
HAL Id: hal-04859524
https://hal.science/hal-04859524v1

Submitted on 30 Dec 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

The weak algebraic λ-calculus
Zacharie Moughanim, Lionel Vaux Auclair

To cite this version:
Zacharie Moughanim, Lionel Vaux Auclair. The weak algebraic λ-calculus. 36es Journées Franco-
phones des Langages Applicatifs (JFLA 2025), Jan 2025, Roiffé, France. �hal-04859524�

https://hal.science/hal-04859524v1
https://hal.archives-ouvertes.fr

The weak algebraic λ-calculus
Zacharie Moughanim1 and Lionel Vaux Auclair2

1ENS Rennes, France
2Aix-Marseille Université, CNRS, I2M, France

We introduce a variant of the algebraic λ-calculus, which extends the ordinary
λ-calculus with the possibility of forming linear combinations of terms, with
coefficients taken in a fixed semiring. The only difference from the original
version is that we drop the identity 0M = 0, i.e., multiplication by the scalar 0
does not yield the empty sum in general: terms thus form a weak module instead
of a module. We then study how this minor relaxing of axioms yields a simpler
and more robust rewriting theory. In particular, we show that the obtained
reduction is still confluent; however, contrasting with the original version, the
induced equivalence is conservative over β-equivalence, without any assumption
on the semiring. We moreover characterize normalization properties via a system
of intersection type systems, and provide a normalization strategy, again without
assumption on scalars. Finally, we show that the Taylor expansion of algebraic
λ-terms can be adapted to this setting.

1 Introduction
Quantitative semantics and linear combinations of λ-terms. In 2003, Ehrhard and
Regnier introduced the differential λ-calculus [ER03], an extension of the λ-calculus where,
in addition to ordinary functional application, one can form the derivative of a term in
the direction of another term. The reduction rules give a syntactic account of quantitative
semantics, an umbrella term for particular denotational models of the typed λ-calculus, and
of linear logic, in which the interpretation of types is based on a notion of topological vector
space, and λ-terms are interpreted as particular analytic maps, in a more or less standard
sense—the idea predates the invention of linear logic [Gir88], and the instance closest to
standard notions of is due to Ehrhard [Ehr05].

The syntax of the calculus also involves finite sums of terms, or even linear combinations
of terms, with coefficients taken in a fixed field or, more generally, a semiring with units
(AKA rig) R: sums are needed because they are generated1 by differentiation itself; and it is
natural to allow for linear combinations, precisely because the calculus mimics quantitative
semantics. Terms are moreover subject to identities reflecting the pointwise definition of
sums of functions: the application (M +N)P of the sum of terms M +N to the argument P
is identified with the sum of applications MP +NP ; and the nullary version of this identity
states that 0P = 0, where 0 is the empty sum of terms. In presence of linear combinations,
we also enforce (aM)P = a(MP) for any scalar a ∈ R.
1Think, e.g., of the product rule, which yields a sum; or of the derivative of a constant, which is zero. On the

other hand, arbitrary finite sums can be seen as a syntactic artefact of computational non-determinism.
It is in fact possible to restrict the shape of sums, and to reconcile differentiation with determinism, but
this requires a much more sophisticated analysis: this is the object of coherent differentiation, developed
by Ehrhard in recent years [Ehr23b, Ehr23a, EW23]. This framework is already very satisfactory from a
semantic point of view, but the problem of designing a well-behaved rewriting theory for it is still open.

JFLA 2025 – 36es Journées Francophones des Langages Applicatifs

The weak algebraic λ-calculus Moughanim, Vaux Auclair

These identities are all straightforwardly validated by the semantics, which ensures that
the typed version of the calculus is consistent. Still, a number of peculiarities must be taken
into account as soon as one is interested in operational properties. First, if one chooses to
quotient terms up to the above identities, should we consider that 0M = 0 is a normal form
even when M is β-reducible? And, in case we have coefficients, the same question arises for
0M = 0 (multiplication by the scalar zero being identified with the empty sum). Worse:
considering M = 1

2M + 1
2M , should we allow to reduce only half of M?

In the absence of typing (or if one adds fixed-points combinators à la PCF), the equational
theory becomes even wilder. Given any term M , one can construct a term ∞M which
reduces to, or is equivalent to, M +∞M : consider for instance Y λx.(M + x) where Y is any
fixed-point combinator. Intuitively, ∞M produces an infinite amount of M . Then, in case −1
is allowed as a coefficient (with −1+1 = 0 in R), consistency is broken: 0 = ∞M +(−1)∞M

is β-equivalent to M +∞M + (−1)∞M = M for any term M !
It is evident that all the subtle (or catastrophic) phenomena we have just outlined arise

from the treatment of sums and scalars only: differentiation plays no particular role here.
Sums or linear combinations of terms have moreover been used to represent various kinds
of superpositions of computational behaviours: e.g., non-deterministic choice (this was
the intuition behind Girard’s original quantitative semantics [Gir88]), finite and discrete
probability distributions [Lev19] or quantum superposition [vT04, AD17]. Higher-order
rewriting in presence of linear combinations of terms is thus an interesting subject of study
in itself, and it is useful to develop a general theory of it, to investigate the possible issues
that can arise in the abstract, and to design strategies to circumvent them.

The algebraic λ-calculus. The second author has introduced the algebraic λ-calculus
precisely as an extension of the pure, untyped λ-calculus with finite linear combinations of
terms, up to the previously discussed identities, plus similar identities ensuring the linearity
of λ-abstraction [Vau09].2 One can then consider a notion of canonical form, obtained by
pulling sums outside of syntactic constructs: this can be done by orienting linearity identities,
e.g., (M +N)P ⇝MP +NP . As in Ehrhard and Regnier’s differential λ-calculus, one then
distinguishes a class of so-called simple terms, which are those that can be written canonically
without sum at top level (although sums can still appear in arguments of applications):
these form a basis of the R-module of terms.

On simple terms, β-reduction is defined as usual: (λx.M)N reduces to the substitution
M [N/x] (which is not simple in general: it suffices to consider the case of M = x and
N an arbitrary term). To ensure the existence of normal forms despite the identities
0M = 0 = 0M , the reduction is extended from simple terms to terms as follows: M reduces
to N whenever we can write M = as+ T and N = aS′ + T , with s a simple term reducing
to S′ and a ≠ 0. With this definition, reduction is shown to be confluent by standard means,
adapting the Tait–Martin-Löf technique.

Still, if R contains rational coefficients (or more generally a, b ̸= 0 such that a+ b = 1)
this leaves the possibility of reducing only half of a simple term M in 1

2M + 1
2M . One could

think of imposing that no amount of s remains in T (formally: s is not in the support set of
T) to allow for the reduction of as+ T to aS′ + T , but this hampers the contextuality of
reduction, which is essential in the proof of confluence: in the presence of fixed-points, this
actually breaks confluence [Vau09].

In case the semiring R admits an opposite for 1, the above argument stands and β-
equivalence becomes trivial. But if R is positive (i.e., a+b = 0 only if a = b = 0) then normal
forms do exist and confluence ensures the consistency of β-equivalence. Moreover, under the

2This reflects an implicit bias towards call-by-name evaluation, which simplifies the study of normalization:
we will adopt the same bias in the following. It is also possible to renounce the linearity of abstraction,
and consider a bilinear application instead, as was done by Arrighi and Dowek [AD17]: this is more in
line with call-by-value evaluation. Those approaches are somehow dual to each other [ADP+14], but the
problems and solutions we discuss in the rest of the paper are essentially the same, whether one adheres
to any of the two disciplines, or to none (i.e., if one only admits the left-linearity of application).

JFLA 2025 – 36es Journées Francophones des Langages Applicatifs

The weak algebraic λ-calculus Moughanim, Vaux Auclair

same assumption, Kerinec and the second author have established that this extension of
β-equivalence is conservative: two ordinary λ-terms are equivalent in the algebraic λ-calculus
iff they are β-equal in the ordinary λ-calculus [KV23].

Dealing with negative coefficients. In order to lift the positivity assumption, while
retaining good operational properties (at least confluence and consistency), it is necessary
to tame the interplay between negative coefficients and fixed-points.

One possibility is to control how identities on linear combinations are applied by treating
them as rewriting steps: Arrighi and Dowek restrict those algebraic rewriting steps and
apply them on closed normal forms only [AD17], thus ensuring confluence. The price to pay
is that the study of the rewriting system is much more complicated, and that we obtain a
module of terms only by restricting to closed normal forms.

Typing is another possible course: one can consider a system of simple types, or even
variants of system F [Ehr10, ADV17], to ensure strong normalizability, and thus forbid
fixed-points; then one gets consistency by proving local confluence, or via denotational
arguments. One must be careful, though, and stick to a Church-style typing; otherwise, the
identity M = M +N −N would allow to rewrite a typeable term to an untypeable one.

It is also possible to “freeze” computations on coefficients temporarily. The semiring of
formal polynomials (without coefficients, or with positive integer coefficients only) is not
only positive, but also finitely splitting (meaning that each element can be written only in
finitely many ways as a sum of non zero elements): this ensures that, e.g., typed terms are
strongly normalizable [Vau09]. Then one can consider the following weak normalization
scheme: given a term M , fix a polynomial for each scalar coefficient of M , together with a
global valuation of indeterminates sending each polynomial to the associated scalar; then
reduce the version with polynomial coefficients to a normal form (if any); and finally replace
indeterminates with their values. It is easy to check that the (canonical form of the) obtained
term has no redex, although it might not be normal, in presence of negative coefficients: it
is called a pre-normal form of M . Alberti showed that, in case M admits a normalizing
polynomial version, the obtained pre-normal form is unique [Alb14].

