
HAL Id: hal-04859508
https://hal.science/hal-04859508v1

Submitted on 30 Dec 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

Reconciling Impredicative Axiom and Universe
Stefan Monnier

To cite this version:
Stefan Monnier. Reconciling Impredicative Axiom and Universe. 36es Journées Francophones des
Langages Applicatifs (JFLA 2025), Jan 2025, Roiffé, France. �hal-04859508�

https://hal.science/hal-04859508v1
https://hal.archives-ouvertes.fr

Reconciling Impredicative
Axiom and Universe

Stefan Monnier

Université de Montréal - DIRO, Montréal, Canada

Impredicativity and type theory share a long history since Russel introduced
the notion of types specifically to try and rule out the logical inconsistency
that can be derived from arbitrary impredicative quantification. In modern type
theory, impredicativity is most commonly (re)introduced in one of two ways : the
traditional way found in systems like the Calculus of Constructions, Lean, Coq,
and System F, is to make the bottom universe impredicative, typically called
Prop ; the other way, used in HoTT [15], is to provide a propositional resizing
axiom that makes it possible to move proof-irrelevant types to a lower universe.

Coq’s Prop and HoTT’s propositional resizing axiom both restrict the use of
impredicative quantification to the definition of proof-irrelevant propositions,
which suggests they may be closely related, yet the actual mechanism by which
they allow it is very different, making it unclear how they compare to each other
in terms of expressiveness and interactions with other axioms.

In this article we try to provide an answer to this question by axiomatizing a
Prop universe. More specifically, we describe a predicative type theory augmented
with a set of axioms inspired by HoTT’s propositional resizing axiom and
then show a quasi-equivalence between this system and a similar type theory
augmented with a Prop universe. We start with a small PTS and then grow the
system to UTT-style inductive types.
In practical terms, the syntactic nature of the proof means that such an

approach can be used also to translate code between systems. Furthermore, this
final result suggests that the kind of impredicativity provided by Coq’s Prop
universe is closely related to that offered by HoTT’s propositional resizing.

1 Introduction

Russell introduced the notion of type and predicativity as a way to stratify definitions so
as to prevent the logical inconsistencies exposed typically via some kind of diagonalization
argument [7]. This stratification seems sufficient to protect us from such paradoxes, but it
does not seem to be absolutely necessary either : systems such as System F are not predicative
yet they are generally believed to be consistent. Impredicativity is not indispensable for a
logic to be useful, and indeed systems like Agda [4] demonstrate that you can go a long
way without it, yet many popular systems, like Coq [6], do include some limited form of
impredicativity either for convenience or because of the proof-theoretic strength it provides.

While classical set theory introduces forms of impredicativity via axioms (such as the
powerset axiom), in the context of type theory, until recently impredicativity was always
introduced by allowing elements of a specific universe (traditionally called Prop) to be
quantified over elements from a higher universe, as is done in System F and the Calculus

JFLA 2025 – 36es Journées Francophones des Langages Applicatifs

Reconciling Impredicative

Axiom and Universe
Stefan Monnier

of Constructions [5]. More recently, Voevodsky [16] proposed to introduce impredicativity
via the use of resizing rules which allow moving those types which obey some particular
property to a smaller universe. The most common of those rules is the propositional resizing
axiom used in Homotopy type theory [15].

The propositional resizing axiom states that any proposition that is proof-irrelevant, i.e. any
type which can have at most one inhabitant, can be considered as living in the smallest
universe. While the impredicativity of System F and the original Calculus of Constructions
is not associated to any kind of proof irrelevance, virtually all proof assistants based on
impredicative type theories restrict their Prop universe to be proof-irrelevant. Intuitively, the
two approaches seem thus related since in both cases they restrict the use of impredicativity
to propositions that are proof-irrelevant. Yet the mechanisms by which they are defined are
very different, making it unclear how they compare to each other in terms of expressiveness
and interactions with other axioms.

In this article, we attempt to show more precisely how they compare by proving a quasi-
equivalence between a calculus using a Prop universe and one using a resizing axiom.

Our contributions are :
— A proof we call “quasi-equivalence” between uCCω, an impredicative pure type system

with a tower of universes, and rCCω, its sibling based on the predicative subset pCCω
extended with an axiom loosely inspired by HoTT’s propositional resizing axiom and
propositional truncation. Formally we show that we can encode uCCω in rCCω and
that we can encode rCCω in u+CCω, which is almost like uCCω but with an extra
rule.

— An extension of that quasi-equivalence to calculi with inductive types uCCωI and
rCCωI. The complexity of this extension depends on the details of how inductive
types are introduced : we limit our inductive types to the higher universes, as was
done in UTT [8].

The proofs of encodings take the form of syntactic rewrites from one system to another,
in the tradition of syntactic models [3], and can thus open the door to the translation of
definitions between such systems.

The rest of the paper is structured as follows : in Section 2 we show the syntax and typing
rules of the systems which we will be manipulating ; in Section 3 we show a naive encoding
exposing our general approach, and we show how it fails to deliver a proof of equivalence ;
in Section 4 we present the actual rCCω and the corresponding encoding which shows it to
be quasi-equivalent to uCCω ; in Section 5 we show how to extend this result to inductive
types ; in Section 6 we discuss the limitations of our proof as well as the differences between
our calculi and the existing systems they are meant to model ; we then conclude in Section 7.

2 Background

The calculi we use in this paper are all extensions of pure type systems (PTS) [1]. The base
syntax of the terms is defined as follows :

(var) x, y, f, t ∈ V
(sort) s ∈ S
(term) e, τ ::= s | x | (x :τ1) → τ2 | λx :τ.e | e1 e2

Terms can be either a sort s ; or a variable x ; or a function λx :τ.e where x is the formal
argument, τ is its type, and e is the body ; or an application e1 e2 which calls the function
e1 with argument e2 ; or the type (x : τ1) → τ2 of a function where τ1 is the type of the
argument and τ2 is the type of the result and where x is bound within τ2. We can write
τ1 → τ2 if x does not occur in τ2. A specific PTS is then defined by providing the tuple

JFLA 2025 – 36es Journées Francophones des Langages Applicatifs

Reconciling Impredicative

Axiom and Universe
Stefan Monnier

⊢ •
⊢ Γ Γ ⊢ τ : s

⊢ Γ, x : τ

⊢ Γ Γ(x) = τ

Γ ⊢ x : τ

⊢ Γ (s1 : s2) ∈ A
Γ ⊢ s1 : s2

Γ ⊢ τ1 : s1 Γ, x :τ1 ⊢ τ2 : s2 (s1, s2, s3) ∈ R
Γ ⊢ (x :τ1) → τ2 : s3

Γ ⊢ e1 : (x :τ1) → τ2 Γ ⊢ e2 : τ1

Γ ⊢ e1 e2 : τ2{e2/x}
Γ ⊢ (x :τ1) → τ2 : s Γ, x :τ1 ⊢ e : τ2

Γ ⊢ λx :τ1.e : (x :τ1) → τ2

Γ ⊢ e : τ1 Γ ⊢ τ1 ≃ τ2 : s

Γ ⊢ e : τ2

Γ ⊢ (λx :τ1.e1) e2 : τ2

Γ ⊢ (λx :τ.e1) e2 ≃ e1{e2/x} : τ2
(β)

Figure 1. Main typing rules of our PTS

S = { Uℓ | ℓ ∈ N }
A = { (Uℓ : Uℓ+1) | ℓ ∈ N }
R = { (Uℓ1 ,Uℓ2 ,Umax(ℓ1,ℓ2)) | ℓ1, ℓ2 ∈ N }

Figure 2. Definition of pCCω as a PTS.

