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Relational reasoning on monadic
semantics

Benjamin BONNEAU1

1Université Grenoble Alpes - CNRS - Grenoble INP - Verimag, France

Effectful programs can be given denotational semantics using expressive enough
domains. With applications to formally verified compilation in mind, I mechanise
an axiomatization of domains with monadic and iteration operators. Refinements
between semantics are derived within this abstraction using heterogeneous
relations. By using appropriate rules, it is possible to reason about divergence,
non-determinism and undefined behaviors. I give a model based on Labeled
Transition System which implements those effects. I demonstrate the use of the
library with a compositional proof of a Dead Code Elimination transformation.

1 Introduction
Context Formal program semantics is a prerequisite for reasoning about programs

and their transformations, and in particular for formally verified compilation. Denotational
semantics are based on a domain, informally a collection of mathematical objects expressive
enough to capture the features of the language. They associate programs to elements
of the domain compositionally, using the operations on the domain, by induction on the
syntax. This approach thus separates the derivation of mathematical theories about the
domain from the reasoning on programs expressed in some syntax. The benefit is twofold.
Firstly, reasoning is not limited by the syntax of the language since the domain can be more
expressive. Secondly, multiple languages can share the same domain, which enables some
factorizations and simplifies reasoning about transformations between them.

In contrast with several implementations of verified compilers [Ler09, KMNO14] which
rely on operational semantics, the second iteration of Vellvm [ZBY+21] uses denotational
semantics. With their approach, Zakowski et al. define semantics and prove transformations
on them in a compositional fashion. Remarkably they use non-deterministic semantics,
whereas determinism often plays an important role in operational approaches [Ler09, §2.1].

Zakowski et al. rely crucially on the recent development of interaction trees (ITrees)
[XZH+20], a coinductive type able to represent divergent semantics which interact with
their environment. ITrees and derived structures are interesting domains for the definition of
denotational semantics, thanks to their monadic and iteration operators. The main notion
used to reason on them is the “equivalence up to Tau”, a coinductive relation which equates
programs that differ only by finite sequences of internal steps, while ensuring the preservation
of diverging behaviors. Xia et al. [XZH+20] proved a set of lemmas on this relation and its
interaction with the operators from which the correctness of some program transformations
can be proven without explicit coinduction by using some relational reasoning.

However, the class of transformations that can be derived from those lemmas remains
unclear. In particular, Zakowski et al. [ZBY+21, §5.3] had to fall back on coinductive
reasoning for proving an optimisation. Another limitation of a direct use of ITrees is
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that they only model a restricted set of effects. Fortunately, it is possible to derive from
them more expressive structures to model for instance the presence of a global state or
non-determinism [YZZ22, §4.1]. However formal reasoning is tied to the structure used,
which depends on the effects considered. ITrees offer a way of abstracting away some effects
by considering the corresponding computations as uninterpreted during chosen parts of the
proofs [ZBY+21, §4.3,§5.3]. Another idea is to axiomatize the properties satisfied by ITrees
and structures derived from them [YZZ22].

Approach I take this idea even further by defining an axiomatic theory for reasoning
formally with domains which support the same operators as ITrees. Here, axiomatic means
that the theory is not tied to a specific domain and can be applied to any model which
implements my interface. I consider refinement relations on those domains and derive a
relational theory, using a small set of axioms. It enables some optimisation proofs that
are generic in the domain, including loop and inter-procedural transformations as well as
function inlining. The development is implemented as a Rocq1 library and is available
online2. Hyperlinks ⋄ point to the implementations of the concepts discussed.

Contributions I mechanised an axiomatic theory which extends the existing relational
theory on ITrees with reasoning on inter-procedural transformations. I also give axioms
on non-determinism and undefined behaviors, for models with those effects. From the
main axioms, I derive a proof approach for loop transformations for which previous works
[XZH+20, ZBY+21] had to fall back on coinductive proofs specific to their models. I prove
that ITrees are still a model of this extended theory and show that Labeled Transition
Systems are another one, which natively supports non-determinism and undefined behaviors.

