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Formulas Rewritten and Normalized
Computationally, and Intuitionistically

Simplified
Hugo Férée1, Sam v. Gool1, and Yago Iglesias Vázquez1

1IRIF, Université Paris Cité, Paris, 75013, France

Abstract: We give a verified implementation of a procedure for simplifying
formulas of intuitionistic propositional logic, relying on a particular contraction-
free sequent calculus for this logic. We apply this procedure to simplify the
output given by a verified program for computing propositional quantifiers of
such formulas, developed by the the first- and second-named authors in earlier
work. This also allows us to simplify and improve the efficiency of that program,
as well as the proof of its correctness.

1 Introduction
This paper is a report on work in progress on the following question:

Given a propositional formula ϕ, how to compute
a ‘simpler’ formula ϕ′ that is intuitionistically equivalent to ϕ?

(1)

Here, by a propositional formula we mean any term built from variables, here denoted by
letters p, q, . . . , using binary operations ∨,∧,→, and a nullary operation ⊥. Alternatively,
one may think of such a formula as a type in a simply typed λ-calculus with zero, sum, and
product types. Throughout the paper, by equivalence of two formulas ϕ and ϕ′ we mean
that the formula (ϕ→ ϕ′)∧ (ϕ′ → ϕ) is provable, or, on the other side of the Curry-Howard
isomorphism, inhabited. The precise definition of the adjective ‘simpler’ in (1) that we use
here depends on a function associating to each formula a natural number, its weight. We
give the function in Definition 1 below; for now, it suffices to say that it satisfies the intuitive
property that shorter formulas have lower weight.

Since intuitionistic equivalence is decidable, there evidently exists a simplest formula
in any equivalence class, and such a formula is computable by a brute-force enumeration.
However, we here seek a practically feasible, and provably correct, answer to the question
(1). The immediate origin of the question, for us, lies in a verified Coq/Rocq implementation
by the first- and second-named authors [FG23] of Pitts’ procedure [Pit92] for computing
propositional quantifiers in intuitionistic logic. Given a propositional formula ϕ and a
propositional variable p, the formulas ∃p.ϕ and ∀p.ϕ are abstractly characterized by the
usual rules of quantification, see Definition 2. The surprising result of [Pit92] is that for any
ϕ, there actually exist propositional formulas Ep(ϕ) and Ap(ϕ) that are equivalent to ∃p.ϕ
and ∀p.ϕ, respectively. This implies in particular that second-order propositional quantifiers
may in fact be encoded, up to equivalence, in the zero-order fragment. Pitts’ theorem has
many consequences for higher-order intuitionistic logic, including a uniform interpolation
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theorem and the existence of a model completion for the class of Heyting algebras, further
see [GZ02]. Since the implementation of [FG23], researchers in intuitionistic logic have also
become interested in computing the formulas Ep(ϕ) and Ap(ϕ) on specific examples; see for
example [Koc23] and also our remarks in Section 5 below.

A main issue that we already identified in [FG23] was that, even on relatively small
inputs, the formulas that were output by our program were very large; we will quantify
this in Table 4 below. In all specific cases of interest, one could show manually that the
output would admit substantial simplifications, but developing an algorithm for applying
such simplifications was both a conceptual and technical challenge. Our main contribution
here is to give such a simplification algorithm for intuitionistic formulas, accompanied by
a verified implementation in Coq/Rocq. Further, by interleaving Pitts’ original recursive
procedure with our simplification procedure, we obtain a program with much improved
efficiency. This moreover allows us to simplify Pitts’ procedure itself both on paper and in
the verified implementation, building also on recent insights from work in [FGGS24].

Our approach, which we explain in more detail in the rest of this paper, relies on the
sequent calculus G4iP, which was also used by Pitts in [Pit92] and implemented in [FG23].
The first step is to use this calculus to obtain a decision procedure for the logic, for which
we provide a verified implementation, as we explain in Section 3. We subsequently use the
decision procedure to algorithmically simplify both sides of a sequent. Both the decision and
simplification procedures are guided by the invertible rules of the sequent calculus. To be
able to use the decision procedure inside the simplification procedure, we use admissibility
of cut and weakening. For this, we give a verified proof of cut admissibility for the sequent
calculus G4iP, relying on the formally verified proof of [SvdGGI23], by integrating the ideas
developed there into our existing Coq/Rocq development. We give more details in Section 4.