As an alternative approach, the Taylor expansion of λ-terms provides an untyped form of
quantitative semantics. The Taylor expansion of a λ-term M is obtained by applying the usual
Taylor formula to each application in M recursively, differentiation being performed in the
differential λ-calculus. Taylor expansion thus yields a (possibly infinitely supported) vector
of resource terms: the latter are the terms of the resource calculus, which is the fragment of
the differential λ-calculus where the only form of application is iterated differentiation at
zero. The dynamics of this fragment is very regular, with each term having a unique normal
form, without typing condition. Ehrhard and Regnier’s seminal results [ER06, ER08] ensure
that Taylor expansion commutes with normalization: formally the normal form of the Taylor
expansion of a term is the Taylor expansion of its Böhm tree. The second author has shown
that, although the Taylor expansion of algebraic λ-terms is not normalizable in general,
the class of terms whose Taylor expansion does normalize is well behaved: it contains both
untyped ordinary λ-terms and typed algebraic λ-terms; and if one restricts β-equivalence to
that class, it is confluent and conservative w.r.t. Böhm-tree equivalence (in particular it is
consistent).

The weak algebraic λ-calculus. Compared to the lines of work we have just outlined,
the solution we consider in the present paper is surprisingly simple: we just drop one identity
on linear combinations: 0M = 0. Without this equation, terms form a weak module instead
of a module: we call the corresponding system the weak algebraic λ-calculus. Valiron has
already observed [Val13] that removing this single axiom avoids the inconsistency induced by
the interplay between fixed-points and negative coefficients: he used that trick to study the
categorical semantics of a typed version of the calculus, with a typed fixed-point operator.

JFLA 2025 – 36es Journées Francophones des Langages Applicatifs

The weak algebraic λ-calculus Moughanim, Vaux Auclair

Here we study how this very same trick can be leveraged in an untyped setting, and how it
allows to vastly simplify the rewriting theory.

In Section 2, we introduce the syntax of the calculus: we follow the exact same construction
as for the algebraic λ-calculus, save for the omitted identity. In particular we make explicit
the notion of canonical form induced by the revised treatment of linear combinations. In
Section 3, we study the dynamics of the calculus. Again, the reduction is similar to that of
the algebraic λ-calculus, except that we do not need to require that a ̸= 0 in a reduction
from as+ T to aS′ + T , as this step is no longer “silent”. We establish the confluence of
reduction, as well as the conservativity of the induced equivalence w.r.t. β-equivalence in
the ordinary λ-calculus.

We study normalization properties in Section 4. We distinguish between may- and must-
normalizability and characterize each property via an intersection type system: a variant of
DΩ [Kri93] for must-normalizability, inspired by the system introduced by Pagani, Tasson
and the second author [PTV16] for the non-deterministic λ-calculus; and a non-idempotent
intersection type system [BKV17] for may-normalizability, inspired by de Carvalho’s system
R [dC18], which accounts for the multiset-based relational semantics (a kind of quantitative
semantics with boolean coefficients).

Finally, we refine to our weak setting the argument showing that Taylor expansion is
compatible with reduction in the algebraic λ-calculus. For this, we consider a weak notion
of resource vectors (distinguishing between resource terms that occur with a 0 coefficient,
and those that do not occur in the support set) and we adapt Taylor expansion accordingly.
We obtain a result of commutation between (must-)normalization and Taylor expansion,
even in the presence of negative coefficients. We also deduce a conservativity result, which is
limited to normalizable ordinary λ-terms. Our results raise a number of questions for future
investigations, that we discuss in the concluding Section 6.

2 Weak algebraic λ-terms
We begin by defining the terms of the weak algebraic λ-calculus: we define a grammar of
raw terms and then define an equivalence relation △

= on these terms. Raw terms up to
this equivalence are then the terms of the weak algebraic λ-calculus. The resulting set is
endowed with a weak R-module structure.

Let us first recall that a semiring is a set R equipped with two monoid structures (R,+, 0)
and (R, ·, 1), such that + is commutative, · is distributive over + and 0 is absorbing for ·.
We generally denote multiplication by juxtaposition: ab = a · b. We say R is commutative
when · is. And we say it is positive when it is zero-sum-free: for all a, b ∈ R, a+ b = 0 implies
a = b = 0.

A weak R-module is a then a commutative monoid (M,+,0) equipped with a scalar
multiplication R × M → M, again denoted by juxtaposition, and such that, for all a, b ∈
R, s, t ∈ M:

a(s+ t) = as+ at (a+ b)s = as+ bs (ab)s = a(bs) 1s = s .

An R-module is a weak R-module such that, moreover, 0s = 0.

Definition 1 (Raw terms). We write LR for the set of raw terms, defined by the grammar:

LR ∋ M,N, . . . ::= x | λx.M | MN | M +N | aM | 0

and considered up to α-equivalence only.

We say a relation r on LR is contextual if it is reflexive and, assuming M r N and P r Q:

aM r aN M + P r N +Q 0 r 0 λx.M r λx.N MP r NQ .

JFLA 2025 – 36es Journées Francophones des Langages Applicatifs

The weak algebraic λ-calculus Moughanim, Vaux Auclair

Definition 2. We call weak algebraic equality the least contextual relation △
= satisfying:

0 +M
△
=M a0 △

=0

M +N
△
=N +M λx.0 △

=0

(M +N) + P
△
=M + (N + P) λx.aM

△
= aλx.M

a(M +N)
△
= aM + aN λx.(M +N)

△
=λx.M + λx.N

aM + bM
△
=(a+ b)M 0M △

=0

a(bM)
△
=(ab)M (aM)N

△
= a(MN)

1M
△
=M (M +N)L

△
=ML+NL .

Beware that, in the equation 0M △
=0, the LHS is the application of 0 to M , not to be

confused with the scalar multiplication 0M . If M ∈ LR, we denote by M its △
=-class. We

naturally extend this notation to sets of terms: if E ⊆ LR, we write E = {M | M ∈ E}.
We call weak algebraic λ-terms (or just terms, for short) the △

=-classes of raw terms. We
will often use syntactic operations on terms instead of raw terms : one can easily check that
all syntactic constructors, as well as the usual capture avoiding substitution, are well defined
on terms.

Now, as for the algebraic λ-calculus [Vau09], we separate commutativity and associativity
(AC) from the other equalities to define a canonical writing of a △

=-class as a normal form in
a rewriting system given by the above equalities, oriented from left to right. We will later
describe a big-step evaluator to compute such a normal form.

Definition 3 (Permutative terms). We denote by ≡ the least contextual relation such
that M +N ≡ N +M and (M +N) + P ≡ M + (N + P). We call permutative terms the
≡-classes, and denote by ΛR the quotient set LR/≡.

So permutative terms are raw terms up to AC. We now describe canonical representatives
of △

=-classes among them.

Definition 4 (Base terms, canonical terms). We define the set of base terms BR ⊆ ΛR and
the set of canonical terms CR ⊆ ΛR by mutual induction as follows:

BR ∋ s, t, ... ::= x | λx.s | sT and CR ∋ S, T, ... ::=
∑

aisi

where the si’s are pairwise distinct base terms and a1, ..., an ∈ R.

Note that we do not require the ai’s to be non-zero.

Definition 5 (Canonization). Let M =
∑n

i=1 aisi ∈ ΛR. Let IM(s) = {i ∈ {1, ..., n} | si = s},
we set M(s) =

∑n
i∈IM

(s)
ai. Then, let (ti)i∈{1,...,p} be a tuple of pairwise distinct elements

such that {t1, ..., tp} = {s1, ..., sn}. Finally, we define cansum (M) =
∑p

i=1 M(ti)ti.
We define can : ΛR → CR by induction on permutative terms. Let can(M) =

∑n
i=1 aisi

and can(N) =
∑n+p

i=n+1 aisi = T :

can(x) = 1x can(λx.M) =

n∑
i=1

aiλx.si can(MN) =

n∑
i=1

ai(siT)

can(0) = 0 can(aM) =

n∑
i=1

(aai)si can(M +N) = cansum

(
n+p∑
i=1

aisi

)
Again, note that, in the definition of cansum (M), we do not remove those summands

si such that Msi = 0. Like for the algebraic λ-calculus, the following characterization of
follows easily from the definitions:

JFLA 2025 – 36es Journées Francophones des Langages Applicatifs

The weak algebraic λ-calculus Moughanim, Vaux Auclair

Proposition 1. For all M,N ∈ ΛR, we have can(can(M)) = can(M). Moreover, can(M) =

can(N) if and only if M △
=N .

In other words, each term M admits a canonical △
=-representative can(M), which is unique

up to ≡. We then call simple terms the △
=-classes of base terms: it follows that each term is a

linear combination (possibly using coefficient 0) of simple terms. In the algebraic λ-calculus,
the support of M is defined as the set of simple terms with a nonzero coefficient in M , but
the definition must of course be different here. It is actually simpler, because it can be
described straightforwardly by induction:

Definition 6 (Support of a term). We define Supp : LR → P(BR) by induction on M :

Supp(x) = {x}
Supp(λx.M) = {λx.s | s ∈ Supp(M)}
Supp(MN) = {sN | s ∈ Supp(M)}

Supp(M +N) = Supp(M) ∪ Supp(N)

Supp(aM) = Supp(M) .

It is a routine exercise to check that the support is stable under △
= so that we can set

Supp(M) = Supp(M) for any M ∈ ΛR. For any set X ⊆ LR, we write R⟨X ⟩ for the weak
R-submodule of the module of terms, generated by X : in other words, R⟨X ⟩ = {T ∈ LR |
Supp(T) ⊆ X}. A straightforward consequence of Proposition 1 is that LR = CR = R⟨BR⟩:
simple terms generate the weak module of terms.