(S,A,R) which defines respectively the set S of sorts, the axioms A that relate the various
sorts, and the rules R specifying which forms of quantifications are allowed in this system.

Figure 1 shows the main typing rules of our PTS, where Γ ⊢ e : τ is the main judgment
saying that expression e has type τ in context Γ. We have two auxiliary judgments : ⊢ Γ
says that Γ is a well-formed context, and the convertibility judgment Γ ⊢ e1 ≃ e2 : τ
says that e1 and e2 are convertible at type τ in context Γ. These are all standard rules. We
do not present the congruence, reflexivity, and symmetry rules for the convertibility in the
interest of space.

Here is an example of a simple PTS which defines the familiar System F :

S = { ∗, □ }
A = { (∗ : □) }
R = { (∗, ∗, ∗), (□, ∗, ∗) }

Where ∗ is the universe of values and □ is the universe of types and the axiom (∗ : □)
expresses the fact that types classify values. The rule (∗, ∗, ∗) corresponds to the traditional
“small λ” and says that functions can quantify over “values” (i.e. elements of the universe
∗) and return values and that such functions are themselves values, while the rule (□, ∗, ∗)
corresponds to the traditional “big Λ” and says that functions can also quantify over “types”
(i.e. elements of the universe □) and return values, and that those functions are also values.

Figure 2 shows the definition of our base, predicative, calculus, we call pCCω. It is a very
simple pure type system with a tower of universes. All the sorts have the form Uℓ where ℓ is
called the universe level and U0 is the bottom universe. To keep things simple, our universes
are not cumulative. We have not yet investigated the impact of cumulativity on our work.

2.1 Impredicativity

Informally, a definition is impredicative if it is quantified over a type which includes the
definition itself. For example in System F the polymorphic identity function id = Λt.λx : t.x

JFLA 2025 – 36es Journées Francophones des Langages Applicatifs

Reconciling Impredicative

Axiom and Universe
Stefan Monnier

S = { Uℓ | ℓ ∈ N }
A = { (Uℓ : Uℓ+1) | ℓ ∈ N }
R = { (Uℓ1 ,Uℓ2 ,Umax(ℓ1,ℓ2)) | ℓ1 ∈ N, ℓ2 ∈ N∗ }

∪ { (Uℓ,U0,U0) | ℓ ∈ N }

Figure 3. Definition of uCCω as a PTS.

is quantified over any type t, including the type ∀t.t → t of id itself. This opens the door to
self-application, e.g. id[∀t.t → t]id, which is a crucial ingredient in most logical paradoxes,
although in the case of System F the impredicativity is tame enough that it is not possible
to encode those paradoxes.

In System F, the rule (□, ∗, ∗) is the source of impredicativity because it allows the creation
of a function in ∗ which quantifies over elements that belong to the larger universe □ and
which can hence include its own type. To make it predicative, we would need to use (□, ∗,□)
meaning that a function that quantifies over types and returns values would now belong to
the universe □. This would prevent instantiating a polymorphic function with a type which
is itself polymorphic, and would thus disallow id[∀t.t → t]id although you would still be able
to do id[Int → Int](id[Int]).

In contrast to System F, we can see that pCCω is predicative because its rules have the
form (Uℓ1 ,Uℓ2 ,Umax(ℓ1,ℓ2)), thus ensuring that a function is always placed in a universe at
least as high as the objects over which it quantifies.

The traditional way to add impredicativity to a system like pCCω is by adding rules of the
form (Uℓ,U0,U0) which allow impredicative quantifications in the bottom universe U0. Such
an impredicative bottom universe is traditionally called Prop.

2.2 Propositional resizing

In homotopy type theory (HoTT, [15]), instead of providing an impredicative universe,
impredicativity is provided via an axiom called propositional resizing. This axiom applies to
all types that are so-called mere propositions, which means that they satisfy the predicate
isProp which states that this type is proof-irrelevant, and which can be defined as follows :

isProp τ : (x :τ) → (y :τ) → x = y

The resizing axiom says that any type which is a mere proposition in a universe Uℓ+1 can be
“resized” to an equivalent one in the smaller universe Uℓ. By repeated application, it follows
that any mere proposition can be resized to belong to the bottom universe U0.

Accompanying this axiom, HoTT also provides a propositional truncation operation || · ||
which basically throws away the information content of a type, turning it into a mere
proposition. It comes with the introduction form | · | such that if e : τ , then |e| : ||τ ||
and with an elimination principle (let us call it elim||) which says that if |e1| : ||τ1|| and
e2 : τ1 → τ2, then elim|| e1 e2 : τ2 under the condition that τ2 is a mere proposition.
Intuitively, propositional truncation hides the information in a kind of black box and lets
you observe it only when computing a term which is itself “empty of information” (because
it is a mere proposition).

3 A first attempt

In this section we will show a first attempt at defining a calculus with a kind of resizing
axiom together with an encoding to and from a calculus with an impredicative bottom

JFLA 2025 – 36es Journées Francophones des Langages Applicatifs

Reconciling Impredicative

Axiom and Universe
Stefan Monnier

|| · || : Uℓ → U0 for all ℓ ∈ N
| · | : (t :Uℓ) → t → ||t|| for all ℓ ∈ N
bind : (t1 :Uℓ1) → (t2 :Uℓ2) → ||t1|| → (t1 → ||t2||) → ||t2|| for all ℓ1, ℓ2 ∈ N

Γ ⊢ bind τ1 τ2 |e1|τ1 e2 : ||τ2||
Γ ⊢ bind τ1 τ2 |e1|τ1 e2 ≃ e2 e1 : ||τ2||

(β||)

Figure 4. Axioms of r0CCω

universe. This is meant to show the general strategy we will use later on, but in a simpler
setting, as well as illustrate some of the problems we encountered along the way and the
way in which our resizing axioms have been refined, bringing them each time a bit closer to
those used in HoTT.

3.1 The uCCω and r0CCω calculi

Figure 3 shows our basic impredicative calculus we call uCCω, which consists in pCCω
modified to make its bottom universe impredicative. The result is a calculus comparable to
the original Calculus of Constructions extended with a tower of universes, or seen another
way, this is like Coq’s core calculus stripped of all forms of (co)inductive types, cumulativity,
and Set. Note that while this bottom universe is traditionally called Prop, we still call it U0.