In order to make our simplification algorithm usable for calculating propositional quan-
tifiers, we first give a formal proof in Coq/Rocq that these simplification functions are
correct, in the sense that they always compute equivalent formulas and contexts of lower
weight. Given a correct simplification function, we interleave it with Pitts’ calculation at
each recursive call, and then show, with a relatively low amount of effort, that the newly
calculated propositional quantifiers are still correct. This methodology means that one may
still improve the simplification function later, without touching the rest of the correctness
proof for the propositional quantifiers.

This paper should be read as a report on work in progress, which we believe opens up a
number of interesting new questions: What is the theoretical complexity of the simplification
problem for a given weight function? To what extent is the simplification function that
we develop here optimal? And is it even practically worthwhile to find an optimal such
function, if it makes the algorithm more complex to verify?

The Coq/Rocq development is available online at https://github.com/hferee/UIML/.
A web demo of the calculator is available at https://hferee.github.io/UIML/, which also
links to online documentation of the Coq/Rocq code. Throughout this paper, we provide
links to relevant Coq/Rocq declarations under a clickable symbol . The reference commit
for the code discussed in this paper is 44d4c8e.

2 Sequents, proofs, and propositional quantifiers
A formula is a term built from variables and ⊥ using →, ∨ and ∧. The symbol > is defined
as ⊥ → ⊥ and, for any formula ϕ, ¬ϕ is defined as ϕ → ⊥. A context is a finite list
of formulas, and is typically denoted with a capital Greek letter Γ or ∆. We denote the
concatenation of contexts Γ and ∆ by Γ,∆, or occasionally Γ •∆, and we abuse notation to
write expressions like Γ, ϕ and Γ •ϕ for the concatenation of Γ with the one-element context
containing only ϕ. A sequent is a pair of a context and a formula, denoted Γ ⇒ ϕ. We now
recall a notion of weight on formulas and sequents [Pit92].
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Definition 1 ( ). The weight of a formula ( ) is inductively defined as:
weight(⊥) = 1
weight(q) = 1

weight(ϕ ∨ ψ) = 1 + weight(ϕ) + weight(ψ)
weight(ϕ ∧ ψ) = 2 + weight(ϕ) + weight(ψ)

weight(ϕ→ ψ) = 1 + weight(ϕ) + weight(ψ)

The weight of a context Γ ( ) is then defined as weight(Γ) def
=

∑
ϕ∈Γ 5

weight(ϕ). For a
sequent Γ ⇒ ϕ, its weight is defined as weight(Γ • ϕ • ϕ). The doubling of the right hand
side formula ϕ is a detail that is only needed for treating rules in intuitionistic modal logic.

The interest of this notion of weight is that it yields a well-founded ordering on formulas
and on sequents, where Γ ⇒ ϕ is considered smaller than Γ′ ⇒ ϕ′ if it has lower weight.

Throughout the paper, we make use of the sequent calculus G4iP for intuitionistic
propositional logic [Vor70, Hud88, Dyc92]. We recall the rules of the calculus in Fig. 1. The
calculus was extended to intuitionistic strong Löb logic in [SvdGGI23], giving a sequent
calculus G4iSL for this modal logic. Certain portions of our formalization work, notably on
cut admissibility and decidability, are also done for that calculus, but in this paper we focus
on our work for G4iP, the non-modal part.

The calculus G4iP has the property that each sequent in the antecedent of a rule is strictly
smaller than the conclusion of the rule. Also, to any given sequent, only finitely many
instances of the rules can be applied. It follows from this that the calculus is terminating.

(⊥L)
⊥,Γ ⇒ χ

(IdP)
Γ, p⇒ p

Γ, ϕ, ψ ⇒ χ
(∧L)

Γ, ϕ ∧ ψ ⇒ χ

Γ, ϕ⇒ ψ
(→R)

Γ ⇒ ϕ→ ψ

Γ, p, ϕ⇒ χ
(p→L)

Γ, p, p→ ϕ⇒ χ

Γ, ϕ→ (ψ → χ) ⇒ δ
(∧→L)

Γ, (ϕ ∧ ψ) → χ⇒ δ

Γ, ϕ→ χ, ψ → χ⇒ δ
(∨→L)

Γ, (ϕ ∨ ψ) → χ⇒ δ

Γ, ϕ⇒ χ Γ, ψ ⇒ χ
(∨L)

Γ, ϕ ∨ ψ ⇒ χ

Γ ⇒ ϕ Γ ⇒ ψ
(∧R)

Γ ⇒ ϕ ∧ ψ

Γ ⇒ ϕi
(∨Ri), i∈{1,2}

Γ ⇒ ϕ1 ∨ ϕ2

Γ, ψ → χ⇒ ϕ→ ψ Γ, χ⇒ δ
(→→L)

Γ, (ϕ→ ψ) → χ⇒ δ

Figure 1. The sequent calculus G4iP.