3 Reductions
In this section, we introduce the extension of β-reduction in the weak algebraic λ-calculus.
A main difference with the algebraic λ-calculus arises here: we allow terms to be reduced
under a zero coefficient. We take advantage of the fact that, in general, 0M ̸= 0, so that
this does not make the reduction trivially reflexive: we will discuss normalization properties
in the next section. Here we prove confluence following the usual Tait–Martin-Löf technique.
We moreover establish a conservativity result: for any reduction sequence between two
ordinary λ-terms in our calculus, there is β-reduction sequence between the same terms.

3.1 Definitions
We will in fact consider three notions of reduction: one-step reduction @→; parallel reduction
⇒; and canonical reduction _̂. Parallel reduction will be useful to establish the confluence
of one-step reduction, while canonical reduction will serve as an auxiliary notion when
we discuss (may)-normalizability. We introduce each notion of reduction by defining an
increasing sequence of relations for k ∈ N. And each one will involve a particular way to
extend reduction from simple terms to terms:

Definition 7. Let r ⊆ BR × CR, we define three extensions of r from terms to terms.
• If s r S, a ∈ R, T ∈ CR, then as+ T

@
r aS + T ;

• If si r Ti for i ∈ {1, ..., n} and (ai) ∈ Rn, then
∑

aisi r
∑

aiTi;
• If s r S, a ∈ R, T ∈ CR and s /∈ Supp(T), then as+ T r̂ aS + T .

Definition 8 (One-step reduction). Let →0 = ∅. We set:
• λx.s →k+1 λx.S if s →k S;
• sT →k+1 S′T if s →k S′;
• sT →k+1 sT ′ if T @→k T

′;
• (λx.s)T →k+1 s[T/x].

JFLA 2025 – 36es Journées Francophones des Langages Applicatifs

The weak algebraic λ-calculus Moughanim, Vaux Auclair

Then let → =
⋃

k∈N →k: one-step reduction is then @→ =
⋃

k∈N
@→k.

Definition 9 (Parallel reduction). Let ⇒0 = {(s, s) | s ∈ BR}:
• λx.s⇒k+1 λx.S if s⇒k S;
• sT ⇒k+1 S′T ′ if s⇒k S′ and T ⇒k T

′;
• (λx.s)T ⇒k+1 S′[T ′/x] if s⇒k S′ and T ⇒k T

′.
Then let ⇒ =

⋃
k∈N⇒k: parallel reduction is then ⇒ =

⋃
k∈N⇒k.

It should be clear that ⇒ is contextual. The essential property of parallel reduction is its
compatibility with substitution:

Lemma 1. Let M,M ′, N,N ′ ∈ CR. If M⇒M ′ and N⇒N ′, then M [N/x]⇒M ′[N ′/x].

Definition 10 (Canonical reduction). Let _0 = ∅:
• λx.s _k+1 λx.S if s _k S;
• sT _k+1 S′T if s _k S′;
• sT _k+1 sT ′ if T _̂k T

′;
• (λx.s)T _k+1 s[T/x].

Then, let _ =
⋃

k∈N _k, the canonical reduction is then _̂ =
⋃

k∈N _̂k.

Canonical reduction differs from one-step reduction only in the more restrictive way
reduction is extended to sums: when reducing a simple term of the support, one must reduce
it in full, and not leave some amount of it (possibly with weight 0) in the rest of the sum.
This notion is intuitively better for normalization purposes, but it is not locally confluent:
the counter-example given in the ordinary case [Vau09] is also valid in the weak case.

3.2 Confluence
We now prove confluence of @→, using the usual Tait-Martin-Löf technique.

Lemma 2. The following inclusions hold: @→ ⊂⇒ ⊂ @→
∗
.

Definition 11 (Full parallel reduct). We define F : CR → CR by induction:

F (x) = x F (λx.s) = λx.F (s) F
(
(λx.s)T

)
= F (s)[F (T)/x]

F (sT) = F (s)F (T) if s is not an abstraction F
(∑

aisi

)
=
∑

aiF
(
si
)
.

Lemma 3. We have M⇒F (M) for any M ∈ ΛR. If M⇒N then F (M)⇒F (N). And if
M⇒

k
N then N⇒

∗
Fk (M).

Theorem 1. ⇒ is strongly confluent, hence @→ enjoys the Church-Rosser property.

3.3 Conservativity
In this section, we adapt a proof of conservativity for the algebraic λ-calculus [KV23] to our
setting. We denote by Λ the set of pure λ-terms, by →Λ its reduction and by ≃R (resp. ≃Λ)
the symmetric, reflexive and transitive closure of @→ (resp. →Λ). We define two mutually
inductive relations ⊢ ⊆ Λ× BR and ⊩ ⊆ Λ× CR. The goal is to prove the relations defined
in Figure 1 are, in a sense, compatible with →Λ and @→ in such a way that we can transform
a →Λ-reduction sequence into a @→-reduction sequence. The main results of this section are
Theorem 2 and Corollary 1. We omit most proofs which are straightforwardly adapted from
the original ones.

Lemma 4. Let M ∈ Λ, N ∈ CR, M ⊩ N if and only if for every s ∈ Supp(N),M ⊢ s.

JFLA 2025 – 36es Journées Francophones des Langages Applicatifs

The weak algebraic λ-calculus Moughanim, Vaux Auclair

M →∗
Λ x

(v)
M ⊢ x

M →∗
Λ λx.N N ⊢ N ′

(λ)
M ⊢ λx.N ′

M →∗
Λ NP N ⊢ N ′ P ⊩ P ′

(@)
M ⊢ N ′P ′

M ⊢ s1 ... M ⊢ sn
(+)

M ⊩
∑

aisi

Figure 1. Rules for the mashup relation

M ⊢ N
(s)

M ⊩ N

M →∗
Λ λx.N N ⊩ N ′

(λ′)
M ⊩ λx.N ′

M →∗
Λ NP N ⊩ N ′ P ⊩ P ′

(@′)
M ⊩ N ′P ′

M ⊩ S1 ... M ⊩ Sn
(+′)

M ⊩
∑

aiSi

Figure 2. Admissible rules for the mashup relation

Lemma 5. The rules of Figure 2 are admissible.

Lemma 6 (Reflexivity of ⊢ and ⊩). For all M ∈ Λ,M ⊢ M and M ⊩M .

Lemma 7 (Conservativity of ⊩). Let M,M ′ ∈ Λ. If M ⊩M ′, then M →∗
Λ M ′.

Lemma 8 (Left compatibility). Let M,M ′ ∈ Λ and N ∈ CR. If M →∗
Λ M ′ and M ′ ⊢ N

(resp. M ′ ⊩ N), then M ⊢ N (resp. M ⊩ N).

Lemma 9. Let M,P ∈ Λ, N,Q ∈ CR. If M ⊩ N and P ⊩ Q, then M [P/x] ⊩ N [Q/x].

Lemma 10 (Right compatibility). Let M ∈ Λ,M ′, N ∈ CR. If M ⊩M ′ and M ′ @→N , then
M ⊩ N .

Proof. The proof is essentially the same as the original one: it differs only in the treatment
of sums. We thus detail the case of as+ T

@→ aS′ + T only. Let T =
∑n

i=1 aisi, since
Supp(M ′) = {s, s1, ..., sn} by definition 6, we get from lemma 4 that M ⊢ s and M ⊢ si for
each si. By induction hypothesis, M ⊩ S′ and we conclude by applying the rule (+′).

Remark 1. The sum case of previous proof is the only argument where we need the positivity
of the semiring in the algebraic λ-calculus [KV23]. Notice that we do not need this hypothesis
in our setting, thanks to our definition of the support.

Theorem 2. Let M,N ∈ Λ, M @→
∗
N if and only if M →∗

Λ N .

Corollary 1. Let M,N ∈ Λ, M ≃R N if and only if M ≃Λ N .

4 Normalizability
A substantial advantage of the weak algebraic λ-calculus is the fact that weak algebraic
equality does not break typing in presence of negative coefficients, contrary to the non-weak
version. In this section, we illustrate this improvement by characterizing normalizability
properties as typability in suitable intersection type systems. First observe that, in a
λ-calculus with sums, two distinct modes of normalization naturally appear: must and may.

Definition 12 (Must-normalizability). We say a term is in must-normal form if it does not
reduce under @→. We say a term is must-normalizable if it reduces to a must-normal form.

JFLA 2025 – 36es Journées Francophones des Langages Applicatifs

The weak algebraic λ-calculus Moughanim, Vaux Auclair

(v)
Γ, x : α ⊢ x : α

Γ, x : α ⊢ M : β
(λ)

Γ ⊢ λx.M : α → β

Γ ⊢ M : α → β Γ ⊢ N : α
(@)

Γ ⊢ MN : β

Γ ⊢ M : α Γ ⊢ N : α
(+)

Γ ⊢ M +N : α

Γ ⊢ M : α
(Scal)

Γ ⊢ aM : α

Γ ⊢ M : α Γ ⊢ M : β
(∩)

Γ ⊢ M : α ∩ β

(Ω)
Γ ⊢ M : Ω

Γ ⊢ M : α α ≼ α′
(sub)

Γ ⊢ M : α′
(z)

Γ ⊢ 0 : α

(a) Typing rules

α ≼ α α1 ∩ α2 ≼ αi

α′ ≼ α β ≼ β′

α → β ≼ α′ → β′ (α → β) ∩ (α → γ) ≼ α → (β ∩ γ)

(b) Subtyping rules

Figure 3. The intersection type system DΩ+ for the weak algebraic λ-calculus [PTV16]

Definition 13 (May-normalizability). We inductively define may-normal forms as follows:
• x is in may-normal form;
• if s ∈ BR is in may-normal form, then λx.s is too;
• if s ∈ BR and T ∈ CR are in may-normal form and s is not an abstraction, then sT is

in may-normal form;
• if s ∈ BR is in may-normal form, then for any T ∈ CR, as+ T is too.

We say a term is may-normalizable whenever it reduces to a term in may-normal form.