Outline Section 2 describes a simplified version of the axiomatic theory, a subset of the
existing relational theory on ITrees. Section 3 presents a method to derive the correctness
of some loop transformations, some of the aforementioned proofs are described as examples.
The theory is extended with events in section 4 to handle mutually recursive functions.
Relations on events are introduced to reason on inter-procedural transformations. A model
of the theory, using Labeled Transition Systems, is given in section 5. The definition of
some operators and of the refinement relation is discussed. Additional operators and axioms
are given to reason on non-determinism and undefined behaviors. Finally, section 6 shows
how the theory is used, and demonstrates on a Dead Code Elimination how the axiomatic
approach can abstract away effects during the proof of transformations. The section ends with
a comparison with the aforementioned abstraction approach of Zakowski et al. [ZBY+21].

Except for parts with explicit references, sections 3 and 5 are not prerequisites for the
others.

2 Axiomatic interface
In my theory, a domain is a family of types S : Type → Type used to represent semantics.

The inhabitants of S A are semantics returning values of type A. The family S is a parameter
of the development, I expect it to be a monad, equipped with the following operations (⋄):

• ret [A] (x : A) : S A is a semantics that has no effects and returns x.

• bind [A B] (u : S A) (k : A → S B) : S B is the semantics that runs u until it
returns a value x : A, then runs k x.

1https://coq.inria.fr
210.5281/zenodo.14508391 or https://gricad-gitlab.univ-grenoble-alpes.fr/these-bbonneau/artifacts/tree/JFLA25
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• iter [A B] (f : A → S (A + B)) (ini : A) : S B is the semantics that repeat-
edly runs f applied to an iteration state of type A. Initially this state is ini. If f
returns a value inl x, the iteration continues from the new state x. If it returns
inr y, iter stops and returns y.

Arguments within [. . .] can be inferred from the others and will be omitted unless a
prefix @ is used. I will use the notation x ← u; k for bind u (λx. k). The k and f in
bind and iter are functions in the host language (Rocq) and can use any pure operations.
In particular, one has access to conditionals or more general pattern matchings. Although
those descriptions of the semantics of the operators are a valuable source of intuition, they
are only informal since the actual definitions depend on the instantiation of S. In particular,
there is no notion of “execution” in the theory. The meaning of the operators is captured
more abstractly with axioms about their interactions with relations on semantics.

I take such refinement relation as parameter:

sem_ref [A B] (R : Rel A B) : Rel (S A) (S B)

where Rel is the family of heterogeneous relations: Rel A B := A → B → Prop. The left
column of Figure 1 defines notations and operations that will be used on Rel. A relation
sem_ref R u v should be understood as “v refines u” and will be denoted by u ≳R v. In a
compilation setting, u is the semantics of the source program and v the semantics of the
target. A post-condition R is used to compare values returned by u and v, which do not have
identical types in general. Since sem_ref R is a refinement, it may be asymmetric, even
when R is symmetric. It is useful to consider a stronger relation u ≈R v := u ≳R v ∧ v ≳†R u

Type EventFam.t
empty False EventFam.emp := λ_. False

sum
Inductive A + B :=
| inl (x : A)
| inr (y : B)

D + E := λA. D A + E A

function A → B EventFam.Fun D E := ∀ [A], D A → E A

relation Rel A B := A→ B→ Prop
EventFam.Rel D E := ∀ [A B : Type]
(d : D A) (e : E B) (post : Rel A B), Prop

identity id x y := (x = y) id e e =

composition (R0; R1) x z := ∃y. R0 x y ∧ R1 y z

R0 e0 e1 P0 R1 e1 e2 P1

(R0; R1) e0 e2 (P0; P1)

order R0 ≤ R1 := (∀x y. R0 x y⇒ R1 x y) R0 ≤ R1 :=

 ∀A B (d : D A) (e : E B) P0.
R0 d e P0 ⇒
∃P1. R1 d e P1 ∧ P1 ≤ P0



sum

R0 x y

(R0 + R1) (inl x) (inl y)
R1 x y

(R0 + R1) (inr x) (inr y)