A proof in G4iP of a sequent Γ ⇒ ϕ is a finite rooted tree whose nodes are labeled by
sequents, so that every node together with its (upward) children is an instance of one of the
rules in Fig. 1, and the root is labeled Γ ⇒ ϕ. We write Γ ` ϕ if there exists a proof of the
sequent Γ ⇒ ϕ in G4iP, and we call ϕ provable if ∅ ` ϕ. Since weakening is admissible ( ),
it follows that, if ϕ is provable, then Γ ` ϕ for any Γ. An important observation about the
weight function given in Definition 1 is that the weight of sequents decreases strictly as one
moves upward in G4iP.

For the purpose of the decision procedure that we will discuss below, it is useful to classify
the rules of G4iP according to their number of premises, and their invertibility. Here, recall
that a rule is invertible if, whenever its conclusion is provable, all of its premises must be
provable. We also call a rule linear if it has only one premise. With this classification, we
observe:

• 0 premises: ⊥L and IdP.

• 1 premise and invertible: ∧L,→R, p→L,∧→L, and ∨→L.
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• 2 premises and invertible: ∨L and ∧R.

• not invertible: ∨R1,∨R2 and →→L.
Pitts’ theorem [Pit92] says that, for any formula ϕ and propositional variable p, the

formulas ∃p.ϕ and ∀p.ϕ can be expressed by quantifier-free propositional formulas. We now
recall a formal definition of the meaning of these propositional quantifications.
Definition 2 (Uniform interpolants). Let ϕ be a formula and p a propositional variable. A
formula ∃p.ϕ is a right uniform interpolant for ϕ with respect to p if it is a p-free formula
such that ϕ ` ∃p.ϕ, and for any formula ψ, if ϕ ` ψ then ∃p.ϕ ` ψ, i.e. ∃p.ϕ is the strongest
p-free formula that is entailed by ϕ.

Dually, ∀p.ϕ is a left uniform interpolant for ϕ with respect to p if it is a p-free formula
such that ∀p.ϕ ` ϕ, and for any formula θ, if θ ` ϕ then θ ` ∀p.ϕ, i.e. ∀p.ϕ is the weakest
p-free formula that entails ϕ.

Note that a right uniform interpolant is unique up to equivalence, and so is a left
uniform interpolant. In previous work [FG23] the first- and second-named authors developed
a Coq/Rocq formalization of the construction of uniform interpolants for intuitionistic
propositional logic, which was extended in [FGGS24] to modal logics K and GL, and to
intuitionistic strong Löb logic iSL.

3 Decision procedure
Given a list of formulas Γ and a formula ϕ, we give a procedure that decides if there exists
a proof of Γ ⇒ ϕ ( ). Indeed, the inductive definition given by Figure 1 does not guarantee
decidability by construction. To explain the intuition for this decision procedure, one may
start from the idea of a naive proof search, which would explore all possible proof trees :
Given an input sequent, for each applicable instance of a rule, one would recursively search
for a proof for each of its premises. However, such a naive proof search is very inefficient.

Our implementation, for which we give the pseudocode in Fig. 2, improves on this by
applying the rules in a specific order, so as to avoid unnecessary branching as much as
possible: (1) we first try to apply axioms to end the proof search; (2) if this is not possible,
then we try to apply linear invertible rules, so as to obtain a single equivalent subsequent, and
iterate; (3) if none of these apply, then we try to apply a duplicating invertible proof, leading
to two successive proof searches; (4) finally, if no other rule is applicable, try each possible
instance of a non-invertible rule and continue the search, in a depth-first-search manner.
This leads to the following function, expressed in pseudocode as a pattern match in Fig. 2.
For the reader’s convenience, we annotate each case with the name of the corresponding
G4iP-rule. When defining this function in Coq/Rocq, one needs to simultaneously prove
termination, which we obtain from the fact that applying G4iP-rules upwards decreases the
weight of a sequent.