So, if a sum
∑

aisi is must-normal, each si is also must-normal, meaning that each sum
inside si is must-normal, inductively (see Proposition 3 below). On the other hand, for∑

aisi to be may-normal, it is sufficient that at least one si is may-normal.

Also observe that that it would not make sense to consider strong normalizability for
one-step reduction. Indeed, recall that, in the algebraic λ-calculus, when R contains all
positive rational numbers, the only strongly normalizable terms are normal terms. In our
current setting, we have a similar issue whatever the semiring :

Proposition 2. Every term that reduces has an infinite reduction sequence for @→.

Proof. Let M be a non-normal term, let N be a term to which M reduces. Then, M =

M + 0M
@→M + 0N = M + 0M + 0N

@→M + 0N + 0N = M + 0N .

Thus type systems can only ensure (weak) normalizability for one-step reduction—but
canonical reduction avoids precisely that drawback.

4.1 Must-normalizability
We now follow Krivine’s proof [Kri93] to characterize normalizability as typability in the
intersection type system DΩ+ of Figure 3.

Definition 14. The intersection types of system DΩ+ are given by the following grammar:

α, β, ... ::= o | Ω | α → β | α ∩ β

From now on, we write Π ▷ Γ ⊢ M : α whenever Π is a proof-tree witnessing Γ ⊢ M : α.

Proposition 3. N ∈ CR is must-normal if and only if each s ∈ Supp(N) is must-normal.
A simple must-normal term s is of the form λx1, ..., xn.yN1...Nk with each Ni must-normal.

Proof. For the first statement, both implications are immediate, thanks to the definition of
the support. The second is proved by a straightforward induction on can(s).

JFLA 2025 – 36es Journées Francophones des Langages Applicatifs

The weak algebraic λ-calculus Moughanim, Vaux Auclair

4.1.1 Compatibility of typing with the module structure

Lemma 11. The following rules are admissible:

Γ, x : α ⊢ M : β γ ≼ α
(sub’)

Γ, x : γ ⊢ M : β

Γ ⊢ M : α α ≼∗ β
(sub∗)

Γ ⊢ M : β

α′ ≼∗ α β ≼∗ β′

α → β ≼∗ α′ → β′

Proof. For the rule (sub’), by induction on Π such that Π ▷ Γ, x : γ ⊢ M : β, replacing each
introduction of x : α by an introduction of x : γ, and an application of (sub) with γ ≼ α.
For the second rule, one just iterates rule (sub). For the third rule, we have α′ ≼k α and
β ≼l β′, we assume w.l.o.g. k ≤ l. One iterates the corresponding rule k times, and then,
iterates l − k times the same rule but with a premise α ≼ α.

Lemma 12. If Π ▷ Γ ⊢ M : α, then there is a tree Φ such that Φ ▷ Γ ⊢ M : α and for each
occurence of (sub) in Φ, the first subtree contains only rules (sub), (∩) and (v).

Proof. The proof is tedious but mostly straightforward by induction on Π: only the case of
(sub) needs some care.

Lemma 13. Γ ⊢
∑n

i=1 aisi : α is derivable iff Γ ⊢ si : α is derivable for all i ∈ {1, ..., n}.

Proof. For the direct implication, by induction on n ∈ N; after applying Lemma 12, the last
rule must be (+). For the reverse implication one iterates the rules (Scal) and (+).

Proposition 4. Let M,N ∈ ΛR. If M △
=N,Γ ⊢ M : α is derivable iff Γ ⊢ N : α is derivable.

Proof. We actually prove this proposition in the case N = can(M). For the direct implication,
by induction on M , one just replaces each premises with their equivalent with their canonical
form by I.H. For the reverse implication, by induction on M , after applying Lemma 12.

In the remaining of this section, we apply Krivine’s proof to characterize normalizability
as typability in system DΩ+, and as a normalizability property for a particular reduction
that defines, almost, a reduction strategy.

4.1.2 Subject expansion

Lemma 14. Let Γ,∆ be typing contexts, α a type and M ∈ LR. If Γ ⊢ M : α is derivable
and if for all variables x, ∆(x) ≼∗ Γ(x) is derivable, then ∆ ⊢ M : α is derivable.

Proof. One simply iterates the rule (sub’) from Lemma 11.

The following crucial lemma holds thanks to the specificity of system DΩ+ (Figure 3).
For instance, in a simple type system, when x does not appear in M , we may be able to
type M [N/x] even if N is not typable. Here, we can give it type Ω with rule (Ω).

Lemma 15 (Reverse substitution lemma). If Γ ⊢ M [N/x] : β is derivable, then there is a
type α such that Γ, x : α ⊢ M : β and Γ ⊢ N : α are derivable.

Proof. By induction on M ∈ LR, using Lemma 14. We also use rule (Ω) in the case of a
variable.

Lemma 16 (Subject expansion). Let M,N ∈ CR. If M @→N and Γ ⊢ N : α is derivable,
then Γ ⊢ M : α is derivable.

Proof. By induction on the reduction, in the case of a fired redex, use Lemma 15.

Lemma 17. Every must-normal term is typable in system DΩ+ with no occurence of Ω,
neither in the context nor in the resulting type.

JFLA 2025 – 36es Journées Francophones des Langages Applicatifs

The weak algebraic λ-calculus Moughanim, Vaux Auclair

Proof. By induction on must-normal terms, we show M ∈ CR is typable with a type of
the form υ1 → ... → υK → α in some context ∆. By Proposition 3, M =

∑N
i=1 aisi with

can(si) = λx1, ..., xki
.yiM

i
1...M

i
ni

, with M i
j must-normal. Let K ≥ max{k1, ..., kN}.

By induction hypothesis, each M i
j are typable with type δij , in context ∆i

j , with no
occurence of Ω in neither of them.

We define contexts with distinct holes Ui for i ∈ N:

U ,V, ... ::= o | Ω | U → V | U ∩ V | Ui

We now assign contexts to each xl and for each term of the support. Let i ∈ {1, ..., N}, l ∈

{1, ...,K}, we set U (i)
l =

{
δi1 → ... → δini

→ Uki+1 → ... → UK → α otherwise
Ω if l > ki or yi ̸= xl

Now, by downwards induction on l ∈ {1, ...,K}, we define types τl such that ∀i ∈ {1, ..., N},
if U (i)

l ̸= Ω, τl ≼∗ δi1 → ... → δini
→ τki+1 → ... → τK → α is derivable.

In the case l = K, all U (i)
l are actual types: indeed, either ki < l and U (i)

l = Ω, either
ki = l = K and U (i)

l = δi1 → ... → δini
→ α. Let IK = {i ∈ {1, ..., N} | U (i)

K ̸= Ω}, we set
τK =

⋂
i∈IT

U (i)
K and we easily check it satisfies the hypothesis.

Let’s assume the result holds for some l + 1 ≤ K, we extend the result to l. First,
let i ∈ {1, ..., n}, we assign actual types Ũ

(i)
l to each U (i)

l . If l > ki, then U (i)
l = Ω and

we set Ũ
(i)
l = Ω. If l ≤ ki, then U (i)

l = δi1 → ... → δini
→ Uki+1 → ... → UK → α.

Remark that for k ∈ {ki + 1, ...,K}, τk are defined by I.H. since l ≤ ki. Hence, we can set
Ũ

(i)
l = δi1 → ... → δini

→ τki+1 → ... → τK → α. Let Il = {i ∈ {1, ..., N} | Ũ (i)
l ̸= Ω}, we set

τl =
⋂

i∈Il
Ũ

(i)
l and easily check it satisfies the hypothesis.

Types τl are intended to type bound head variables. However, these can also appear as
free in the M i

j . From now on, whenever y is not defined in ∆i
j , we set ∆i

j(y) = Ω. For all
l ∈ {1, ...,K}, let J l

i = {j ∈ {1, ..., ni} | ∆i
j(xl) ̸= Ω}, we set υl = τl ∩

⋂N
i=1

⋂
j∈Jl

i
∆i

j(xl).
Now that we have our type, we can set our typing context: we need the typing context of

each M j
i , and on the other hand, we also need a typing context for each free head variable.

For each i ∈ {1, ..., N} and y ∈ fv(M), we define γi
y a type for y, which will later be used in

typing can(si). Let J l,y
i = {j ∈ {1, ..., ni} | ∆i

j(y) ̸= Ω}.
Recall yi is the head variable of can(si). We set:

γi
y =

{
(δi1 → ... → δini

→ υki+1 → ... → υK → α) ∩
⋂

j∈J l,y
i

∆i
j(y) if y = yi⋂

j∈J l,y
i

∆i
j(y)

Finally, let IT = {i ∈ {1, ..., N} | γi
y ̸= Ω}, we set Γ = {y :

⋂
i∈IT

γi
y | y ∈ fv(M)}.

We then prove that Γ ⊢ can(si) : υ1 → ... → υK → α is derivable for each i. To lighten
our proof tree, we set Ξi = Γ ∪ {x1 : υ1, ..., xki : υki}.

First, if yi is free, then:

Ξi ⊢ yi :
⋂N

i=1 γ
i
y

...⋂N
i=1 γ

i
y ≼

∗ δi1 → ... → υk → α

Ξi ⊢ yi : δ
i
1 → ... → δini

→ υki+1 → ... → υK → α

I.H. and
Lemma 14

Ξi ⊢ M i
1 : δi1

I.H. and
Lemma 14

. . .

I.H. and
Lemma 14

Ξi ⊢ M i
ni

: δini

Ξi ⊢ yiM
i
1...M

i
ni

: υki+1 → ... → υK → α

...
Γ ⊢ λx1, ..., xki

.yiM
i
1...M

i
ni

: υ1 → ... → υK → α

Then, if yi is bound, there is a l0 ∈ {1, ..., ki} such that yi = xl0 , then:

JFLA 2025 – 36es Journées Francophones des Langages Applicatifs

The weak algebraic λ-calculus Moughanim, Vaux Auclair

Ξi ⊢ xl0 : υl0

...
υl0 ≼

∗ δi1 → ... → υk → α

Ξi ⊢ xl0 : δi1 → ... → δini
→ υki+1 → ... → υK → α

I.H. and
Lemma 14

Ξi ⊢ M i
1 : δi1

I.H. and
Lemma 14

. . .