(R0 + R1) A B d2 e2 P :=
((λd e. R0 d e P) + (λd e. R1 d e P)) d2 e2

of function [f] x y := (y = f x) [f] e (f e) (=)

converse †R x y := R y x

R e d P

†R d e (†P)

Figure 1. Notations and structures on Type and EventFam.t (used after section 4, ⋄)
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Relator:

u ≳= u
Refl

u ≳R0
v R0 ≤ R1

u ≳R1
v

Mono
u ≳R0

v v ≳R1
w

u ≳R0;R1
w

Trans

Morphisms:
R x y

ret x ≳R ret y
RefRet

u ≳r v ∀x y. r x y⇒ f x ≳R g y

bind u f ≳R bind v g
RefBind

∀x y. r x y⇒ f x ≳r+R g y r xini yini
iter f xini ≳R iter g yini

RefIter

Monad laws:

bind (ret x) k ≈ k x
RetL

bind u ret ≈ u
RetR

bind (bind u f) g ≈ x ← u; bind (f x) g
Assoc

Iteration:

iter f ini ≈ r ← f ini;

{
iter f x if r = inl x
ret y if r = inr y

IterUnfold

iter (iter f) x ≈ iter (λx. r ← f x; ret (mergeL r)) x
IterCodiagonal

where: mergeL (r : A + (A + B)) : A + B :=

{
inl x if r = inl x
y if r = inr y

Figure 2. Axioms assumed about ret, bind, iter and sem_ref (⋄)

to factorize the proofs of refinements in both directions. It is still heterogeneous but is
conversive [LGL17], that is u ≈R v⇔ v ≈†R u. Using the equality as post-condition yields a
homogeneous (that is, between semantics with the same return type) equivalence relation
u ≈ v := u ≈= v.

Finally, I require that the operators and the refinement relation satisfy some axioms,
listed in Figure 2. Those axioms correspond to properties identified by [XZH+20] on ITrees.
They fall into four categories:

• The properties Refl, Mono and Trans are a subset of the axioms of relators [LGL17,
Definition 5]. From them, one derive the same properties for ≈R and the fact that ≈
is an equivalence.

• RefRet, RefBind and RefIter assert that the operators are morphisms for sem_ref:
applied to related arguments, they produce related results. By composing refinements
on subparts of the semantics, they enable modular proof approaches. Again, the same
properties (EqRet, EqBind and EqIter) are derived for ≈R. They also imply that
≈ is a congruence that can be rewritten under bind and iter.

• RetL, RetR and Assoc are the monad laws. They only need to hold for ≈, which
may be weaker than the equality.

• IterUnfold unrolls the first iteration of an iter, according to our informal description
of the iterator. IterCodiagonal merges two nested iter on the same type of state
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into a single iter. They are the axioms fixpoint and codiagonal of complete Elgot
monads [GMR16, Definition 3.1] with Set as the base category.

3 Using the codiagonal property
In this section I will show how to use IterCodiagonal to derive new equivalences.

3.1 Generalized codiagonal property
The first thing to notice is that, although I assumed it only in the case where the two iters
use the same iteration type, the codiagonal property may be generalized to nested iterations
where the inner one depends on the current state of the outer one.

Lemma 1 (⋄). For any types A and C, family B of types indexed by A, functions f (x : A)
(y : B x) : S (B x + (A + C)) and yini (x : A) : B x and initial state xini : A:

iter (λx. iter (λy. f x y) (yini x)) xini
≈

iter (λ(x, y). r ← f x y; ret (hcodiag x r)) (xini, yini xini)

Where the result iterates over dependent pairs D := {x : A & B x} and:

hcodiag (x : A) (r : B x + (A + C)) : D + C :=
inl (x, y) if r = inl y
inl (x, yini x) if r = inr (inl x)
inr z if r = inr (inr z)

Proof. This more general rule is derived from the particular case of Figure 2 by using in
a first step EqIter to re-index the nested iters on the same type D of state. This first
derivation has the following shape:

∀x : A.