We found that the performance of the function in Fig. 2 is good enough to allow for
repeated calls inside the normalization procedure that we describe below, without significant
slow-down. On the other hand, it is likely that the above function does not have optimal
theoretical complexity; more involved algorithms decide the same problem in O(n log n)-
space [Hud93]. However, formally verifying that such an optimized algorithm is correct
would be a more difficult task, while this remains straightforward for our implementation
given above.

4 Simplification procedure
In this section, we will explain how we use the above decision procedure to simplify formulas
and contexts, first in general, and then specifically for the computation of Pitts’ propositional
quantifiers.
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function Γ `? ϕ
match Γ, ϕ with
| ∆1 • ⊥ • ∆2,_ => true (⊥L)
| _, p when p ∈ Γ => true (IdP)

| ∆1 • δ1 ∧ δ2 • ∆2 => δ1 • δ2 • ∆1 • ∆2 `? ϕ (∧L)
| _, ϕ1 → ϕ2 => ϕ1 • Γ `? ϕ2 (→ R)

| ∆1 • p • ∆2 • p→ δ • ∆3,_ => δ • ∆1 • ∆2 • ∆3 • p `? ϕ (p→ L)

| ∆1 • (δ1 ∧ δ2) → δ3 • ∆2,_ => (δ1 → (δ2 → δ3)) • ∆1 • ∆2 `? ϕ (∧→ L)

| ∆1 • (δ1 ∨ δ2) → δ3 • ∆2,_ => (δ1 → δ3) • (δ2 → δ3) • ∆1 • ∆2 `? ϕ (∨→ L)

| _, ϕ1 ∧ ϕ2 => (Γ `? ϕ1) and (Γ `? ϕ2) (∧R)

| ∆1 • δ1 ∨ δ2 • ∆2,_ => (δ1 • ∆1 • ∆2 `? ϕ) and (δ2 • ∆1 • ∆2 `? ϕ) (∨L)
| _, ϕ1 ∨ ϕ2 when (Γ `? ϕ1) or (Γ `? ϕ2) => true (∨R)

| ∆1 • (δ1 → δ2) → δ3 • ∆2,_ when . . .
. . . (δ2 • δ3 • ∆1 • ∆2 `? δ1 → δ2) and (δ3 • ∆1 • ∆2 `? ϕ) => true (→→ L)

| _, _ => false
end function

Figure 2. Decision procedure for G4iP.

4.1 Simplification of formulas in context
Our simplification procedure for formulas is a recursion on the shape of the formula to be
simplified. In order to explain the idea, consider how one might simplify the formula

p ∧ ((q → r) ∧ (p→ q)) . (2)

After two recursive calls, we will try to simplify p→ q. At this point, we should remember
that we are simplifying the formula p → q in a context that contains p. Thus, our
recursive procedure will have to keep track of the context in which we are simplifying as an
additional parameter. This leads us to define a contextual simplification function, called
contextual_simp_form in our code ( ), and csimp for short here. We give the scheme
of the definition in Fig. 3 below. The simplification on formulas, simp_form, will then be
defined as csimp in an empty context.

csimp : formula list -> formula -> bool

csimp ∆ (ϕ1 ∧ ϕ2) = let ϕ2’ := (csimp (ϕ1 :: ∆) ϕ2) in
choose_conj (csimp (ϕ2’ :: ∆) ϕ1) ϕ2’

csimp ∆ (ϕ1 ∨ ϕ2) = choose_disj (csimp ∆ ϕ1) (csimp ∆ ϕ2)
csimp ∆ (ϕ1 → ϕ2) = choose_impl (csimp ∆ ϕ1) (csimp (ϕ1 :: ∆) ϕ2)
csimp ∆ ϕ = > if (∆ `? ϕ), ϕ otherwise

Figure 3. Simplification of a formula in a context.