I.H. and
Lemma 14

Ξi ⊢ M i
ni

: δini

Ξi ⊢ xl0M
i
1...M

i
ni

: υki+1 → ... → υK → α

...
Γ ⊢ λx1, ..., xki .xl0M

i
1...M

i
ni

: υ1 → ... → υK → α
And we conclude by Lemma 13 and Proposition 4.

Corollary 2. Normalizable terms are typable in system DΩ+ with no occurence of Ω, neither
in the context nor in the resulting type.

4.1.3 Subject reduction

We define a new reduction which extends the leftmost outermost reduction of the pure
λ-calculus. These kind of reductions are normalization strategies in numerous λ-calculi.

Definition 15 (Leftmost outermost reduction). Let →lmk = ∅:
• λx.s→lmk+1 λx.S if s→lmk S;
• sT →lmk+1 ST if s is not an abstraction and s→lmk S;
• sT →lmk+1 sT

′ if s is not an abstraction, is must-normal, and T →̂lmk T
′;

• (λx.s)T →lmk+1 s[T/x].
Then, let →lm =

⋃
k∈N →lmk, the leftmost outermost reduction is then →̂lm =

⋃
k∈N →̂lmk.

We’ll only show typable terms are normalizable for this particular reduction, for two
reasons: first, we can avoid the issue of Proposition 2, and since normalizable terms are
typable, we will still be able to prove the characterization of Theorem 3. We will moreover
obtain that →̂lm induces a normalization strategy along the way.

Definition 16 (Leftmost normalizing term). Let Nlm
R be the set of strongly normalizing

base terms for →̂lm.

Proposition 5. The set of all strongly normalizing terms for →̂lm is then R⟨Nlm
R ⟩.

Proof. It is clear that a term with a non-normalizing term in the support is not strongly
normalizing. For the reverse inclusion, consider the multiset of maximal length of derivation
for each term of the support, and observe it decreases along leftmost outermost reduction.

Definition 17 (N -saturated set of terms). Let N ⊆ BR. We say X ⊆ BR is N -saturated
when, for all s ∈ N , T0, ..., Tn ∈ R⟨N⟩, s[T0/x]T1...Tn ∈ R⟨X ⟩ entails (λx.s)T0...Tn ∈ X .

Proposition 6. Nlm
R is Nlm

R -saturated.

Proof. Straightforward from the definition of →̂lm.

Definition 18. Let X ,Y ⊆ BR, we set X → Y = {s ∈ BR | ∀T ∈ R⟨X ⟩, sT ∈ Y}.

Proposition 7. Let X ,X ′,Y,Y ′ ⊆ BR. If X ′ ⊆ X and Y ⊆ Y ′, then, X → Y ⊆ X ′ → Y ′.

Proof. Straightforward from definition 18.

Definition 19. Let Elm
R = {xT1...Tn | xT1...Tn ∈ Nlm

R } be the set of neutral terms.

Proposition 8. Let X ,Y such that Elm
R ⊆ X ,Y ⊆ Nlm

R :
• If Y is Nlm

R -saturated, then Elm
R ⊆ X → Y ⊆ Nlm

R and it is Nlm
R -saturated;

• If X and Y are Nlm
R -saturated, then Elm

R ⊆ X ∩ Y ⊆ Nlm
R and it is Nlm

R -saturated.

JFLA 2025 – 36es Journées Francophones des Langages Applicatifs

The weak algebraic λ-calculus Moughanim, Vaux Auclair

Proof. For the first assertion, the fact that X → Y is saturated is straightforward from the
definitions. From Proposition 7, Nlm

R → Elm
R ⊆ X → Y ⊆ Elm

R → Nlm
R . Conclude by noticing

that Elm
R ⊆ Nlm

R → Elm
R and Elm

R → Nlm
R ⊆ Nlm

R . The second statement is straightforward.

Definition 20 (Type interpretation). We inductively define type interpretation:
• o∗ = Nlm

R ;
• (α → β)∗ = α∗ → β∗;
• (α ∩ β)∗ = α∗ ∩ β∗.

Lemma 18. If α contains no occurrence of Ω, Elm
R ⊆ α∗ ⊆ Nlm

R and α∗ is Nlm
R -saturated.

Proof. Straightforward induction on types, using Proposition 8.

Proposition 9. The following statements hold:
• R⟨X ∩ Y⟩ = R⟨X ⟩ ∩ R⟨Y⟩;
• If X ⊆ Y ⊆ BR, then R⟨X ⟩ ⊆ R⟨Y⟩;
• If α ≼ β is derivable, then α∗ ⊆ β∗.

Proof. The first two statements are straightforward. For the last one, we prove each
subtyping rule is correct w.r.t. inclusion of type interpretation, using Proposition 7.

Lemma 19. If x1 : α1, ..., xn : αn ⊢ M : β is derivable, and if Ω does not occur in any of
these types, then for any T1 ∈ R⟨α∗

1⟩, ..., Tn ∈ R⟨α∗
n⟩, M [T1, ..., Tn/x1, ..., xn] ∈ R⟨β∗⟩.

Proof. By induction on the canonical form of M , using Proposition 9 and Lemma 18.

Corollary 3. For any M ∈ ΛR typable in system DΩ+ with no occurence of Ω in the context
and its type, M is strongly normalizing for →̂lm, and is thus must-normalizable.

Proof. Notice variables are neutral terms and apply Lemma 19 and then Lemma 18.

Theorem 3. The reduction →̂lm is a strategy for must-normalization in the following sense:
if a term is must-normalizable, it is strongly must-normalizing for this reduction.

Proof. Let M ∈ ΛR and consider the following statements:
1. M is normalizable;
2. M is strongly normalizing for →̂lm;
3. There is Γ, α such that Γ ⊢ M : α is derivable, with no occurence of Ω in Γ and α.

Clearly, (2) ⇒ (1). Corollary 3 states (3) ⇒ (2) and Theorem 2 states (1) ⇒ (3).

Notice however that →̂lm is not a strategy; the choice of the term of the support to reduce
remains. This can be bypassed, for instance considering a sequence of simple terms where
each simple term appears infinitely often, we can define a strategy by replacing the arbitrary
choice by reading the sequence and picking the first simple term of the sequence appearing
in the support. We can then define the reduction sequence of a term under this strategy.

4.1.4 Confluence of the canonical reduction

We saw that _̂ is not locally confluent. Fortunately, thanks to the results of this section,
we can still state a weaker confluence property, since →̂lm ⊂ _̂.

Lemma 20. _̂ is confluent on must-normalizable terms.

Proof. Let M,N,N ′ ∈ CR,M _̂∗
N,M _̂∗

N ′ and M is normalizable. By confluence of @→,
N and N ′ are both normalizable. Thus, there is a →̂lm-normalization reduction sequence
from N and N ′ by Theorem 3. Finally, their normal forms are equal by confluence of @→.

JFLA 2025 – 36es Journées Francophones des Langages Applicatifs

The weak algebraic λ-calculus Moughanim, Vaux Auclair

(v)
x : [α] ⊢ x : α

Γ, x : α ⊢ M : β
(λ)

Γ ⊢ λx.M : α → β

Γ1 ⊢ M : α → β Γ2 ⊢! N : α
(@)

Γ1 + Γ2 ⊢ MN : β

Γ ⊢ M : α
(+)

Γ ⊢ M +N : α

Γ ⊢ M : α
(Scal)

Γ ⊢ aM : α

Γ1 ⊢ M : α1 ... Γn ⊢ M : αn
(!)

Γ1 + ...+ Γn ⊢! M : [α1, ..., αn]

Figure 4. Algebraic W+ type system

4.2 May-normalizability
Now we characterize may-normalizability (Definition 13) as typability in system W+ (Fig-
ure 4). Here, typing a sum boils down to typing one of its terms (Rule (+)): this allows
us to use a non-idempotent intersection type system. Indeed, our system is inspired by
de Carvalho’s system R [dC18], which is itself grounded in the relational model of the
λ-calculus, interpreting sum as union. A strength of non-idempotent intersection type
systems is that the proof of normalization can be done simply by induction on the size of
typing derivations [BKV17]: this applies in our setting.

Observe that rules with several premises sum their contexts in the following sense: if
Γ1(x) = [α1, ..., αn] and Γ2(x) = [β1, ..., βk], then (Γ1 + Γ2)(x) = [α1, ..., αn, β1, ..., βk].

Definition 21. Types of system W+ are given by the following mutually inductive grammars,
where [α1, ..., αn] is a finite multiset standing for α1 ∩ ... ∩ αn:

α, β, ... ::= o | α → β α, ... ::= [α1, ..., αn]

Notice we allow intersections only on the left-hand sides of arrows: the conclusion of rule
(!) is not a typing judgement: it uses the symbol ⊢! instead of ⊢. We say M is typable if
there are Γ and α such that Γ ⊢ M : α is derivable. In particular, no term has type [].

4.2.1 Compatibility of typing with the module structure

Lemma 21. Γ ⊢
∑n

i=1 aisi : α is derivable iff Γ ⊢ sj : α is derivable for a j ∈ {1, ..., n}.

Proof. By induction on n ∈ N.

Proposition 10. Let M,N ∈ ΛR. If M
△
=N , Γ ⊢ M : α is derivable iff Γ ⊢ N : α is

derivable.

Proof. We actually prove this proposition in the case N = can(M), by induction on M .