∀y : B x.

. . . ∀r.
([I1 x] + ([I0]+ =)) r (f1r x r)

ret r ≈[I1 x]+([I0]+=) ret (f1r x r)
EqRet

r ← f x y; ret r ≈[I1 x]+([I0]+=) f1 (x, y)
EqBind

. . .

iter (f x) (yini x) ≈[I0]+= iter f1 (x, yini x)
EqIter

. . .

iter (λx. iter (f x) (yini x)) xini ≈ iter (iter f1) (xini, yini xini)
EqIter

where:

f1 (x, y) := r ← f x y; ret (f1r x r)

f1r (x : A) (r : B x + (A + X)) : D + (D + C) :=
inl (x, y) if r = inl y
inr (inl (x, yini x)) if r = inr (inl x)
inr (inr z) if r = inr (inr z)

I0 x := (x, yini x) I1 x y := (x, y)

This equivalence is rewritten using the transitivity of ≈. The proof is then concluded by
using IterCodiagonal followed by some simplifications using the monad laws.

3.2 A method for proving loop transformations
I will now explain how to perform some loop transformations using the codiagonal property.
As a first example, I will prove the following equivalence between two infinite iterations:
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Example 1 (⋄). For any type A and body f : A → S A,

loop1 : S False := iter (λx0. x1 ← f x0; ret (inl x1)) xini
≈

iter (λx0. x1 ← f x0; x2 ← f x1; ret (inl x2)) xini =: loop2

This is the equivalence needed to justify loop unrolling of while(true) { f } into
while(true) { f; f }. It is also a simplified version of a lemma that Zakowski et al.
[ZBY+21, §5.3] needed for a block fusion optimisation and for which they used a proof by
coinduction on their domain based on ITrees.

Proof of example 1. In order to prove this equivalence, we need to relate two consecutive
iterations of loop1 to a single iteration of loop2. This, however, cannot be achieved directly
with EqIter which requires the two iters to be synchronized at each iteration. One thus
need to synchronize the two semantics on a common notion of “steps”. In this example
we directly use the iterations of loop1 as steps, that is, each step will contain exactly one
execution of f and we only have to change loop2. To prove our goal, I will:

1. Rewrite the semantics using nested iters where each innermost iteration is a step.

2. Use the codiagonal property to merge the nested iterations into a single iter.

3. Use EqIter to perform a synchronized equivalence proof between the resulting source
and target iters.

For the first part, I use IterUnfold twice to turn the first bind of loop2 into a finite iter:

iter (f1 x0) (inl ()) ≈ x1 ← f x0; iter (f1 x0) (inr x1)

≈ x1 ← f x0; x2 ← f x1; ret (inl x2)
where:

f1 (x0 : A) (y : unit + A) : S ((unit + A) + (A + False)) :={
x1 ← f x0; ret (inl (inr x1)) if y = inl ()
x2 ← f x1; ret (inr (inl x2)) if y = inr x1

I then apply the generalized codiagonal property, and obtain:

loop2 ≈ iter (λ(x0, y). r ← f1 x0 y; ret (hcodiag x0 r)) (xini, inl ())

where the iteration is performed over D := {x0 : A & y : unit + A}. Finally, the equiva-
lence between this iter and loop1 is proven using the following function as invariant (that
is r := [inv] in EqIter):

inv ((x0, y) : D) : A :=

{
x0 if y = inl ()
x1 if y = inr x1

3.3 CFG representation
This proof approach can be understood graphically by breaking down the semantics into
Control Flow Graphs (CFG). In Figure 3, CFG are represented as graphs whose nodes
are either straight rectangles containing a fragment of the semantics or rounded rectangles
containing a variable bound by a combinator bind or iter. Edges denote the informal
execution paths of the semantics. Variables are assigned values when the execution reach
them. Except for the entry edge, the assigned value is computed using the result of the last
semantics node. Note that since there is no fixed notion of step for semantics, one could have
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loop1

x : A

f x

xini

loop2

x0 : A

f x0

x1 : A

f x1

xini

bind1

x0 : A

f x0

y0 : B

g y0

xini

inl x0

inr y0

bind2

x0 : A

f x0

x1 : A | y0 : B

g y0

xini

Figure 3. Decomposition of semantics as Control Flow Graphs. x1 : A | y0 : B repre-
sents a variable of type A + B.