Figure 4 shows the definitions we add to pCCω in order to form r0CCω, our first attempt at a
calculus with a kind of resizing axiom. We can see that it introduces a new type constructor
|| · || (pronounced “erased”), along with an introduction form | · |τ (pronounced “erase”
and where we will omit the type τ of its argument when it’s clear from context), and an
elimination form we called bind because this form of erasure forms a monad. The erasure || · ||
can be seen as a conflation of HoTT’s propositional truncation with the propositional resizing,
so rather than returning an erased version of the type in the same universe it immediately
resizes it into the bottom universe U0. To bind the introduction and the elimination forms
together we also included a conversion rule which is a form of β-reduction.

Note that this is inspired from HoTT’s resizing axiom and propositional truncation but is
much more limited, because we are trying to axiomatize the Prop universe, so we focus on
the specific combination of those axioms that we need to use.

The use of a monad was partly inspired by a similar use of a monad to encode impredicativity
by Spivack in its formalization of Hurkens’s paradox in Coq [14]. It was also motivated
by earlier failed efforts to solve this problem using the form of erasure found in ICC and
EPTS [9, 2, 10], which does not form a monad, where it seemed that an operation like bind
or join was an indispensable ingredient.

3.2 Encoding r0CCω into uCCω

As a kind of warm up, we first try to encode terms of r0CCω into terms of uCCω. This
turns out to be very easy because in uCCω we can simply provide definitions for the axioms

JFLA 2025 – 36es Journées Francophones des Langages Applicatifs

Reconciling Impredicative

Axiom and Universe
Stefan Monnier

of r0CCω :

|| · || : Uℓ → U0

||τ || = (t :U0) → (τ → t) → t

| · | : (t :Uℓ) → t → ||t||
|e|τ = λt :U0.λx : (τ → t).x e

bind : (t1 :Uℓ1) → (t2 :Uℓ2) → ||t1|| → (t1 → ||t2||) → ||t2||
bind = λt1 :Uℓ1 .λt2 :Uℓ2 .λx1 : ||t1||.λx2 : (t1 → ||t2||).x1 ||t2|| x2

And we can easily verify that these definitions satisfy the convertibility rule (here and later
as well, we will often omit the first two (type) arguments to bind to keep the code more
concise) :

bind |e1| e2
≃ |e1| ||τ2|| e2
≃ (λt :U0.λx : (τ1 → t).x e1) ||τ2|| e2
≃ (λx : (τ1 → ||τ2||).x e1) e2
≃ e2 e1

With these definitions in place, many properly typed term of r0CCω are also properly typed
term (of the same type) of uCCω. Sadly, not all of them, because uCCω is not a proper
superset of pCCω : in pCCω (and hence r0CCω) a type like (t :U0) → t has type U1 whereas
in uCCω it can only have type U0.

3.3 Encoding uCCω into r0CCω

The other direction of the encoding cannot use the same trick of simply providing definitions.
Instead we will translate terms with an encoding function [·]. The core of the problem that
we need to solve is that in uCCω, functions from Uℓ to U0 belong to universe U0 whereas in
r0CCω they necessarily belong to universe Uℓ, so the encoding will need to erase them with
|| · || in order to bring them down to U0.

Following the principle of Coq’s Prop universe, which is proof-irrelevant, our encoding
actually erases any and all elements of U0. The encoding function is basically syntax-driven,
but it requires type information which is not directly available in the syntax of the terms, so
technically the encoding takes as argument a typing derivation, but to make it more concise
and readable, we write it as if its argument were just a term. Note that it does return just
a term rather than a typing derivation. Here is our first attempt at encoding Prop into a
resizing axiom :

[x] = x
[Uℓ] = Uℓ

[(x :τ1) → τ2] =

{
||(x : [τ1]) → [τ2]|| if in U0

(x : [τ1]) → [τ2] otherwise

[λx :τ.e] =

{
|λx : [τ].[e]| if in U0

λx : [τ].[e] otherwise

[e1 e2] =

{
bind [e1] λf : ((x : [τ1]) → [τ2]).f [e2] if e1 in U0

[e1] [e2] otherwise

A crucial property of such an encoding is type preservation : for any typing derivation
Γ ⊢ e : τ in uCCω, we need to show that there is a typing derivation [Γ] ⊢ [e] : [τ] in
r0CCω. And the above encoding fails this basic test : the problem is that bind requires a
return type of the form ||τ2|| whereas in bind [e1] λf : ((x : [τ1]) → [τ2]).f [e2] the return type

JFLA 2025 – 36es Journées Francophones des Langages Applicatifs

Reconciling Impredicative

Axiom and Universe
Stefan Monnier

× : U0 → U0 → U0

(·, ·) : (t1 :U0) → (t2 :U0) → t1 → t2 → t1 × t2
·.0 : (t1 :U0) → (t2 :U0) → t1 × t2 → t1

|| · || : Uℓ → U0 for all ℓ ∈ N
| · | : (t :Uℓ) → t → ||t|| for all ℓ ∈ N

IsProp : U0 → U0

isprop : (t :Uℓ) → IsProp ||t|| for all ℓ ∈ N

elim|| :
(t1 :Uℓ) → (t2 :U0) →
||t1|| → (t1 → (t2 × IsProp t2)) → (t2 × IsProp t2)

for all ℓ ∈ N

Γ ⊢ elim|| τ1 τ2 |e1|τ1 e2 : τ2 × IsProp τ2

Γ ⊢ elim|| τ1 τ2 |e1|τ1 e2 ≃ e2 e1 : τ2 × IsProp τ2
(β||)

Γ ⊢ (e1, e2).0 : τ

Γ ⊢ (e1, e2).0 ≃ e1 : τ
(β.0)

Figure 5. Axioms of rCCω

is [τ2]. This type is in the universe U0, so we know we will erase it, but as written, the types
don’t guarantee it. For example if τ2 is a type variable t its encoding will just be t.

There is a very simple solution to this problem : change bind so it accepts any return type
t2. This would be compatible with our encoding, since our definition of bind in uCCω does
not actually take advantage of the fact that the return type is erased. The problem is that
it strengthens bind to the point of being too different from the elim|| of HoTT : it would let
us have a simple proof of equivalence between uCCω and r0CCω but at the cost of making
r0CCω unrelated to the axiom of propositional resizing.

4 Encoding Prop as an axiom

In this section we analyze and fix the above problems, terminating with a proof of quasi-
equivalence between uCCω and a new calculus rCCω.

Let us consider the following typing derivation in uCCω :

f1 : (U0 → U0), t :U0, f2 : (t → f1 t), x : t ⊢ f2 x : f1 t

In order to be able to use bind in the encoding of f2 x, we need a proof that [f1 t] will be
an erased type. We can get this proof in one of two ways :

— We can obtain it from the encoding of f1 t by making it so the encoding of a type
that belongs to U0 is a pair of a type and a proof that it’s erased.

— We can obtain it from the encoding of f2 x by making it so the encoding of values in
the bottom universe are pairs of a value and proof that this value has an erased type.