4.2.2 Subject expansion

Lemma 22. Let M,N ∈ ΛR. If Γ ⊢ M [N/x] : β is derivable, then there is Γ0,Γ1 and α
such that Γ0, x : α ⊢ M : β and Γ1 ⊢! N : α are derivable, and Γ = Γ0 + Γ1.

Proof. Straightforward induction on permutative terms.

Lemma 23 (Subject expansion). Let M,N ∈ CR. If M @→N and Γ ⊢ N : α is derivable,
then Γ ⊢ M : α is derivable.

Proof. We prove this by induction on the reduction. If M = as+ T
@→ aS′ + T = N : by

Lemma 21, either Γ ⊢ T : α is derivable, and it is immediate, either, Γ ⊢ S′ : α is derivable
and we apply I.H. on s → S′. The only other interesting case is the case of a fired redex, in
which we apply Lemma 22.

Lemma 24. May-normal forms are typable.

JFLA 2025 – 36es Journées Francophones des Langages Applicatifs

The weak algebraic λ-calculus Moughanim, Vaux Auclair

Proof. Straightforward induction on may-normal forms.

Corollary 4. May-normalizable terms are typable.

4.2.3 Subject reduction

Lemma 25. Let M ∈ ΛR. If Π ▷ Γ ⊢ M : α, and if there is no typed redex in Π, M is in
may-normal form.

Proof. Straightforward induction on the proof-tree.

In the following lemmas, we will denote by |Π| the number of nodes in the proof-tree Π.

Lemma 26. Let M,N ∈ CR and x be a variable. If Π0 ▷ Γ0, x : α ⊢ M : β,Π1 ▷ Γ1 ⊢! N : α,
there is a Π0[Π1/x] such that Π0[Π1/x]▷Γ0+Γ1 ⊢ M [N/x] : β and |Π0[Π1/x]| ≤ |Π0|+ |Π1|.

Proof. By induction on Π0. Intuitively, Π0[Π1/x] is Π0 where each occurrence of x : [α] ⊢
x : α is substituted by the corresponding proof for N in Π1.

Lemma 27. Let s ∈ BR, T ∈ CR,Π ▷ Γ ⊢ s : α, s → T , and such that the fired redex is typed
in Π. There is a proof tree Φ, U ∈ ΛR such that U = T , Φ ▷ Γ ⊢ U : α and |Π| > |Φ|.

Proof. By induction on the reduction, in the case of a fired redex, we apply Lemma 26.

Corollary 5. Let M ∈ ΛR. If M is W+-typable, then M is may-normalizable.

Proof. Let N ∈ ΛR,Π,Γ, α be a proof-tree, context and type such that M = N and
Π ▷ Γ ⊢ N : α. Consider the following mutually inductive sequences of term and proof-tree:

{
M0 = N

Mn+1 : Mn _̂Mn+1, firing a typed redex in Πn

Π0 = Π

Πn+1 =
the proof tree given
by Lemma 27 from Πn

By Lemma 27, there is a n0 ∈ N such that Mn0+1 is undefined. By subject reduction, we
must have some typed terms in Πn0 in the support of Mn0 . Hence, we reached a typed term
but containing no typed redex in Πn0 . Thus Mn0 is in may-normal form by Lemma 25.

Theorem 4. Let M ∈ CR, M is typable in system W+ if and only if M is may-normalizable.

5 Taylor expansion
In the final section of this paper, we investigate an entirely different aspect of λ-calculi:
we introduce a notion of Taylor expansion [ER03] on this calculus. Taylor expansion is an
operation on terms, recursively replacing each application by an infinite sum of multilinear
application. In this section, we require R to be commutative, which is necessary because
dealing with vectors of resource terms involves multilinear operations.

5.1 Resource λ-calculus
Definition 22 (Resource terms). We consider the following mutually inductive grammars,
where [σ1, ..., σn] denotes a finite multiset:

∆ ∋ σ, ρ, ... ::= x | λx.σ | ⟨σ⟩ ρ !∆ ∋ σ, ρ, ... ::= [σ1, ..., σn]

We write σ · ρ for the concatenation of two such multisets. Any resource term or multiset
of resource terms is a resource expression. Resource expressions are considered up to α-
equivalence. We denote by (!)∆ either ∆ or !∆. When it appears several times in the same
context, each occurrence denotes the same set.

JFLA 2025 – 36es Journées Francophones des Langages Applicatifs

The weak algebraic λ-calculus Moughanim, Vaux Auclair

We will see that sums appear along reduction, hence, the actual objects we consider
are formal finite sums of resource expressions (without coefficients). We extend syntactic
constructs to sums of terms:

λx.
∑

σi =
∑

λx.σi

〈∑
σi

〉∑
ρj =

∑∑
⟨σi⟩ ρj[∑

ρ1i1 , ...,
∑

ρnin

]
=

∑
i1,...,in

[ρ1i1 , ..., ρ
n
in]

Note application is bilinear, as opposed to the application on λ-terms. Furthermore, notice
these equations define a rewriting system, from left to right; let N[(!)∆] be the set of such
sums.

Definition 23. Let Σ ∈ N[(!)∆], and
∑N

i=1 σi be the normal form of Σ in the above
rewriting system, we denote by ∥Σ∥ (resp. |Σ|) the multiset [σ1, ..., σN] (resp. {σ1, ..., σN}).

While reduction in the ordinary λ-calculus is based on the substitution M [N/x], replacing
each occurence of x by N , the resource λ-calculus is based upon a linear substitution ∂M

∂x ·N ,
replacing one occurence of x by N .

Definition 24. We define partial derivatives by induction on resource terms:

∂y

∂x
· ρ =

{
ρ if x = y

0 otherwise
∂⟨σ⟩ τ
∂x

· ρ =

〈
∂σ

∂x
· ρ
〉
τ + ⟨σ⟩ ∂τ

∂x
· ρ

∂λy.σ

∂x
· ρ = λy.

(
∂σ

∂x
· ρ
)

(y /∈ fv(σ) ∪ {x}) ∂[σ1, ..., σn]

∂x
· ρ =

n∑
i=1

[
σ1, ...,

∂σi

∂x
· ρ, ...σn

]
Which we naturally extend to formal finite sums by bilinearity:

∂
∑n

i=1 σi

∂x
·

k∑
j=1

ρj =

n∑
i=1

k∑
j=1

∂σi

∂x
· ρj

Definition 25 (Multilinear substitution). Let σ ∈ ∆, [ρ1, ..., ρn] ∈ !∆, we set:

∂xσ · [ρ1, ..., ρn] =
(
∂nσ

∂xn
· ρ1, ..., ρn

)
[0/x]

Definition 26 (Resource reduction). We define →r ⊆ (!)∆×N[(!)∆] inductively as follows:
• λx.σ→r λx.σ

′ if σ→r σ
′;

• ⟨σ⟩ ρ→r ⟨σ′⟩ ρ if σ→r σ
′;

• ⟨σ⟩ ρ→r ⟨σ⟩ ρ′ if ρ→r ρ
′;

• ⟨λx.σ⟩ ρ→r ∂xσ · ρ;
• [σ] · ρ→r [σ

′] · ρ if σ→r σ
′.

We extend →r to sums by setting σ+τ →r σ
′+τ when σ ∈ (!)∆, σ′, τ ∈ N[(!)∆] and σ→r σ

′.

Proposition 11 ([ER08]). →r is confluent and strongly normalizing, thus we can define
the normal form of a resource term: NF(σ).

Definition 27 (Parallel resource reduction). Similarly, we define ⇒r inductively as follows:
• x⇒r x;
• λx.σ ⇒r λx.σ

′ if σ ⇒r σ
′;

• ⟨σ⟩ ρ⇒r ⟨σ′⟩ ρ′ if σ ⇒r σ
′ and ρ⇒r ρ

′;
• ⟨λx.σ⟩ ρ⇒r ∂xσ

′ · ρ′ if σ ⇒r σ
′ and ρ⇒r ρ

′;
• [ρ1, ..., ρn]⇒r [ρ

′
1, ..., ρ

′
n] if ρi ⇒r ρ

′
i for all i ∈ {1, ..., n}.

We extend ⇒r to sums by setting
∑n

i=1 σi ⇒r
∑k

i=1 σ
′
i when σi ⇒r σ

′
i for 1 ≤ i ≤ k.

JFLA 2025 – 36es Journées Francophones des Langages Applicatifs

The weak algebraic λ-calculus Moughanim, Vaux Auclair

Definition 28 (Full parallel resource reduct). We define F (σ) by induction on σ:
• F (x) = x;
• F (λx.σ) = λx.F (σ′);
• F (⟨λx.σ⟩ ρ) = ∂xF (σ) · F (ρ);
• F (⟨σ⟩ ρ) = ⟨F (σ)⟩F (ρ) if σ is not an abstraction;
• F ([ρ1, ..., ρn]) = [F (ρ1) , ...,F (ρn)].

Definition 29. Let σ, ρ ∈ ∆, we write σ ▷ ρ if σ ⇒r Σ and ρ ∈ |Σ|.

5.2 Resource vectors
Definition 30 (Resource vectors). We set R⟨⟨X⟩⟩ = (R⊔{⊥})X . The set of resource vectors
is then R⟨⟨∆⟩⟩. Let u ∈ R⟨⟨X⟩⟩, x ∈ X, we denote by ux the coefficient of u in x.

If a term has a ⊥ coefficient, it means it is not in the support of the resource vector. We
extend the operations of the semiring to ⊥ in order to extend these operations pointwise
to resource vectors: ∀a ∈ R ⊔ {⊥},⊥+ a = a, and a⊥ = ⊥. We denote by 0Σ the resource
vector whose coefficients are all ⊥.

Since we would like to write Taylor expansion as formal series, we define the following set:

Definition 31 (Formal series). Let RJ∆K = (R ×∆)N ⊔
⊔

n∈N(R ×∆)n be the set of formal
series. We will write an element of this set as

∑b
i=0 aiσi with b ∈ N ⊔ {+∞}.

