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Abstract—Recent NLP techniques have enabled a considerable
advance in the generation and understanding of natural language.
But given the way these neural NLP systems learn, and the
astronomical amounts of data required, they cannot provide
answers about how human infants learn and acquire language,
as they do not follow the same language development trajectory.
We propose a robot cognitive model of early human language
acquisition inspired by the way human babies learn language.
The robot relies on social interaction, making it an active learner,
with a caregiver to acquire motivation-grounded language. The
robot’s modular architecture enables it to be situated in the same
conditions as a human child acquiring language. The aim of
this model is to provide a tool for testing hypotheses related to
questions about the process of language development in humans.

I. INTRODUCTION

Affect and motivation are central in the development of the
necessary capacities for language [1]. Usage and functional-
based theorists argue that communication emerges due to its
use as a means by infants to convey functional meanings, even
before they have mastered adult language [2]. For instance,
communication can be a means of obtaining a desired object
by asking an adult for it, or to reinforce a social bond. To give
the robot the ability to learn language in this functional way,
we endow it with a modular architecture capable of learning
multiple associations based on motivations.

II. PROPOSED APPROACH AND METHOD

The overall architecture is shown on Fig.1. The formalism is
related to the sensory-motor PerAc neural architecture [3] and
consists of three modules: the motivation, visual perception
and phonological modules. The Motivation module (fig.1.B)
modulates the robot’s internal motivation as a function of time
and visual perception (fig.3a) [4]. The robot uses a winner-
take-all strategy to decide which motivation to prioritize.
Each internal need is modeled by a homeostatic variable that
decreases over time and increases when the need is fulfilled.
The robot drive di(t) is defined as the deviation between the
current homeostatic variable and its optimal value. The robot’s
motivation to satisfy a need depends on the related drive
(internal factor) and the intensity of the stimulus (external
factor) that can satisfy it [5]:

mi(t) = di(t) + di(t).si(t) (1)
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Fig. 1: The overall architecture consists of three modules: The visual percep-
tion module A, the motivation module B and the phonological module C.

Figure 3a shows an example of the evolution of one of
the robot’s motivations: the motivation to eat. At time t1, the
caregiver gave the robot an edible object, which decreased
the robot’s motivation to “eat” (d(t) goes to zero). At time
t2, an edible object was presented in the robot’s environment
(s(t) becomes different to zero), thus increasing the motivation
to eat. The stimulus s is estimated by the visual perception
module. We used the estimated activation of each class,
given by the first neural network (fig.1.B), as the intensity
of the stimulus corresponding to each object. The visual
perception module (fig.1.A) enables the robot to perceive its
environment and learn the name and affordance of each object.
The robot detects the key points of perceived objects using
FAST algorithm [6] and clusters the key points of each object
using an agglomerative hierarchical clustering algorithm [7].
Key point descriptors are calculated with the SIFT algorithm
[8] and stored in a visual features matrix V using an online
incremental learning method based on Kohonen map [9]. Each
new descriptor is compared to those already stored in V, if
the similarity is below a fixed threshold, the most similar
descriptor is replaced by the mean of the two, otherwise the
new descriptor is recruited directly to V. The V matrix is
used as input to two neural networks to create associative
learning (fig.1.A). The Phonological module (fig.1.C) of the
robot is composed of a vocabulary of two-syllable words
corresponding to 10 of the most frequent syllables of an 8-
month-old infant [10]. The phonological module also contains
a text-to-speech unit that allows the robot to vocalize its words.
Learning the associations between modules
The robot learns the associations between each pair of these
modules. The goal is for the robot to be able to say a word



when it is in a given internal state, to learn to name the objects
in its visual field, and to know which internal need each object
is capable of satisfying. The association visual perception-
motivation is achieved by training a neural network - which
has the V matrix as input - to predict the name of the detected
object and which internal need can be satisfied by it. The
synaptic weights of this neural network are updated according
to the Widrow-Hoff rule [11]:

∆ωij = ϵVi(yj − ŷj) (2)

with : ϵ: the learning rate, yj : The internal state satisfied by
the object, and ŷj : The predicted object affordance.
The same update rule is used to create the association between
visual perception and phonological modules. To achieve the
last association motivation-phonological modules, we extend
the RL framework proposed by [12]: in this approach, each of
the robot’s internal needs can be satisfied by a specific object.
The robot begins by randomly producing a word when one
need outweighs the others. The caregiver - who doesn’t have
knowledge of the robot’s internal need - reacts to the robot’s
vocalization by choosing an object and handing it to the robot.
If the given object satisfies the robot’s need, the motivation
related to this need decreases, a reward of +1 is given to the
robot, which expresses its satisfaction with a happy gesture.
Otherwise, the word receives a reward of -1, which decreases
the probability of reusing the same word in this context, and
the robot expresses its dissatisfaction with a sad gesture. In
RL, this problem can be formulated as a contextual multi-
armed bandit problem. In each state, the value Q of action a
(word) is calculated using the equation:

Qn+1(a) =
h− 1

h
Qn(a) +Rn (3)

With h, a parameter used to prevent divergence of the Q value,
and Rn the reward received at time step n. The robot uses a
greedy policy to select a word according to its internal needs.
The robot pronounced word is a weighted sum between the
Q-table and the neural network word prediction of the visual
module, using a winner-takes-all strategy (fig.1.C).

III. EXPERIMENTAL SETUP AND RESULTS

To test our model, we used the humanoid robot Reachy
with the Unity simulation environment (fig.2), the robot has
three internal states: hunger, thirst and curiosity, which can be
satisfied by the five objects present. When the robot express
its need by a word (from its vocabulary of 10 words) a human
caregiver gives it one of the objects. The robot can express its
satisfaction or frustration by putting its antennae up or down.
The average of the rewards is used as an evaluation metric (at
each time step n, it is computed on the previous 50 values).
The convergence time is defined as the number of iterations
needed to reach 90% convergence. The results were calculated
on the average of 5 repetitions the experiment.

The results show the convergence of the moving average
reward (fig.3b). Convergence is reached after 76 iterations.
Table I shows the association between the robot’s vocabulary
and the internal needs after the learning.

Fig. 2: Experimental setup.

(a) Example of the evolution of one
of the robot’s motivations.

(b) Evolution of the moving average
reward.Fig. 3

”wada” ”naba” ”maba” ”daba” ”paba” ”bada” ”bama” ”babe” ”waba” ”wama”
”Thirst” -0.13 -0.01 -0.59 -0.41 -0.40 4 -0.053 -0.41 -0.33 -0.493

”Hunger” -0.39 -0.29 0.040 -0.34 4 0.47 -0.40 4 0.14 0.65
”Curiosity” 0.069 0.35 -0.39 0.42 0.59 0.72 4 -0.42 0.01 4

TABLE I: Q-table of association between the robot’s vocabulary and internal states.

The visual module was tested by showing the robot a set of
images of the learned objects, one per image. We evaluated
whether the robot could associate a consistent name with each
object and could predict the internal state satisfied by the
object. The prediction accuracy was 100%.

IV. DISCUSSION AND CONCLUSION

The robot was able to associate words from its vocabulary
with its internal states as demonstrated by the convergence
of the moving average reward. Reaching convergence after
76 interactions (fig.3b) means that the robot has learned to
choose consistent words that depend on its internal needs, and
that the robot is understood by the caregiver, which allows
it to obtain the desired objects. In the Q-Table the number
of convergent words and their affordance correspond to the
number of objects present in the chosen experimental setup
and the motivation they can satisfy (fig 2). The high accuracy
of the object recognition can be explained by the limited
number of objects in the robot’s environment and the optimal
experimental conditions of the simulation.
The presented architecture enabled the robot to learn language
in a functional way by learning the names of objects, their
affordances, and the word to say to request an object to satisfy
a need. These multiple associations resulted in a language
grounded in the physical world and in the robot’s internal
needs, giving the acquired language a ”meaning” instead of
just non-grounded symbols.
Since we consider that language acquisition in this functional
way is consistent with certain theories of human language
learning, our ongoing experiments aim to test hypotheses
related to the process of learning in humans, as in [13], and
related to language development questions like how parental
responsiveness can facilitate language learning in infants [14]
and how the extra-linguistic context (such as sensory per-
ception, environment, motivations and interactions) impacts
language development.
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