In either case we will want to adjust our axioms so bind does not require a return type of the
form ||τ2|| but is content with getting a proof that the return type is erased. To some extent,
both can be made to work, but pairing the proof with the type requires a dependent pair,
which we would not be able to encode into uCCω without extensions. So we will instead let
f2 return a value together with a proof that it has an erased type, since that only requires
plain tuples which we can easily encode in uCCω.

Figure 5 shows the axioms of our new calculus rCCω. Compared to r0CCω, we have added
pairs (e1, e2) of type τ1 × τ2, as well as a new predicate IsProp τ with a single introduction
form isprop τ stating that ||τ || satisfies this predicate. Furthermore bind is now renamed
to elim|| (since its type is not that of a monad’s bind anymore) and it now requires the

JFLA 2025 – 36es Journées Francophones des Langages Applicatifs

Reconciling Impredicative

Axiom and Universe
Stefan Monnier

JτK =

{
[τ]× IsProp [τ] if τ : U0

[τ] otherwise

[x] = x
[Uℓ] = Uℓ

[(x :τ1) → τ2] =

{
||(x :Jτ1K) → Jτ2K|| if in U0

(x :Jτ1K) → Jτ2K otherwise

[λx :τ1.e] =

{
(|λx :Jτ1K .[e]|, isprop ((x :Jτ1K) → Jτ2K)) if in U0

λx :JτK .[e] otherwise

[e1 e2] =

{
elim|| ([e1].0) λf : ((x :Jτ1K) → Jτ2K).f [e2] if e1 : (x :τ1) → τ2 : U0

[e1] [e2] otherwise

Figure 6. Encoding uCCω into rCCω

elimination to return a proof that the result is erased in the sense that it satisfies IsProp .
Notice that we only included an elimination form to extract the first element of a pair but
not the second and that there is no elimination form for IsProp τ . This is not an oversight but
simply reflects the fact that our encoding does not directly make use of these eliminations,
although they are presumably needed inside elim||.

4.1 Encoding uCCω into rCCω

Figure 6 shows the new encoding function from uCCω into rCCω. The function is now
split into two : the encoding of terms [·] and the encoding of types J·K. As before we abuse
the notation in the sense that the functions as written seem to take only a syntactic term
as argument, yet they really need more type information, such as the information that
would come with a typing derivation as input. In a sense, instead of writing [e] we should
really write [Γ ⊢ e : τ] and when we write JτK it similarly really means JΓ ⊢ τ : UℓK.
An alternative would be to change the syntax of our terms so they come fully annotated
everywhere with their types, or to make them use an intrinsically typed representation. But
we opted for this abuse of notation because we feel that it lets the reader see the essence
more clearly.

Note that both of those functions only return syntactic terms and not typing derivations. A
mechanization of these functions might prefer to return typing derivations, so as to make it
intrinsically type preserving, but for a paper proof like the one we present here, we found it
preferable to return syntactic terms and then separately show the translation to be type
preserving.

Lemma 4.1 (Substitution commutes with encoding).
If Γ, x : τ2,Γ

′ ⊢ e1 : τ1 and Γ ⊢ e2 : τ2 hold in uCCω, then in rCCω we have that
[e1{e2/x}] = [e1]{[e2]/x}.

Proof sketch. By structural induction on the typing derivation of e1. This is the direct
consequence of the fact that [x] = x, which is an indispensable ingredient in all such
syntactic models [3].

Lemma 4.2 (Computational soundness).
If Γ ⊢ e1 ≃ e2 : τ holds in uCCω then JΓK ⊢ [e1] ≃ [e1] : JτK holds in rCCω.

JFLA 2025 – 36es Journées Francophones des Langages Applicatifs

Reconciling Impredicative

Axiom and Universe
Stefan Monnier

Proof sketch. This lemma needs to be proved by mutual induction with the lemma of type
preservation since we need the types to be preserved in order to be able to instantiate
the conversion rules in rCCω. An alternative would be to define our calculi with untyped
conversion rules [13]. The proof also relies on the fact that Γ ⊢ e1 ≃ e2 : τ implies both
Γ ⊢ e1 : τ and Γ ⊢ e2 : τ in order to be able to use the [·] functions, although we omit the
proof of this metatheoretical property which can be shown easily.

As for the proof itself : The cases for congruence rules are handled straightforwardly
by the use of the induction hypothesis ; For the β rule, we need to show that [(λx :
τ1.e1) e2] ≃ [e1{e2/x}]. The interesting case is when the function is in the universe U0,
and hence erased :

[(λx :τ1.e1) e2]
= [by definition of [·]]
elim|| ([(λx :τ1.e1)].0) λf : ((x :Jτ1K) → Jτ2K).f [e2]
= [by definition of [·]]
elim|| ((|λx :Jτ1K .[e1]|, isprop ((x :Jτ1K) → Jτ2K)).0) λf : ((x :Jτ1K) → Jτ2K).f [e2]
≃ [via the β.0 rule]
elim|| (|λx :Jτ1K .[e1]|) λf : ((x :Jτ1K) → Jτ2K).f [e2]
≃ [via the β|| rule]
(λf : ((x :Jτ1K) → Jτ2K).f [e2]) λx :Jτ1K .[e1]
≃ [via the β rule]
(λx :Jτ1K .[e1]) [e2]
≃ [via the β rule]
[e1]{[e2]/x}
= [by the substitution lemma]
[e1{e2/x}]

Theorem 4.3 (Type Preserving encoding of uCCω into rCCω).
If we have Γ ⊢ e : τ in uCCω, then JΓK ⊢ [e] : JτK holds in rCCω.

Proof sketch. By induction on the typing derivation Γ ⊢ e : τ .

For the conversion rule, the proof defers all the work to the computational soundness lemma.

For the other rules, the more interesting case is the function application rule when the
function is in U0 (i.e. the case that failed in our earlier naive attempt). In that case we have
Γ ⊢ e1 e2 : τ2{e2/x} and we need to show

JΓK ⊢ elim|| ([e1].0) λf : ((x :Jτ1K) → Jτ2K).f [e2] : Jτ2{e2/x}K

By inversion we know that Γ ⊢ e1 : (x :τ1) → τ2 and Γ ⊢ e2 : τ1. Hence by the induction
hypothesis we have JΓK ⊢ [e1] : J(x :τ1) → τ2K and JΓK ⊢ [e2] : Jτ1K. By definition
of J·K these rewrite to JΓK ⊢ [e1] : ||(x :Jτ1K) → Jτ2K|| × IsProp ||(x :Jτ1K) → Jτ2K|| and
JΓK ⊢ [e2] : [τ1]× IsProp [τ1].

Using the following shorthands :

P τ = τ × IsProp τ
T1 = (x :Jτ1K) → Jτ2K

we can rewrite them as JΓK ⊢ [e1] : P ||(x :Jτ1K) → Jτ2K|| or even JΓK ⊢ [e1] : P ||T1|| and
JΓK ⊢ [e2] : P [τ1]. Furthermore, since e1 is in U0 we know that its return value is as well,
so we know that Jτ2K = P [τ2].