Definition 32 (Summable families). Let (σi) ∈ ∆I . We say this family is summable when,
for all σ ∈ ∆, the set {i ∈ I | σ = σi} is finite.

Definition 33. Let M =
∑b

i=1 aiσi be a formal series and σ ∈ ∆; let IM(σ) = {i ∈ N | σi = σ}.
If IM(σ) is finite, we set M(σ) as: ⊥ if IM(σ) = ∅,

∑
i∈IM

(σ)
ai otherwise.

Definition 34 (Mapping series to resource vectors).

canseries : RJ∆K ⇀ R⟨⟨∆⟩⟩

M 7→
∑
σ∈∆

M(σ)σ

Notice this function is surjective and partial: it is defined only when the associated family
is summable. We can then use every function defined on formal series on resource vectors.

Definition 35. We define the support of a resource vector as: Supp(u) = {σ ∈ ∆ | uσ ̸= ⊥}.
We naturally extend this function to formal series by: Supp(M) = Supp(canseries(M)).

Definition 36 ([Vau19]). Let φ : R⟨⟨X1⟩⟩ × ... × R⟨⟨Xn⟩⟩ → R⟨⟨Y ⟩⟩. We say φ is n-linear
continuous if for all summable families (ξ1i) ∈ XI1

1 , ..., (ξni) ∈ XIn
n and for all families of

scalars (a1i) ∈ (R⊔{⊥})I1 , ..., (ani) ∈ (R⊔{⊥})In , the family (φ(ξ1i1 , ..., ξ
n
in
))(i1,...,in)∈I1×...×In

is summable and:

φ

(∑
i1∈I1

a1i1ξ
1
i1 , ...,

∑
in∈In

aninξ
1
in

)
=

∑
i1,...,in∈I1×...×In

a1i1 ...a
n
inφ(ξ

1
i1 , ..., ξ

n
in)

We naturally extend syntactic constructs and linear substitution by multilinearity on
resource vectors:

λx.u =
∑
σ∈∆

uσλx.σ ⟨u⟩ v =
∑

σ∈∆,ρ∈!∆

uσvρ ⟨σ⟩ ρ

[u1, ..., un] =
∑

σ1,...,σn∈∆

(u1)σ1
...(un)σn

[σ1, ..., σn] ∂xu · v =
∑

σ∈∆,ρ∈!∆

uσvρ∂xσ · ρ

Notice a multiset of vector is well-defined only if multiplication of R is commutative.

JFLA 2025 – 36es Journées Francophones des Langages Applicatifs

The weak algebraic λ-calculus Moughanim, Vaux Auclair

Proposition 12. Syntactic constructs and linear substitution are multilinear continuous.

We say a semiring R has fractions when for each n ∈ N, 1
n ∈ R. In the remaining of this

section, we’ll assume R has fractions, as to ensure we can state the following definition.

Definition 37 (Exponential). Let σ ∈ ∆, we define the exponential of σ as σ! =∑
n∈N

1
n!σ

n ∈ R⟨⟨!∆⟩⟩, where σn = [σ, ..., σ]. Note that, thanks to Proposition 12, this
definition can be naturally extended to resource vectors by multilinear-continuity.

Lemma 28 (Compatibility of ∂x with syntax [Vau19]).

∂xx · ρ! = ρ ∂xλy.σ · ρ! = λy.∂xσ · ρ! ∂x[σ1, ..., σn] · ρ! = [∂xσ1 · ρ!, ..., ∂xσn · ρ!]

∂xy · ρ! = y ∂xσ
! · ρ! = (∂xσ · ρ!)! ∂x⟨σ⟩ τ · ρ! =

〈
∂xσ · ρ!

〉
∂xτ · ρ!

The above equations holds for resource terms, and for resource vector as well.

Definition 38 (Taylor expansion). We define τ(M) ∈ R⟨⟨∆⟩⟩ by induction on M :

τ(x) = x τ(λx.M) = λx.τ(M) τ(MN) = ⟨τ(M)⟩ τ(N)
!

τ(0) = 0Σ τ(aM) = aτ(M) τ(M +N) = τ(M) + τ(N)

We will write M ≃τ N whenever τ(M) = τ(N).

Proposition 13. The following inclusion holds: △
= ⊆ ≃τ .

Proof. Notice ≃τ is contextual and that it satisfies the equations of definition 2.

Remark 2. If aM ≃τ 0, then M ≃τ 0: our modified version of τ encompasses △
= well.

Proposition 14. The following equality holds: τ(S[T/x]) = ∂xτ(S) · τ(T)!.

Proof. Proposition 13 allows us to prove it by induction on can(S), using Lemma 28.

Definition 39 (Height and size of a resource term). By induction on resource expressions:

s(x) = 1 h(x) = 1

s(λx.σ) = 1 + s(σ) h(λx.σ) = 1 + h(σ)
s(⟨σ⟩ ρ) = 1 + s(σ) + s(ρ) h(⟨σ⟩ ρ) = 1 +max(h(σ),h(ρ))

s([ρ1, ..., ρn]) = s(ρ1) + ...+ s(ρn) h([ρ1, ..., ρn]) = max(h(ρ1), ...,h(ρn))

We also define height on resource vector: h(u) = max{h(σ) | σ ∈ Supp(u)}.

Proposition 15. For any M ∈ ΛR, τ(M) is of bounded height.

Proof. Straightforward induction on raw terms.

5.3 Resource vector reduction
5.3.1 Closure of resource vectors of bounded height under reduction

Definition 40 (Parallel reduction of bounded height resource vectors). If (σi) is a summable
family of bounded height, and if for all i ∈ N, σi ⇒r

∑ni

j=1 ρ
i
j , then for any family of scalars

(ai), we say canseries(
∑

aiσi)⇒B canseries(
∑

ai
∑ni

j=1 ρ
i
j).

In this definition, we do not ask any condition on the summability of (ρji), we have to
make sure this relation is well defined; we dedicate the rest of this section to prove that fact.

Definition 41. We define the following sets of resource expressions:

JFLA 2025 – 36es Journées Francophones des Langages Applicatifs

The weak algebraic λ-calculus Moughanim, Vaux Auclair

• (!)Hk = {σ ∈ (!)∆ | h(σ) ≤ k};
• (!)Bk = {σ ∈ (!)∆ | every bag occurring in σ is of size at most k};
• (!)∆E = {σ ∈ (!)∆ | fv(σ) ⊆ E}.

Lemma 29. Let σ ∈ ∆, {ρ ∈ ∆ | ρ ▷ σ} ⊆ Bs(σ).

Proof. Let µ /∈ Bs(σ) and µ′, µ ▷ µ′. µ has ⟨ν⟩ [ρ1, ..., ρn] as subterm, with n > s(σ).
Either ⟨ν⟩ [ρ1, ..., ρn] is still a subterm of µ′, in which case s(µ′) > s(σ) and µ′ ̸= σ.
Either it was contracted along the reduction, in which case there are two further subcases:
Either there is a contraction that rendered 0, hence, µ′ = 0 ̸= σ;
Either there was no such contraction, in which case each ρi appears at least once in µ′,

hence, s(µ′) ≥
∑n

i=1 s(ρi) ≥ n > s(σ) and thus, µ′ ̸= σ.

Proposition 16. Let k, l ∈ N, E a finite set of variables, then (!)Bk ∩ (!)Hl ∩ (!)∆E is finite.

Proof. By induction on l ∈ N. If l = 1, (!)Bk ∩ (!)H1 ∩ (!)∆E ⊆ (!)E which is finite. Let
l ∈ N∗, assume the result holds for l. For each constructor, there is a finite set of possible
subterm(s) by I.H. The same argument holds for multisets since their sizes are bounded.

Proposition 17. Let (σi) ∈ ∆I , (Σi) ∈ N[∆]I be two families such that (σi) is summable,
of bounded height, and for all i, σi ⇒r Σi, then (ρ′j)j∈J such that [ρ′j | j ∈ J] =

∑
i∈I ∥Σi∥

is summable. The set of resource vectors of bounded height is closed under reduction: If a
resource vector of bounded height reduces to another term, then it is of bounded height.

Proof. Let µ ∈ ∆. For any σ ∈ ∆ such that σ ▷ µ, fv(σ) = fv(µ). Plus, by Lemma 29,
{η ∈ ∆ | η ▷ µ} ⊆ Bs(µ). Hence, let l = max{h(σi) | i ∈ I}, we have {η ∈ ∆ | η ▷ µ} ∩ {σi |
i ∈ I} ⊆ Bs(µ) ∩Hl ∩∆fv(µ), which is finite by Proposition 16, hence, (ρj) is summable.

Definition 42. We extend full parallel reduction to resource vector of bounded height as
follows: F (v) =

∑
σ∈(!)∆ vσF (σ).

Proposition 18. Let v ∈ R⟨⟨∆⟩⟩ be a bounded height resource vector.
• v⇒B F (v);
• For any u ∈ R⟨⟨∆⟩⟩ such that v⇒B u, u⇒B F (v).

Proof. One can derive these statements from their equivalent on resource terms.

Corollary 6. ⇒B is strongly confluent.

Proposition 19. Let u, u′, v, v′ ∈ R⟨⟨∆⟩⟩. If u⇒B u′ and v⇒B v′, then
• ⟨u⟩ v! ⇒B ⟨u′⟩ v′!;
• ⟨λx.u⟩ v! ⇒B ∂xu

′ · v′!.

Proof. Simple rewriting exercises, writing vectors as formal series.

Theorem 5. Let M,N ∈ CR. If M⇒N , then τ(M)⇒B τ(N).

Proof. By induction on the reduction, using Proposition 19 and Proposition 14.

