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The dynamics of a drop under vibration is a classical and long-standing fluid dynamics problem. Lamb [1] studied
the free oscillations of a viscous drop, and Lundgren et al. [2] carried out the first numerical study of the flow. Although
several numerical techniques were then utilised to elucidate the oscillatory phenomena [3–5], these studies were limited
to axisymmetric, moderate amplitude, low capillary mode oscillations, and were unable to attain long-time, finite-

FIG. 1: Drop Medusa: (left) prominent threads of jets forming on the interface that resemble the living snake-like hair of the
Greek mythological figure, Medusa; (right) interfacial evolution at t = 380T , 385T , and 387T , top to bottom, respectively.
(https://doi.org/10.1103/APS.DFD.2023.GFM.P0030)
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amplitude motion. Recently, three-dimensional numerical simulations of moderate amplitude and low-frequency
oscillations were carried out by Ebo-Adou et al. [6], covering spherical harmonics ranging from 1 to 6, referred to as
the spherical analogue of Faraday waves. These authors observed regular and simple patterns. At higher amplitudes
and frequencies, it is inevitable that many spherical harmonics will be excited and interact nonlinearly. Here, we
extend the numerical study of Ebo-Adou et al. [6] to high frequency and amplitude vibration of a spherical drop. This
is similar to the subject of our previous Gallery of Fluid Motion award presentation [7] where we discussed similar
dynamics for a vertically-vibrated sessile drop.

We performed three-dimensional direct numerical simulations of a drop of volume V = 100µL using our in-house
Navier-Stokes multiphase solver, BLUE [8]. A triply-periodic cubic computational domain, encompassing water and
air, is decomposed into 8×8×8 subdomains each of resolution 643 meshgrids. The corresponding global mesh structure
is 5123 grid cells of uniform size 22.5 µm. The density of water and air are set to 998 kg/m

3
and 1.205 kg/m

3
, and

their dynamic viscosities to 10−3 kg/m.s and 1.82×10−5 kg/m.s, respectively, while the surface tension is set equal to
0.0714 N/m. The volumetric force on a sphere analogous to the modulated gravitational forces on a planar interface
is Fv = ρ̃ A sin(2πft)(H(r, t) r/R+(1−H(r, t)) R2/r2)er, where H(r, t) is the Heaviside function (that is 1 for water
and 0 for air) at the radial coordinate r and R is the radius of the drop; ρ̃ = ρwH(r, t)+ρa(1−H(r, t)) is the single-fluid
formulated density, where ρw and ρa are the density of water and air, A is the acceleration amplitude, and f the
frequency of vibration. The frequency is set to f = 1040 Hz, as per Vukasinovic et al. [9]. We initialize the location of
the interface at ζ(θ, ϕ) = R(1 + ϵY 0

20(θ, ϕ)), where ϵ = 0.005 and Y 0
20 is the 20th axisymmetric spherical harmonic. As

in Panda et al. [7], we ramped up the acceleration to A = 300g at a rate of 50g per 60 forcing time periods T (= 1/f) up
to t = 360T to set up an irregularly perturbed interface. The kinetic energy decreases significantly before increasing
again, suggesting that the initial perturbation has been damped and reorganized, so that the subsequent appearance
and dynamics are independent of the initialisation.

FIG. 2: (a) Spherical harmonic spectrum: modulus of the spherical harmonic coefficients |ζ̂l,m| at t = 300T (top) and 380T
(bottom); (b) interface reconstruction at t = 300T (top) and 380T (bottom) from only the low-degree (left, l < 15) or high-
degree (right, l > 15) spherical harmonics.

Figure 1 shows the behaviour of the Faraday waves on the drop at t = 380T , 385T , and 387T , colored according
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to the magnitude of the interfacial pressure. The craters (shown at t = 380T ) collapse to form jets that eject
droplets [9, 10]. In order to better understand this phenomenon, we compute the spectral coefficients obtained from

the spherical harmonic decomposition ζ(θ, ϕ, t) =
∑∞

l=0

∑m=l
m=−l ζ̂

m
l (t)Y m

l (θ, ϕ), where Y m
l is the spherical harmonic

function of degree l ∈ [0,∞) and order m ∈ [−l, l]. In fig. 2(a), we plot the square modulus |ζ̂ml (t)| of the complex
coefficients at t = 300T and 380T . Initially at t = 0, the only non-zero coefficient is that of Y 0

20. At t = 300T ,
the excited spectral coefficients are mainly in the narrow band m ∈ [4, 6] and l ∈ [15, 20]; for this reason, we use
l = 15 as the boundary between high- and low- degree modes. We then reconstruct the surface to examine the role
of higher and lower modes. For l > 15, we observe low-m modes that are centered with respect to the z-axis that is
distinguished at t = 0 via the axisymmetric initial condition Y 0

20. It is somewhat surprising that the orientation of
the initial condition persists, despite the damping out of the initial surface perturbation and the emergence of new
modes. By t = 380T , the amplitudes of lower-l modes have greatly increased in the system, as shown in the lower
part of fig. 2(a). More specifically, a range of l ∈ [6, 20] is excited in the m ∈ [4, 6]. The dominant modes are found
to be Y 4

19 and Y 6
7 . The reconstructed interface for l ≤ 15 shows large patches of increased ζ with no apparent order.

The amplitude of |ζ̂ml (t)| for l > 15 also increases, and remains oriented around the z-axis.
The superposition of all of these modes results in a highly deformed interface, as shown in fig. 1. James et al. [10]

described the way in which an erratic surface ζ leads to negative curvature zones on the drop surface, called craters.
We associate these craters with the prominent red patches in fig. 2(b) and with spherical wavenumbers of order
l ∈ [5, 15], m ∈ [4, 6] in fig.2(a). The craters undergo capillary-driven collapse, which in turn leads to jet formation at
t = 385T . Following their pinch-off and ejection, the jets retract and fall back into the vibrating drop. These violent
dynamics create a resemblance with the Greek mythological figure, Medusa, captured by the title of this paper.
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