From that we get the desired conclusion using a mix of construction, weakening, and
substitution :

JFLA 2025 – 36es Journées Francophones des Langages Applicatifs

Reconciling Impredicative

Axiom and Universe
Stefan Monnier

S = { Uℓ | ℓ ∈ N }
A = { (Uℓ : Uℓ+1) | ℓ ∈ N }
R = { (Uℓ1 ,Uℓ2 ,Umax(ℓ1,ℓ2)) | ℓ1, ℓ2 ∈ N }

∪ { (Uℓ,U0,U0) | ℓ ∈ N }

Figure 7. Definition of u+CCω as a PTS.

JΓK ⊢ [e1] : P ||T1||
JΓK ⊢ [e1] : ||T1|| × . . .

JΓK ⊢ [e1].0 : ||T1||

JΓK , f :T1 ⊢ f : T1

JΓK ⊢ [e2] : Jτ1K
JΓK , f :T1 ⊢ [e2] : Jτ1K

JΓK , f :T1 ⊢ f [e2] : (P [τ2]){[e2]/x}
JΓK , f :T1 ⊢ f [e2] : P ([τ2]{[e2]/x})

JΓK , f :T1 ⊢ f [e2] : P [τ2{e2/x}]
JΓK ⊢ λf.f [e2] : T1 → P [τ2{e2/x}]

JΓK ⊢ elim|| ([e1].0) λf.f [e2] : P [τ2{e2/x}]
JΓK ⊢ elim|| ([e1].0) λf : ((x :Jτ1K) → Jτ2K).f [e2] : Jτ2{e2/x}K

Theorem 4.4 (Consistency preservation of the encoding of uCCω into rCCω).
The type J⊥K is not inhabited in rCCω.

Proof sketch. This proof presumes without proof that rCCω is consistent. The traditional
choice for ⊥ would be (x : U0) → x, but it is even simpler to use (x : U1) → x, since
J(x :U1) → xK is just (x :U1) → x which should indeed not be inhabited in rCCω.

Together those two theorems show the relative consistency of uCCω : if rCCω is consistent,
then so is uCCω.

4.2 Encoding rCCω into u+CCω

Of course, now we still need to convert terms of our new calculus rCCω into uCCω. As we
saw in Section 3, this tends to fail because of missing rules in the PTS of uCCω, so we will
use u+CCω instead, which comes with the missing extra rules. Figure 7 shows the definition
of u+CCω : the difference with uCCω is hidden in the first R rule where ℓ2 is now allowed to
be 0, which means that (t :U0) → t can now have type U1 as well as type U0, depending on
whether we choose to use the first or the second rule. Contrary to uCCω and pCCω, u+CCω
is not a functional PTS, which means that the universe inhabited by (x : τ1) → τ2 is not
uniquely determined by the universes inhabited by τ1 and τ2.

Now that we have a strong enough target language, Figure 8 shows how we convert rCCω
into it using the same approach as for r0CCω, i.e. by providing definitions for the various
axioms.

The definitions are mostly unchanged, just supplemented with new ones. This is fundamen-
tally the consequence of the fact that our definition of elim|| does not actually need to look
at the IsProp proof because our encoding of || · || lets us observe the “erased” term even if
the result is not itself erased, as long as it is in U0. For this reason we can use degenerate
definitions for our pairs and for IsProp.

As before, we have to make sure that those definitions satisfy the convertibility rules of rCCω.
For β||, the definition of elim|| is basically the same as the earlier bind, so the conversion

JFLA 2025 – 36es Journées Francophones des Langages Applicatifs

Reconciling Impredicative

Axiom and Universe
Stefan Monnier

· × · : U0 → U0 → U0

t1 × t2 = t1

(·, ·) : (t1 :U0) → (t2 :U0) → t1 → t2 → t1 × t2
(x1, x2) = x1

·.0 : (t1 :U0) → (t2 :U0) → t1 × t2 → t1
x.0 = x

IsProp : U0 → U0

IsProp τ = (t :U0) → t → t

isprop : (t :Uℓ) → IsProp ||t||
isprop τ = λt :U0.λx : t.x

|| · || : Uℓ → U0

||τ || = (t :U0) → (τ → t) → t

| · | : (t :Uℓ) → t → ||t||
|e|τ = λt :U0.λx : (τ → t).x e

elim|| :
(t1 :Uℓ) → (t2 :U0) →
||t1|| → (t1 → (t2 × IsProp t2)) → (t2 × IsProp t2)

elim|| = λt1 :Uℓ.λt2 :U0.
λx1 : ||t1||.λx2 : (t1 → (t2 × IsProp t2)).
x1 (t2 × IsProp t2) x2

Figure 8. Definitions for rCCω’s axioms in uCCω

works just as before :

elim|| |e1| e2
≃ |e1| (τ2 × IsProp τ2) e2
≃ (λt :U0.λx : (τ1 → t).x e1) (τ2 × IsProp τ2) e2
≃ (λx : (τ1 → (τ2 × IsProp τ2)).x e1) e2
≃ e2 e1

And for β.0 it is even simpler, thanks to our degenerate encoding of pairs :

(e1, e2).0 ≃ e1.0 ≃ e1

Of course, a more traditional definition of pairs using Church’s impredicative encoding would
have worked as well.

We can put these definitions together in a substitution we will call σr. With these definitions
in place, we can define our encoding as applying the substitution σr :

Theorem 4.5 (Type Preserving encoding of rCCω into u+CCω).
If we have Γ ⊢ e : τ in rCCω, then Γ[σr] ⊢ e[σr] : τ [σr] in u+CCω.

Proof sketch. Beside the axioms (provided by σr) and the new convertibility rules which we
have just shown to be validated by σr, rCCω is a strict subset of u+CCω.

Theorem 4.6 (Consistency preservation of the encoding of rCCω into u+CCω).
The encoding ⊥[σr] of rCCω’s ⊥ is not inhabited in u+CCω.

Proof sketch. We presume again without proof that u+CCω is consistent. Using (x :U1) → x
as our ⊥ again, we can see that ⊥ does not refer to any of rCCω’s axioms, so ((x :U1) → x)[σr]
is just (x :U1) → x which is indeed not inhabited in uCCω.

JFLA 2025 – 36es Journées Francophones des Langages Applicatifs

Reconciling Impredicative

Axiom and Universe
Stefan Monnier

τ =
−−−−→
(y :τy) → Uℓ+1 ∀i. Γ, x :τ ⊢ τi : Uℓ+1 ⊢ isCon(x, τi)

Γ ⊢ Ind(x :τ)⟨τ⃗⟩ : τ

Γ ⊢ τI : τ τI = Ind(x :τ)⟨τ⃗⟩
Γ ⊢ Con(τI , n) : τn{τI/x}

Γ ⊢ e : τI τ⃗u τI = Ind(x :)⟨τ⃗⟩ ∀i. Γ ⊢ ei : ∆{x, τi, er,Con(τI , i)}
Γ ⊢ Elim(e, er)⟨e⃗⟩ : er τ⃗u e

Γ ⊢ Elim(Con(τI , i) e⃗s, er)⟨e⃗⟩ : τ τI = Ind(x :
−−−−−→
(xx :τx) → s)⟨τ⃗⟩

eF = λ−−−→xx :τx.λxc :τI x⃗x.Elim(xc, er)⟨e⃗⟩
Γ ⊢ Elim(Con(τI , i) e⃗s, er)⟨e⃗⟩ ≃ ∆[x, τi, ei, eF] e⃗s : τ

(β-Ind)

Figure 9. Main new rules for inductive types

Together those two theorems show the relative consistency of rCCω : if u+CCω is consistent,
then so is rCCω.

