on which the attention is focused), where 
the context can have a length of hundreds, and in the latest models even thousands, 
of characters. This allows transformer models to pick up the significance of specific 
tokens, or sequences of tokens, within their context and to use this information to 
obtain improved embeddings. Besides architecture modification, the size, number 
of layers in the network, and training data of these models have also been greatly 
improved compared to the older models (Lin et al., 2022). In our scenario, since we 
are embedding individual words without any surrounding context, the full potential 
of the model’s capabilities may not be realized. However, we can still anticipate that 
these models’ ability to capture contextual relationships during training may result 
in more accurate embeddings, potentially aligning more closely with human similar-
ity judgments.

The overarching goal of the newer models is not essentially different from that of 
older models, to wit, the prediction of tokens given some context. To achieve this 
goal, the first generation of breakthrough transformers mostly used masked word 
prediction, a technique that masks certain words in a sentence which the model 
should then try to predict from the masked words’ context. Among the models that 
worked this way, BERT was a notable success, with widespread applications both in 
research and in industry (Devlin et al., 2018). Where Nmasked is the number of tokens 
to predict, and xcontext represents the surrounding tokens for a masked token x, the 
loss function that BERT was trained with can be specified as follows6:

While this loss function is in itself not very different from those that were used in 
the training of the older embedding models, a key training difference lies in the con-
text, which, as said, can be quite large here.

As we did for the previous models, we passed the mammal names from Hen-
ley’s set that were used in Douven et al. (2023) through the BERT model in order 
to obtain their embeddings. When we compared these embeddings with the human 
similarity judgments, the results proved to be quite a bit poorer than those we got 
from the older word embedding models. For instance, as can be seen in Fig.  6, 
BERT puts “horse” and “zebra” at a relatively large distance from each other, which 
would seem wrong: these words are semantically close in the judgment of anyone 
with a good command of the English language, which is also in accordance with 
what we got from the embedding models discussed earlier. That BERT underper-
forms relative to those models is confirmed by statistical tests, specifically yielding a 
Procrustes correlation of .43 and a Mantel correlation of .13.

Using variants of BERT that are popular in the machine learning community, 
notably DistilBERT and RoBERTa, yielded only marginally better results. It thus 
appears that the first generation of text generation models performs much worse 

LossMLM = −
1

Nmasked

∑

i∈masked

log Pr(xi ∣ x
i
context

).

6 The subscript MLM stands for “Masked Language Modeling.”
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Fig. 6  BERT results for the set of mammals used in Douven et al. (2023)

Fig. 7  Llama 3.2 1B Instruct results for the set of mammals used in Douven et al. (2023)
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than older text-embedding models when it comes to predicting human similarity 
judgments.7

Given the rapid advancements in open source LLMs, we extended our analysis 
to more recent models. Specifically, we tested Meta’s latest release, Llama−3.2 1B 
Instruct. While the results (see Fig.  7) demonstrated a notable improvement over 
older models, yielding a Procrustes correlation of .74 and a Mantel correlation of .3, 
they are still much worse than those from the older word embeddings.

These results are not just disappointing but also surprising: why would the newer 
models perform worse than Word2Vec and FastText on what appears to be a rather 
standard natural language processing (NLP) task? One possibility is that the larger 
context windows used by the newer models, as well as the attention mechanism, 
made these models attend to features that, while perhaps relevant to a host of NLP 
tasks, do not map well onto human similarity judgments.8 ,9 This problem has come 
to be known as the “representation degradation problem” (Gao et al., 2019).

If the above speculation is along the right lines, then a solution to the suboptimal 
performance of BERT and its ilk might be to further fine-tune the models on sen-
tences that are explicitly deemed semantically similar by humans. This approach has 
actually been taken by the NLP community, culminating in a training method known 
as “contrastive learning” (Qiu et al., 2022). Contrastive learning aims at minimiz-
ing the distance between similar tokens (words or sentences), much in the way in 
which Word2Vec architectures do this, where the similarity of the tokens is similar-
ity as judged by human observers (i.e., in contrastive learning, the dataset on which 
a model is trained includes human similarity judgments; see Jaiswal et al., 2020).10

The combination of transformer models and contrastive learning appears quite 
promising and two widely used models resulting from this combination are all-
MPNet-base-v2 and text-embedding-ADA-002 (Neelakantan et  al., 2022; Reimers 
& Gurevych, 2019). The latter is one of OpenAI’s latest embedding model; the for-
mer builds on the MPNet model from Microsoft, which follows an architecture quite 
similar to BERT, but having been fine-tuned with a set of sentence similarity judg-
ments, the model achieved state of the art in sentence similarity upon its release.

7 These results are consistent with the results reported in Snefjella et al. (2022), which concerned a dif-
ferent task, to wit, that of judging relational similarity. In that task, too, major LLMs failed to outperform 
Word2Vec; see also Ushio et al. (2021).
8 A more technical (though still speculative) explanation relates the problem to the occasional overspeci-
ficity of the attention mechanism of transformer models, which, as argued in Demeter et al. (2020) and 
Ushio et  al. (2021), can occur due to a limited number of hidden units exhibiting large activations, a 
phenomenon which often results in suboptimal performance in tasks that require calculating distances 
between network states (Sajjad et al., 2021). See on this also Timkey and van Schijndel (2021), whose 
authors refer to the phenomenon as the occurrence of “rogue dimensions,” which they identify as key 
factors in the distortion or “obscuring” of representations in transformer models.
9 While recognizing the strengths of LLMs, Lappin (2023) argues that these models still fall short in 
areas like natural language inference, analogical reasoning, and understanding figurative language. These 
limitations could extend to the challenge of accurately predicting human similarity judgments, which 
often involve nuanced understanding and contextual interpretation.
10 For more on this, see Reimers and Gurevych (2019), who trained a variety of transformer models 
with contrastive learning, reaching state of the art results on the Huggi ng Face Model  Evalu ation  Toolk 
it leade rboard.
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We subjected both models to the same test as the models discussed previously, 
meaning that we obtained the embeddings of the items that served as the materi-
als for Douven et al. (2023) and turned these into a similarity matrix, again using 
the cosine distance. Here it appeared that the improved training method had indeed 
paid off, for in a comparison with the similarities from Douven et  al. (2023) we 
found Procrustes correlations of  .82 for both models and a Mantel score of.54 for 
all-MPNet-base-v2 and of.52 for text-embedding-ADA-002. But while this indicates 
a marked improvement over the earlier transformer models, the results still disap-
point, not only absolutely speaking but also when compared especially with those 
we got from FastText.11