It is in the definition of this function csimp that we make repeated calls to the decision
procedure `? for G4iP: One such call, in the final case, is explicit in the definition of csimp,
while the other calls occur in the auxiliary functions named choose_conj , choose_disj

, and choose_impl .
The idea of the functions named choose_* is as follows: A conjunction ϕ ∧ ψ can be

simplified to ϕ if it happens to be the case that ϕ ` ψ, and vice versa; similarly for disjunction.
For choose_impl we use a number of substitution instances of intuitionistic tautologies
about implications: For an implication ϕ→ ψ where ϕ ` ⊥, since ⊥ → ψ is a tautology, we
may simplify ϕ→ ψ to >. Similarly, if ψ ` ⊥, then ϕ→ ψ may be replaced by ¬ϕ. Also, if
` ψ, then ϕ→ ψ is a tautology, so it simplifies to >, and if ` ϕ, then ϕ→ ψ simplifies to ψ.
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Example 3. As an instructive example, let us run through a call csimp [] p∧ (p→ q). The
conjunction case defines ϕ2’ with a recursive call to csimp, with ∆ = [p] and ϕ = p → q.
In this recursive call, we are in the implication case, and we call csimp ∆ p and csimp ∆ q,
which both fall in the last case: The first returns >, since ∆ ` p, and the second returns
q, since ∆ 6` q. According to the rules of choose_impl, > → q simplifies to q, which is
propagated back to the original recursive call, and becomes the value of ϕ2’. We then call
csimp [q] p, but this immediately returns p. Finally, in this simple case, choose_conj p q
just returns p ∧ q. For a slightly more complex example, the reader may verify that the
simplification of the formula in Eq. (2) will lead to p ∧ r ∧ q, as expected.

We establish in Coq/Rocq the following correctness properties of the function csimp.

Proposition 4. For any context ∆ and formula ϕ, we have either csimp ∆ ϕ = > or
weight(csimp ∆ ϕ) ≤ weight(ϕ).

Definition 5. Two contexts ∆ and ∆′ are equivalent if, for any formula ϕ, we have ∆ ` ϕ,
if, and only if, ∆′ ` ϕ.

As an ingredient for the correctness proof, we implemented a formal proof of the ad-
missibility of cut for the intuitionistic modal sequent calculus G4iSL using the methods
from [SvdGGI23], which also gives admissibility of cut in G4iP. Given this, one may usefully
observe ( ) that, if ∆ and ∆′ are equivalent, then, for any context Γ and formula ϕ, we
have Γ,∆ ` ϕ if, and only if, Γ,∆′ ` ϕ. In practice, to verify that ∆ and ∆′ are equivalent,
it suffices to prove that ∆ `

∧
∆′ and ∆′ `

∧
∆. We tacitly use these observations in a

number of proofs discussed below.

Proposition 6. For any context ∆ and formula ϕ, we have ∆ ` ϕ ↔ csimp ∆ ϕ. In
particular, the contexts ϕ :: ∆ and (csimp ∆ ϕ) :: ∆ are equivalent.

For use below, if ∆ is a context and ϕ ∈ ∆, we say that there is an applicable contextual
simplification to ϕ in context ∆ if csimp (∆ \ ϕ) ϕ has strictly smaller weight than ϕ.

4.2 Simplification of contexts
In order to use the above simplification function on formulas in the calculation of propositional
quantifiers, it will be necessary to simplify contexts. We thus define a function simp_env
( ), which simplifies a context ∆ to ∆′, by iteratively applying the following rules in order:

1. First, apply a linear invertible left rule if possible. More precisely, whenever ∆ ` · is
an instance of a conclusion of an invertible left rule that has assumption ∆′ ` ·, we
replace ∆ with ∆′.

2. Check whether there is ϕ ∈ ∆ such that ∆\{ϕ} ` ϕ; if so, continue with ∆′ := ∆\{ϕ}.

3. Finally, check whether there is a formula ϕ in ∆ to which a contextual simplification
applies, and if so, obtain ∆′ by replacing ϕ with csimp (∆ \ {ϕ}) ϕ.

The second rule consists in weakening a redundant hypothesis, whereas the third one more
generally simplifies each formula using the remainder of the context. The latter is however
computationally more costly, which is why redundant formulas are removed first.

We then prove the following two properties of the function simp_env.

Proposition 7. For any context ∆, weight(simp_env(∆)) ≤ weight(∆).

Proof. One verifies that each of the rules defining simp_env decreases the weight. For (1),
this is a property of the sequent calculus. For (2), this is clear. For (3), it follows from the
fact that the choose functions decrease the weight.