5 Inductive types

In this section we will show how this result generalizes to systems with inductive types in the
higher, predicative universes, in the tradition of UTT [8]. We will call respectively uCCωI
and rCCωI the previous calculi extended with inductive types. The extension uses the same
syntax and typing rules in all calculi and is, in this sense, orthogonal to the differences in
our underlying calculi.

5.1 Basic predicative inductive types

There are many different ways to define inductive types. We use here a presentation inspired
from [17]. Nothing in this subsection is new material. Here is the extended syntax of the
language :

(var) x, y, f, t ∈ V
(sort) s ∈ S
(term) e, τ ::= s | x | (x :τ1) → τ2 | λx :τ.e | e1 e2

| Ind(x :τ)⟨τ⃗⟩ | Con(τ, n) | Elim(e, er)⟨e⃗⟩

Ind(x : τ)⟨τ⃗⟩ is a new inductive type of kind τ where τ⃗ are the types of its constructors,
where x is bound (and refers to the inductive type itself) ; Con(τ, n) is the nth constructor of
the inductive type τ ; and Elim(e, er)⟨e⃗⟩ is the corresponding eliminator, where e is a value
of an inductive type, e⃗ are the branches corresponding to each one of the constructors of
that type, and er is a function describing the return type of each branch and of the overall
result. We use the notation τ⃗ to mean 0 or more elements τ0...τn ; we use that same vector
notation elsewhere to denote a (possibly empty) list of arguments.

Figure 9 shows the added rules of our language. These rules rely on auxiliary judgments
shown in Figure 10. At the top are the three typing rules for the three new syntactic forms.
The rule for Ind uses an auxiliary judgment ⊢ isCon(x, τ) which says that τ is a valid type
for a constructor of an inductive type where x is a variable that stands for that inductive

JFLA 2025 – 36es Journées Francophones des Langages Applicatifs

Reconciling Impredicative

Axiom and Universe
Stefan Monnier

x ̸∈ fv(e⃗)

⊢ isCon(x, x e⃗)

⊢ isCon(x, τ2) x ̸∈ fv(τy)

⊢ isCon(x, (y :τy) → τ2)

⊢ isCon(x, τ2) x ̸∈ fv(τ⃗y) x ̸∈ fv(e⃗)

⊢ isCon(x, (
−−−−→
(y :τy) → x e⃗) → τ2)

∆{x, x e⃗, er, ec} = er e⃗ ec
∆{x, (y :τy) → τ2, er, ec} = (y :τy) → ∆{x, τ2, er, ec y}
∆{x, (

−−−−→
(y :τy) → x e⃗) → τ2, er, ec} = (xp : (

−−−−→
(y :τy) → x e⃗)) →

(
−−−−→
(y :τy) → er e⃗ (xp y⃗)) →
∆{x, τ2, er, ec xp}

∆[x, x e⃗, ef , eF] = ef
∆[x, (y :τy) → τ2, ef , eF] = λy :τy.∆[x, τ2, ef y, eF]

∆[x, (
−−−−→
(y :τy) → x e⃗) → τ2, ef , eF] = (xp : (

−−−−→
(y :τy) → x e⃗)) →

∆[x, τ2, ef xp (λ−−→y :τy.eF e⃗ (ep y⃗)), eF]

Figure 10. Auxiliary new rules for inductive types

type. This judgment thus verifies that τ indeed returns something of type x and that the
only other occurrences of x in τ are in strictly positive positions. The rule for Con just
extracts the type of the constructor from the inductive type itself. The rule for Elim enforces
that it is applied to a value of an inductive type and checks that the type of each branch is
consistent with the inductive type. To do that it relies on an auxiliary meta-level function
∆{x, τ, er, ec} which computes the type of a branch from the type τ of the corresponding
constructor where er describe the return type of the elimination, and ec is a reconstruction of
the value being matched by the branch. This function is basically defined by induction on the
⊢ isCon(x, τ) proof that the constructor’s type is indeed valid. You can see in the second line
of that definition that for every field of the inductive type, the branch gets a corresponding
argument (the field’s value) and in the third line you can see that in addition to that, for
those fields which hold a recursive value the branch receives the result of performing the
induction on that field.

The final rule of Figure 9 shows the new reduction rule for inductive types. The term eF
defined there represents a recursive call to the eliminator, which is applied to every recursive
field of the constructor. Like the typing rule of Elim, this rule uses an auxiliary meta-function
∆[x, τ, ef , eF] which computes the appropriate call to the branch ef from the type τ of the
constructor, and where eF is the function to use to recurse. Just like ∆{x, τ, er, ec}, this
function is basically defined by induction on the ⊢ isCon(x, τ) proof that the constructor’s
type is valid.

5.2 From uCCωI to rCCωI

When encoding terms from uCCωI into rCCωI, we can actually keep the same rules as those
we used when encoding uCCω into rCCω except of course that we need to add new rules for
the new constructs. The result is shown in Figure 11.

Since our inductive types all live in universes above U0, their encoding is straightforward.
Yet, as we can see in the case of Elim, it requires some care : the last two arguments er and
e⃗ to Elim are functions that need to be treated specially :

JFLA 2025 – 36es Journées Francophones des Langages Applicatifs

Reconciling Impredicative

Axiom and Universe
Stefan Monnier

JτK =

{
[τ]× IsProp [τ] if τ : U0

[τ] otherwise

[x] = x
[Uℓ] = Uℓ

[(x :τ1) → τ2] =

{
||(x :Jτ1K) → Jτ2K|| if in U0

(x :Jτ1K) → Jτ2K otherwise

[λx :τ1.e] =

{
(|λx :Jτ1K .[e]|, isprop ((x :Jτ1K) → Jτ2K)) if in U0

λx :JτK .[e] otherwise

[e1 e2] =

{
elim|| ([e1].0) λf : ((x :Jτ1K) → Jτ2K).f [e2] if e1 : (x :τ1) → τ2 : U0

[e1] [e2] otherwise

[Ind(x :τ)⟨τ⃗⟩] = Ind(x :JτK)⟨[⃗τ]⟩
[Con(τ, n)] = Con([τ], n)

[Elim(e, er)⟨e⃗⟩] = Elim([e], e′r)⟨e⃗′⟩
where Γ ⊢ e : τI τ⃗u

τI = Ind(x :τ ′)⟨τ⃗⟩
τ ′ =

−−−−→
(y :τy) → Uℓ+1

e′r = λ
−−−−→
y :JτyK.λxd :JτI y⃗K .Jer y⃗ xdK

e′i = EtaBranch(x, τ ′, ei)

EtaBranch(x, x e⃗, eb) = [eb]
EtaBranch(x, (y :τy) → τ2, eb) = λy :JτyK .EtaBranch(x, τ2, eb y)

EtaBranch(x, (
−−−−→
(y :τy) → x e⃗x) → τ2, eb)

= λxp :
r−−−−→
(y :τy) → x e⃗X

z
.λz :

r−−−−→
(y :τy) → er e⃗x (xp y⃗)

z
.