5.3.2 Taylor and normalization commute

Must-normalization is quite straightforwardly characterized on Taylor expansions (Corol-
lary 7). Such a study would be much more complicated on may-normalization: how could we
distinguish a may-normal form among the Taylor expansion of sums of non-uniform terms?

Proposition 20. Let u ∈ R⟨⟨∆⟩⟩ of bounded height. u does not reduce under ⇒B if and only
if for all σ ∈ Supp(u), σ does not reduce under ⇒r.

Proof. Straightforward from the definitions.

JFLA 2025 – 36es Journées Francophones des Langages Applicatifs

The weak algebraic λ-calculus Moughanim, Vaux Auclair

Corollary 7. Taylor expansion of must-normal forms does not reduce under ⇒B.

Theorem 6. Let M ∈ ΛR, if M is must-normalizable, then τ(NF(M)) = NF(τ(M)).

Proof. M⇒
∗
NF(M), hence, by Theorem 5, τ(M)⇒∗

B τ(NF(M)) which is normal, and we
conclude by confluence of ⇒B.

5.3.3 Conservativity on normalizable λ-terms

Definition 43. We denote by ≃r the symmetric, transitive and reflexive closure of ⇒B.

Theorem 7. Let M,N ∈ Λ be must-normalizable. τ(M) ≃r τ(N) if and only if M ≃R N .

Proof. The reverse implication is straighforward from the Theorem 5. For the direct impli-
cation, by Theorem 5 and 6, τ(M)⇒B τ(NF(M)) = NF(τ(M)) and τ(N)⇒B τ(NF(N)) =
NF(τ(N)). Since τ(M) ≃r τ(N), τ(NF(M)) = NF(τ(M)) = NF(τ(N)) = τ(NF(N)) and we
conclude by injectivity of τ on pure λ-terms.

We can’t hope for anything better: indeed, the Taylor expansion is not injective.
Example 1. Terms can "hide" under a 0 coefficient: τ(xx+ 0(x0)) = τ(xx).

6 Conclusion
We introduced a weak variant of the algebraic λ-calculus, extending the ordinary λ-calculus
with the possibility of forming linear combinations of terms, but excluding the structural
identity 0M = 0, so that terms form a weak module instead of a module. We then proved
several results, which are mostly analogues of similar properties for the original algebraic
λ-calculus: the novelty resides in that they are valid for any semiring, removing the positivity
assumption that was needed in the original version.

Namely, we established the confluence of reduction, and showed that the resulting equa-
tional theory is conservative over β-equivalence on ordinary λ-terms. Moreover, we studied
two notions of normalization, arising naturally when studying sums of terms: we showed
that each one could be characterized as typability in a suitable intersection type system.
Finally, we introduced a notion of Taylor expansion in that weak setting, and showed
that β-reduction could be still simulated; from this we deduced the conservativity of the
equational theory induced by normalization of Taylor expansion, on normalizable λ-terms.

The weak algebraic λ-calculus thus enjoys satisfactory operational properties, regardless
of the semiring of coefficients. Nonetheless, our results leave a number of open questions
and routes for future work.

If one considers the original algebraic λ-calculus as the main object of study, it would be
interesting to precise its relationship with the weak version. For instance, one could search
for a weak normalization scheme, in the spirit of Alberti’s [Alb14], by considering pre-normal
forms induced by normalization paths in the weak version: under which condition does that
give a meaningful result?

Also, our study of Taylor expansion is limited because of its lack of injectivity. Example
1 seems to indicate that there is no hope to obtain a version of Taylor expansion that is
both weak and injective. On the other hand, this also calls for a study of injectivity of
ordinary Taylor expansion on the algebraic λ-calculus: more precisely, it is still an open
problem to find sufficient conditions on the semiring of coefficients to obtain an injective
Taylor expansion, which would be a first step towards a general conservativity result.

Finally, we could also try to extend the study the normalization of Taylor expansion, and
especially Theorem 6: how far can we generalize the structure of Böhm trees to obtain a
commutation theorem for non-necessarily normalizable terms? A partial answer could be to
adapt the results of the second author in the ordinary case [Vau19]. An alternative could be
to investigate existing denotational models for weak algebraic λ-calculi: for instance, can we
adapt Valiron’s work [Val13] to obtain a model in an untyped setting?

JFLA 2025 – 36es Journées Francophones des Langages Applicatifs

The weak algebraic λ-calculus Moughanim, Vaux Auclair

References
[AD17] Pablo Arrighi et Gilles Dowek : Lineal: A linear-algebraic lambda-calculus.

Log. Methods Comput. Sci., 13(1), 2017.

[ADP+14] Ali Assaf, Alejandro Díaz-Caro, Simon Perdrix, Christine Tasson et Benoît
Valiron : Call-by-value, call-by-name and the vectorial behaviour of the
algebraic λ-calculus. Log. Methods Comput. Sci., 10(4), 2014.

[ADV17] Pablo Arrighi, Alejandro Díaz-Caro et Benoît Valiron : The vectorial
λ-calculus. Inf. Comput., 254:105–139, 2017.

[Alb14] Michele Alberti : On operational properties of quantitative extensions of λ-
calculus. Thesis, Aix Marseille Université ; Università di Bologna, décembre
2014.

[BKV17] Antonio Bucciarelli, Delia Kesner et Daniel Ventura : Non-idempotent
intersection types for the Lambda-Calculus. Logic Journal of the IGPL, 25(4):431–
464, 07 2017.

[dC18] Daniel de Carvalho : Execution time of λ-terms via denotational semantics
and intersection types. Math. Struct. Comput. Sci., 28(7):1169–1203, 2018.

[Ehr05] Thomas Ehrhard : Finiteness spaces. Math. Struct. Comput. Sci., 15(4):615–
646, 2005.

[Ehr10] Thomas Ehrhard : A finiteness structure on resource terms. In Proceedings of
the 25th Annual IEEE Symposium on Logic in Computer Science, LICS 2010,
11-14 July 2010, Edinburgh, United Kingdom, pages 402–410. IEEE Computer
Society, 2010.

[Ehr23a] Thomas Ehrhard : A coherent differential PCF. Log. Methods Comput. Sci.,
19(4), 2023.

[Ehr23b] Thomas Ehrhard : Coherent differentiation. Math. Struct. Comput. Sci.,
33(4-5):259–310, 2023.

[ER03] Thomas Ehrhard et Laurent Regnier : The differential lambda-calculus.
Theoretical Computer Science, 309(1):1–41, 2003.

[ER06] Thomas Ehrhard et Laurent Regnier : Böhm trees, krivine’s machine and
the taylor expansion of lambda-terms. In Arnold Beckmann, Ulrich Berger,
Benedikt Löwe et John V. Tucker, éditeurs : Logical Approaches to Com-
putational Barriers, Second Conference on Computability in Europe, CiE 2006,
Swansea, UK, June 30-July 5, 2006, Proceedings, volume 3988 de Lecture Notes
in Computer Science, pages 186–197. Springer, 2006.

[ER08] Thomas Ehrhard et Laurent Regnier : Uniformity and the taylor expansion
of ordinary lambda-terms. Theor. Comput. Sci., 403(2-3):347–372, 2008.

[EW23] Thomas Ehrhard et Aymeric Walch : Cartesian coherent differential categories.
In 38th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS
2023, Boston, MA, USA, June 26-29, 2023, pages 1–13. IEEE, 2023.

[Gir88] Jean-Yves Girard : Normal functors, power series and λ-calculus. Ann. Pure
Appl. Log., 37(2):129–177, 1988.

[Kri93] J. L. Krivine : Lambda-calculus, types and models. Ellis Horwood, USA, 1993.

JFLA 2025 – 36es Journées Francophones des Langages Applicatifs

The weak algebraic λ-calculus Moughanim, Vaux Auclair

[KV23] Axel Kerinec et Lionel Vaux Auclair : The algebraic λ-calculus is a conserva-
tive extension of the ordinary lambda-calculus. HOR 2023 - 11th International
Workshop on Higher-Order Rewriting, 2023.

[Lev19] Thomas Leventis : A deterministic rewrite system for the probabilistic λ-
calculus. Math. Struct. Comput. Sci., 29(10):1479–1512, 2019.

[PTV16] Michele Pagani, Christine Tasson et Lionel Vaux : Strong normalizability as a
finiteness structure via the taylor expansion of lambda-terms. In Bart Jacobs et
Christof Loding, éditeurs : Foundations of Software Science and Computation
Structures, pages 408–423, Berlin, Heidelberg, 2016. Springer Berlin Heidelberg.

[Val13] Benoît Valiron : A typed, algebraic, computational lambda-calculus. Math.
Struct. Comput. Sci., 23(2):504–554, 2013.

[Vau09] Lionel Vaux : The algebraic lambda calculus. Mathematical Structures in
Computer Science, 19(5):1029–1059, 2009.

[Vau19] Lionel Vaux : Normalizing the Taylor expansion of non-deterministic λ-terms,
via parallel reduction of resource vectors. Logical Methods in Computer Science,
Volume 15, Issue 3, juillet 2019.

[vT04] André van Tonder : A lambda calculus for quantum computation. SIAM J.
Comput., 33(5):1109–1135, 2004.

JFLA 2025 – 36es Journées Francophones des Langages Applicatifs

	Introduction
	Weak algebraic lambda-terms
	Reductions
	Definitions
	Confluence
	Conservativity

	Normalizability
	Must-normalizability
	Compatibility of typing with the module structure
	Subject expansion
	Subject reduction
	Confluence of the canonical reduction

	May-normalizability
	Compatibility of typing with the module structure
	Subject expansion
	Subject reduction

	Taylor expansion
	Resource lambda-calculus
	Resource vectors
	Resource vector reduction
	Closure of resource vectors of bounded height under reduction
	Taylor and normalization commute
	Conservativity on normalizable lambda-terms

	Conclusion