So again, why do the newer models so much worse in our tests than the older 
word embeddings like Word2Vec and FastText? It could be that, while BERT and 
related models are designed to capture deep contextual relationships within text, 
their full potential is unlocked only with task-specific fine-tuning. With such addi-
tional training, these newer models’ representations might get better aligned with 
the similarity judgments we seek to model. Only further experimentation can tell 
whether this speculation is in the right direction. Note, however, that even if it 
is, such further training of BERT and related models could become costly and so 
whichever spaces we might be able to get from these models would no longer be 
free.

To conclude this section, Table 1 gives an overview of the results, ranking the 
various models on the basis of their performance. It is clear that GPT-4, currently 
the top language model, outperforms the other models by a lot, which could well 

Table 1  Summary of models, ranked on the basis of their performance (in terms of Mantel’s r)

Note: * p < .05 , **p < .001

Model Architecture Training data Dimensions r (Mantel) Cost Gen-
eraliz-
ability

BERT Transformer BooksCorpus + 
Wikipedia

768 .14 Free ✓

RoBERTa Transformer WebText 768 .19* Free ✓

DistilBERT Transformer BooksCorpus + 
Wikipedia

768 .26* Free ✓

Llama3.2 1B Instruct Transformer Unknown 4096 .30** Free ✓

text-embedding-
ada-002

Transformer Unknown 1536 .52 Low ✓

all-MPNet-base-v2 Transformer Multi-source 768 .55** Free ✓

Word2Vec Skip–Gram Google News 300 .61** Free ✓

FastText Skip–Gram Common Crawl 300 .72** Free ✓

GPT-4 Transformer Unknown Unknown .92** Low ×

11 We do not show the MDS models for the responses we got from all-MPNet-base-v2 and text-embed-
ding-ADA-002. Interested readers are referred to the Supplementary Materials.
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be due to the enormous resources which GPT-4 uses, as well as the latest research 
being directly applied. But while it is still low-cost (not entirely free), it was seen not 
to fully address the generalizability problem. It seems safe to speculate, however, 
that newer versions of this model that we can expect to see in the near future will 
not be limited in this way. Nevertheless, researchers working on conceptual spaces 
who need a similarity space right now may want to give FastText a try, provided an 
approximation of human similarity judgments is good enough for their purposes, 
and provided also that their items are text-based.

6  Conclusion

We have critically discussed the main methods for constructing similarity spaces as 
well as the prospects of using tools from artificial intelligence, like large language 
models and similar models, as an alternative method. Multidimensional scaling is 
still the golden standard for creating similarity spaces, but while it is a well vali-
dated approach, it is not without drawbacks, most notably, the high costs associ-
ated with extensive data collection and limited generalizability when applied to new 
sets of stimuli. These constraints hinder the method’s usefulness, especially in dis-
ciplines operating under stringent budgetary limitations. The spatial arrangement 
method (SpAM) offers a less expensive alternative, allowing for the direct construc-
tion of similarity spaces by participants. However, this method also suffers from the 
generalizability problem. Moreover, SpAM is cognitively demanding, limiting the 
number of items that can be effectively processed, and it enforces a two-dimensional 
representation which may not always align with the dimensionality of the given sim-
ilarity judgments.

Our research findings suggest that transformer models (such as GPT-4) and word 
embeddings may offer an alternative to generating similarity spaces that is not beset 
by the above challenges. Our experiments with these models have produced some 
similarity spaces that not only approximate one based on human judgments, but 
have also done so with remarkable speed (no need to get approval from an ethics 
committee, no tedious programming of a survey, no waiting time until enough par-
ticipants have been recruited) and little (e.g., in the case of GPT-4) or no (e.g., in 
the case of FastText) costs. In a comparison with similarity data from Douven et al. 
(2023), GPT-4 clearly stood out. At the same time, we encountered limitations in the 
size of the item sets GPT-4 could process. The probably most practical recommen-
dation coming from our research was that, for now, researchers who are looking for 
a way to create similarity spaces at no cost and with a potential to use a large set of 
items may be best off using FastText, at least if a moderately high correlation with 
human similarity judgments is enough for their purposes.

One limitation of our study is that we tested the models using only a single data-
set, the Henley mammal set. One would hope that the computational methods dis-
cussed in this paper apply broadly, including to non-verbal domains and to concepts 
with affective dimensions (see, e.g., Stolier et al., 2018, 2020), but there is reason 
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to be cautious in this regard (see De Deyne et al., 2020).12 Nevertheless, with the 
increasing capabilities of multimodal models, such as GPT-4, which already pro-
cesses some images (albeit with limitations), it may soon be possible to assess the 
limitations of our approach (if any) empirically. Meanwhile, our findings provide an 
initial indication that large language models (LLMs) and word embeddings hold sig-
nificant promise for addressing the dual challenges of generalizability and cost in the 
construction of similarity spaces-an issue that motivated our research.13
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