EtaBranch(x, τ2, eb xp z)

Figure 11. Encoding uCCωI into rCCωI

JFLA 2025 – 36es Journées Francophones des Langages Applicatifs

Reconciling Impredicative

Axiom and Universe
Stefan Monnier

— Since er represents the return type of the elimination (and of its branches), it crucially
needs to be encoded with J·K rather than with [·], yet it is not a type but a function
which returns a type, so we need to η-expand it in order to be able to apply J·K to
the type it returns rather than to the function itself.

— e⃗ holds the code of each of the branches in the form of functions, but this use of
functions is mostly incidental, basically a kind of HOAS (Higher-Order Abstract
Syntax [12]) encoding of the syntax. Depending on the return type of the elimination
those functions may belong to the U0 universe yet we should not erase them since
Elim would then not know what to do with them. So, similarly to what we did for er,
we need to η-expand those functions in order to encode the body rather than the
function itself.

Lemma 5.1 (Substitution commutes with encoding).
If Γ, x : τ2,Γ

′ ⊢ e1 : τ1 and Γ ⊢ e2 : τ2 hold in uCCωI, then in rCCωI we have that
[e1{e2/x}] = [e1]{[e2]/x}.

Proof sketch. This still holds, as before, by structural induction on the typing derivation of
e1.

Lemma 5.2 (Computational soundness).
If Γ ⊢ e1 ≃ e2 : τ holds in uCCωI then JΓK ⊢ [e1] ≃ [e1] : JτK holds in rCCωI.

Proof sketch. The proof from the previous section mostly carries over unchanged. In the
new reduction rule for Elim, the η-expansions we applied to the branches of Elim make life
more difficult, but they get β-reduced as they should.

Lemma 5.3 (Positivity preservation).

If we have τ =
−−−−→
(y :τy) → Uℓ+1 and Γ, x :τ ⊢ τi : Uℓ+1 and ⊢ isCon(x, τ) in uCCωI, then we

also have ⊢ isCon(x, [τ]) in rCCωI.

Proof sketch. This holds by structural induction because τ lives in a universe above U0 so
the encoding does not touch the overall structure of τ , only the type of individual arguments
and only the non-recursive arguments, so the positivity is not affected.

Theorem 5.4 (Type Preserving encoding of uCCωI into rCCωI).
If we have Γ ⊢ e : τ in uCCωI, then JΓK ⊢ [e] : JτK holds in rCCωI.

Proof sketch. As was the case for computational soundness, the proof steps from the previous
section carry over unchanged. For Ind, we need to use the positivity preservation lemma. The
Con case is trivial. The Elim case is tedious but does not present any particular difficulty.

Theorem 5.5 (Consistency preservation of the encoding of uCCωI into rCCωI).
The type J⊥K is not inhabited in rCCωI.

Proof sketch. Unchanged.

Theorem 5.6 (Consistency preservation of the encoding of rCCωI into u+CCωI).
The encoding ⊥[σr] of rCCωI’s ⊥ is not inhabited in u+CCωI.

Proof sketch. Indeed, rCCωI uses exactly the same extra axioms as rCCω did, so we use
the same σr as before and the proof holds unchanged.

JFLA 2025 – 36es Journées Francophones des Langages Applicatifs

Reconciling Impredicative

Axiom and Universe
Stefan Monnier

6 Applicability

The quasi-equivalence we have shown between uCCωI and rCCωI seems to confirm our initial
intuition that an impredicative Prop universe is closely related to the propositional resizing
axiom. But there are still important differences to reconcile, starting with the difference
between uCCωI and u+CCωI, as well as between our axioms and the propositional resizing
axiom, and important differences between uCCωI and a system like Coq :

— The difference between uCCωI and u+CCωI may seem minor since it is usually perfectly
safe to lift a type from one universe to a higher one, as can happen for example in
systems that use universe subsumption. This said, encoding u+CCω into uCCω seems
difficult since there is no way in uCCω to lift types from U0 to a higher universe. We
would need to add axioms for it. The situation is more promising in uCCωI where we
can wrap elements from U0 into an inductive type to lift them to a higher universe.
Still, figuring out where to insert those lifts is left for future work.
In a sense this is related to the question in Coq of distinguishing those definitions
which rely on impredicativity from those that just happen to be defined in Prop but
could work just as well with a predicative universe. Except here, it’s the reverse : the
encoding from rCCωI falls within the uCCωI subset of u+CCωI for those U0 elements
that rely on impredicativity (and hence used the resizing axiom) but not for the other
ones, so we need to find those other ones and make them use Prop even though they
do not need its impredicativity.
Another avenue would be to try and encode u+CCω into rCCω, but the syntactic
approach we use is difficult to use with non-functional pure type systems because
a type like (x :τ1) → τ2 can be at the same time in U0 and in some other universe,
making it difficult to decide how to encode it.

— Our || · || erasure axiom combines propositional truncation and propositional resizing
in a single indivisible step. It is not clear what is the impact of this conflation but it
is an important difference : we cannot resize without truncating at the same time,
contrary to HoTT.

— Our inductive types live in universes above U0. This is probably the main limitation
of our current work. Handling inductive types in the impredicative universe poses
several important challenges : the main one is that to support strong elimination of
small inductive types in U0 we cannot apply || · || to those inductive types, which
means we cannot apply || · || to all terms in U0 any more. Maybe a solution might be
to stay closer to HoTT’s propositional truncation which allows elimination into other
universes than U0.

— Our calculi enjoy only the usual β laws but not the η laws. It seems quite challenging
to extend this work to allow e1 ≃ λx.e1 x. Maybe quotient types can provide a
solution, but it appears impossible to give a definitional equality to the quotient
types we would need, so we would have to manipulate equality proofs, making the
overall structure of the encoding significantly more complex, probably degenerating
to something similar to the encoding of ETT in ITT [18].

— The difference between uCCωI and u+CCωI is not the only reason why what we show
is not a strict equivalence : the two transformations are not inverses of each other.
Since we are mostly concerned about consistency, expressiveness, and interactions
with additional axioms, we do not consider it as a significant weakness, but it is a
weakness nevertheless.

7 Conclusion

In the previous installment of our investigation into impredicativity [11], we had a look at
how it relates to the kind of erasure found in systems like EPTS and ICC [9, 2, 10], which

JFLA 2025 – 36es Journées Francophones des Langages Applicatifs

Reconciling Impredicative

Axiom and Universe
Stefan Monnier

is a different kind of erasure from that associated with proof irrelevance.