Proposition 8. For any context ∆, the context simp_env(∆) is equivalent to ∆.
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4.3 Simplifications specific to Pitts’ algorithm
In earlier work [FG23] we gave a direct implementation of Pitts’ algorithm [Pit92] for
computing propositional quantifiers. We briefly recall the general scheme of this algorithm.
The goal is to compute, for any formula ϕ, formulas ∃p.ϕ and ∀p.ϕ that satisfy the properties
of Definition 2. The algorithm more generally computes, for any context Γ and formula ϕ, a
formula Ep(Γ) and a formula Ap(Γ;ϕ); the quantifiers are then defined as ∃p.ϕ := Ep([ϕ])
and ∀p.ϕ := Ap([];ϕ).

The formulas Ep(Γ) and Ap(Γ;ϕ), in turn, are defined as the conjunction of a set of
formulas Ep(Γ) and the disjunction of a set of formulas Ap(Γ;ϕ), respectively. We do not
recall in detail the definition of the sets of formulas Ep(Γ) and Ap(Γ;ϕ) here; see [Pit92,
Table 5], or the Coq/Rocq declarations e_rule ( ), a_rule_env ( ), and a_rule_form
( ). For the following discussion, it suffices to know that Ap(Γ;ϕ) and Ep(Γ) are built by
recursively computing Ep and Ap for the assumptions of any G4iP-rule that may be applied
to the input; more precisely, at each stage of the computation, there are 8 different kinds of
recursive calls for E and 13 different kinds of recursive calls for A.

The construction outlined above is practical for proving that the output formula is correct
with respect to the specification. However, its behaviour is very similar to the naive proof
search algorithm, with additional cost incurred by the fact that non-linear rules induce many
recursive calls. Our main improvement on the algorithm is to follow a better proof strategy,
similar to the one discussed in Section 3: We simplify the output during every recursive
call of Ap or Ep, using the function simp_env described above. This will still result in a
correct output, essentially because, whenever ϕ and ϕ′ are equivalent, the specifications
of Definition 2 imply that ∃p.ϕ and ∃p.ϕ′ are equivalent, and that ∀p.ϕ and ∀p.ϕ′ are
equivalent; this invariance property lifts to Ep and Ap. In short, we redefine the functions as:

Ap(Γ;ϕ) :=
∨

Ap(simp_env(Γ);ϕ) (3)

and Ep(Γ) :=
∧

Ep(simp_env(Γ)), (4)

where Ap and Ep are defined in the same way as in Pitts’ original algorithm, but use the
results of the new functions Ep and Ap in their recursive calls.

Example 9. To give an example of how these simplifications improve the original algorithm,
consider the formula

ϕn := (a0 ∧ p) ∧ · · · ∧ (an ∧ p) .

The formula ∃p.ϕn is, up to equivalence,
∧n

i=0 ai, and this is indeed what is computed by our
simplified algorithm. However, the naive implementation computes a much larger formula.

In the non-optimized implementation, the function Ep will first find all possible instances
of the rule ∧L that have a conclusion of the form ϕn ` ·. There are n + 1 such possible
applications, corresponding to the n+ 1 subformulas of the form (ai ∧ p) in ϕn. This means
that Ep will be defined as∧

0≤i≤n

Ep([a0 ∧ p, . . . , ai−1 ∧ p, ai, p, ai+1 ∧ p, . . . , an ∧ p])

Now, for each of the calls to Ep in this conjunction, there are still n possible applications of
∧L. Continuing in this way, there will be approximately (n+ 1)! recursive calls, all of which
result in identical final leaves in every branch, namely, Ep(a0, p, a1, p, . . . , an, p). Without
simplifications, this leads to a lot of repeated computation, and a very large output formula.

The main gain obtained by the definitions given in (3) and (4) is that the function
simp_env applies any possible left invertible linear rules to the context. This means that Ep
and Ap are only ever applied to a simplified context Γ′ that does not contain any formulas
of the form p → ϕ, ϕ ∧ ψ, (ϕ ∨ ψ) → χ, or (ϕ ∧ ψ) → χ. As a consequence, four of the
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rules from the sequent calculus G4iP can never apply to Γ′, reducing the number of different
kinds of recursive calls from 8 to 4 for E and from 13 to 9 for A. Since any applicable rule
to Γ′ incurs a recursive call, this reduction considerably decreases the overall number of
redundant recursive calls. We demonstrate this empirically in Section 5.