This time, we have shown a close relationship between the two main ways to provide
impredicativity in current type theories, namely via a Prop impredicative universe, or via a
propositional resizing axiom, both of which are associated with proof irrelevance.

Amusingly, in our previous paper we were able to extend its base result from CCω to a
calculus extended with inductive types in the bottom (impredicative) universe, as found
in the original CIC papers [17], but not to a calculus with inductive types in the higher
universes, like UTT. This time, in contrast, we were able to extend our result from CCω to
a calculus like UTT but not to a calculus with inductive types in the bottom universe.

Acknowledgments

This work was supported by the Natural Sciences and Engineering Research Council of
Canada (NSERC) grant No 298311/2012 and RGPIN-2018-06225. Any opinions, findings,
and conclusions or recommendations expressed in this material are those of the author and
do not necessarily reflect the views of the NSERC.

Références
[1] Henk P. Barendregt. Introduction to generalized type systems. Journal of Functional

Programming, 1(2) :121–154, April 1991. doi:10.1017/S0956796800020025.

[2] Bruno Barras and Bruno Bernardo. Implicit calculus of constructions as a programming
language with dependent types. In Conference on Foundations of Software Science and
Computation Structures, volume 4962 of Lecture Notes in Computer Science, Budapest,
Hungary, April 2008. doi:10.1007/978-3-540-78499-9_26.

[3] Simon Boulier, Pierre-Marie Pédrot, and Nicolas Tabareau. The next 700 syntactical
models of type theory. In Certified Programs and Proofs, page 182–194, 2017. doi:

10.1145/3018610.3018620.

[4] Ana Bove, Peter Dybjer, and Ulf Norell. A brief overview of Agda – a functional
language with dependent types. In International Conference on Theorem Proving in
Higher-Order Logics, volume 5674 of Lecture Notes in Computer Science, pages 73–78,
August 2009. doi:10.1007/978-3-642-03359-9_6.

[5] Thierry Coquand and Gérard P. Huet. The calculus of constructions. Technical Report
RR-0530, INRIA, 1986.

[6] Gérard P. Huet, Christine Paulin-Mohring, et al. The Coq proof assistant reference
manual. Part of the Coq system version 6.3.1, May 2000.

[7] Antonius Hurkens. A simplification of Girard’s paradox. In International confe-
rence on Typed Lambda Calculi and Applications, pages 266–278, 1995. doi:10.1007/
BFb0014058.

[8] Zhaohui Luo. A unifying theory of dependent types : the schematic approach. In Logical
Foundations of Computer Science, 1992. doi:10.1007/BFb0023883.

[9] Alexandre Miquel. The implicit calculus of constructions : extending pure type systems
with an intersection type binder and subtyping. In International conference on Typed
Lambda Calculi and Applications, pages 344–359, 2001. URL : https://www.fing.edu.
uy/~amiquel/publis/tlca01.pdf, doi:10.1007/3-540-45413-6_27.

[10] Nathan Mishra-Linger and Tim Sheard. Erasure and polymorphism in pure type systems.
In Conference on Foundations of Software Science and Computation Structures, volume
4962 of Lecture Notes in Computer Science, pages 350–364, Budapest, Hungary, April
2008. URL : https://web.cecs.pdx.edu/~sheard/papers/FossacsErasure08.pdf,
doi:10.1007/978-3-540-78499-9_25.

JFLA 2025 – 36es Journées Francophones des Langages Applicatifs

https://doi.org/10.1017/S0956796800020025
https://doi.org/10.1007/978-3-540-78499-9_26
https://doi.org/10.1145/3018610.3018620
https://doi.org/10.1145/3018610.3018620
https://doi.org/10.1007/978-3-642-03359-9_6
https://doi.org/10.1007/BFb0014058
https://doi.org/10.1007/BFb0014058
https://doi.org/10.1007/BFb0023883
https://www.fing.edu.uy/~amiquel/publis/tlca01.pdf
https://www.fing.edu.uy/~amiquel/publis/tlca01.pdf
https://doi.org/10.1007/3-540-45413-6_27
https://web.cecs.pdx.edu/~sheard/papers/ FossacsErasure08.pdf
https://doi.org/10.1007/978-3-540-78499-9_25

Reconciling Impredicative

Axiom and Universe
Stefan Monnier

[11] Stefan Monnier and Nathaniel Bos. Is impredicativity implicitly implicit ? In Types for
Proofs and Programs, Leibniz International Proceedings in Informatics (LIPIcs), pages
9 :1–9 :19, 2019. doi:10.4230/LIPIcs.TYPES.2019.9.

[12] Frank Pfenning and Conal Elliott. Higher-order abstract syntax. In Programming
Languages Design and Implementation, pages 199–208, Atlanta, Georgia, June 1988.
ACM Press.

[13] Vincent Siles and Hugo Herbelin. Pure type system conversion is always typable.
Journal of Functional Programming, 22(2) :153–180, March 2012. doi:10.1017/

S0956796812000044.

[14] Arnaud Spiwack. Notes on axiomatising hurkens’s paradox, 2015. URL : https:
//arxiv.org/abs/1507.04577.

[15] The Univalent Foundations Program. Homotopy Type Theory : Univalent Foundations
of Mathematics. Institute for Advanced Study, 2013. URL : https://arxiv.org/abs/
1308.0729.

[16] Vladimir Voevodsky. Resizing rules - their use and semantic justification. Slides from a
talk in Bergen., sep 2011. URL : https://www.math.ias.edu/vladimir/sites/math.
ias.edu.vladimir/files/2011_Bergen.pdf.

[17] BenjaminWerner. Une Théorie des Constructions Inductives. PhD thesis, A L’Université
Paris 7, Paris, France, 1994. URL : https://hal.inria.fr/tel-00196524/.

[18] Théo Winterhalter, Matthieu Sozeau, and Nicolas Tabareau. Eliminating reflection
from type theory. In CPP 2019 - 8th ACM SIGPLAN International Conference on
Certified Programs and Proofs. URL : https://hal.science/hal-01849166.

JFLA 2025 – 36es Journées Francophones des Langages Applicatifs

https://doi.org/10.4230/LIPIcs.TYPES.2019.9
https://doi.org/10.1017/S0956796812000044
https://doi.org/10.1017/S0956796812000044
https://arxiv.org/abs/1507.04577
https://arxiv.org/abs/1507.04577
https://arxiv.org/abs/1308.0729
https://arxiv.org/abs/1308.0729
https://www.math.ias.edu/vladimir/sites/ math.ias.edu.vladimir/files/2011_Bergen.pdf
https://www.math.ias.edu/vladimir/sites/ math.ias.edu.vladimir/files/2011_Bergen.pdf
https://hal.inria.fr/tel-00196524/
https://hal.science/hal-01849166

	Introduction
	Background
	Impredicativity
	Propositional resizing

	A first attempt
	The [u] and [r0] calculi
	Encoding [r0] into [u]
	Encoding [u] into [r0]

	Encoding Prop as an axiom
	Encoding [u] into [r]
	Encoding [r] into

	Inductive types
	Basic predicative inductive types
	From [u] to [r]

	Applicability
	Conclusion