While one could use these observations to give a shorter correctness proof for the simpli-
fied propositional quantifiers, ‘from scratch’, and with fewer cases, we instead re-use the
correctness proofs that we had already formalized previously, with only slight modifications.
Whenever the old version of the proof used an induction hypothesis about Ap(Γ;ϕ) or Ep(Γ),
in the new proof we are able to use the same induction hypothesis for Ap(simp_env(Γ);ϕ)
or Ep(simp_env(Γ)). To see why this is possible, observe that (i) simp_env(Γ) has lower
weight than Γ, so the induction hypothesis used for Γ a fortiori applies to simp_env(Γ); and
(ii) the context simp_env(Γ) is equivalent to the context Γ, and may therefore be replaced
by it in any hypothesis.

A technical modification in the formalization of the proof that we had to make in order
for this to go through was a change in the induction principle. Our original implementation
used an induction on the last rule in a hypothetical proof of a sequent of the form Γ ` ·
(when proving correctness for Ep(Γ)) or of a sequent of the form Γ • · ` ϕ (when proving
correctness for Ap(Γ;ϕ)). In our new proof, we use an induction on the weight of the sequent.

5 Benchmarks
To better quantify the impact of our simplifications, we developed a set of benchmarks that
analyze both the computation time and the reduction in the size of the output formulas
(measured in weight) generated by Pitts’ construction. These benchmarks allowed us to
clearly evaluate the effectiveness of each improvement. Note however that this measure is
relatively arbitrary, and that there is no guarantee that we obtain the smallest interpolant
with respect to this measure.

The example formulas used for our benchmark were of two kinds: First, we have two
sequences of formulas ϕimp and ϕconj of increasing complexity, which we knew were treated
inefficiently by our initial implementation; Second, our initial implementation drew the
interest of researchers in intuitionistic logic, notably M. Jibladze (personal communication)
and Z. Kocsis [Koc23], who provided us with a number of specific formulas of interest to
them, for which the output of our initial implementation was highly complex, but for which
one could prove ‘by hand’ that the quantified formulas could be represented in a simple
way. We include some of these examples as the formulas ψ1, ψ2, ψ3 (communicated to us by
M. Jibladze) and ψ4 [Koc23, 3.13] below.

• ϕimp(0) = p, ϕimp(n+ 1) = ϕimp(n) → pn+1

• ϕconj(0) = p0 ∧ p, ϕconj(n+ 1) = ϕconj(n) ∧ (pn+1 ∧ p)

• ψ1 : r ↔ ((p→ q) ∨ ((p→ q) → q))

• ψ2 : (x↔ (p ∨ ¬p)) ∧ (y ↔ (q ∨ ¬q)) ∧ ¬(p ∧ q)

• ψ3 : ((q → (p ∨ r)) → ¬(t ∨ p))

• ψ4 : (¬p→ q) ∧ (¬¬p→ q)

Fig. 4 contains the results of running our program on these inputs. In the optimized
version (commit 44d4c8e), all computations completed in under 1 second, except for the
last one, which timed out. This marks a significant improvement over the original execution
times (commit ebb461d). The improvement in weight is also encouraging, being able to
simplify the weight by several orders of magnitude in some cases. This is thanks to the
double nature of the simplifications: improving the order in which the rules are applied
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Formula Original weight Optimized weight
∀p, ϕimp(6) 2462 18
∃p, ϕimp(6) 131699∗ 25
∀p, ϕimp(7) 263402∗ 27
∃p, ϕimp(7) – 25
∃p, ϕimp(8) – 25
∃p, ϕimp(9) – –
∃p, ϕconj(3) 42142∗ 10
∃p, ϕconj(4) – 13
∀p, ψ1 84 4
∃p, ψ1 – 5
∃p, ψ2 – 44
∃q, ∃p, ψ2 – 8
∀p, ψ3 429 1
∃p, ψ3 668 13
∀p, ψ4 33 1
∃p, ψ4 160 5

Figure 4. Experimental results for computing propositional quantifiers on the set of formu-
las defined in Section 5. The ‘Original’ column shows the initial weights, while
the ‘Optimized’ column presents the weights after applying the optimizations
described in this paper. ‘–’ indicates computations that exceeded the 5-minute
time limit, and ‘∗’ that the computation time took more that 2 minutes.

in Pitts’ construction (similar to the decision procedure of Section 3) and simplifying the
output during the construction itself, as described in the previous section.

As the example ∃p, ϕimp(9) shows, there is still room for improvement. This example,
with a high degree of implication nesting on the left, makes for a large uniform interpolant
(due to the rule →→ L), for which the simplification procedure does not run in reasonable
time.
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