for instance chosen to consider a whole iteration of loop2 as a single node. This would have
led to a different CFG, but that could not be related to loop1. In the CFG representation,
the invariant inv used for EqIter is a map from the nodes containing variables of loop2 to
those of loop1. In Figure 3, it is obtained by forgetting the indices of the variables. For the
premise of EqIter to be satisfied, the map must commute with the semantics of the nodes
and edges. Such maps correspond to the CFG morphisms of Gourdin et al. [GBB+23, §2.1].

3.4 Stuttering steps
I apply the approach to derive the “parameter” (⋄) and “composition” (⋄) equations of
[XZH+20, §4.1]. They are instances of the naturality and dinaturality properties of complete
Elgots monads [GMR16], I will present here only the first one:

Proposition 1 (“parameter” ⋄). For any types A, B and C, semantics f : A → S (A + B)
and g : B → S C and initial state xini : A:

bind1 := y ← iter f xini; g y
≈

iter

(
λx. r ← f x;

{
ret (inl x) if r = inl x
z ← g y; ret (inr z) if r = inr y

)
xini =: bind2

A first choice of CFG decompositions is pictured in Figure 3. Notice that the decomposition
of bind2 contains an empty node, for the right-hand side of the bind when f returns inl x.
I call those nodes “stuttering steps” by analogy with transition systems. Since EqIter
requires a lock-step equivalence between the two iters, we need those empty nodes to be
present in both CFGs. It is not the case for the depicted decompositions since there is no
corresponding empty node in bind1. Fortunately, it is always possible to add stuttering
steps while breaking down a semantics into a CFG by using RetL to introduce a bind
whose left-hand side is considered a step.

4 Events and mutual recursion
Events The iter operator is restricted to loops and tail-call recursion. To handle

general recursion, the ITree library uses a technique of McBride [McB15]: the semantics of
the bodies of the functions are defined independently, by emitting some observable events
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at call sites. A mutual recursion operator, mrec, combines the semantics by replacing the
events with execution of the corresponding semantics. In order to use the same technique,
one need to add a notion of events to the domain. Events can be seen as a generalisation
of return values: when emitting an event, a semantics provides not only a description of
the event emitted (in the case of recursion, the function called and its arguments) but also
a continuation waiting for an answer from the event (in the case of recursion, the value
returned by the callee). In the same way we describe the values a semantics can return with
a Type, we will use a family of events to describe the events it can emit. Such family has
sort:

EventFam.t := Type → Type

The index of the family is used to classify the events by their type of answer, that is, given
E : EventFam.t and a type A, E A is the type of the events of E that answer values of type
A. Figure 1 describes some structures defined on EventFam.t, which are similar to those on
Type. In particular, there are categories of functions and relations on event families.

I will now modify the signature of domains to include as argument the family of events
the semantics can emit:

S : EventFam.t → Type → Type

The operators ret, bind and iter are assumed to be defined for any family of events. For
instance bind is generalized as:

bind [E A B] (u : S E A) (k : A → S E B) : S E B

The signature of sem_ref is extended heterogeneously using the relations on events. That
is, we now take as parameter:

sem_ref [D E] (Re : EventFam.Rel D E)
[A B] (R : Rel A B)

: Rel (S D A) (S E B)

I will write this modified version ≳Re,R. Heterogeneous (≈Re,R) and homogeneous (≈) equiva-
lences can still be derived using the identity and converse operations in EventFam.Rel. The
axioms of Figure 2 are adapted to those additions by using the operations on EventFam.t.

Operators I then expect the following operators to be defined (⋄):

• trigger [E A] (e : E A) : S E A emits an event e and returns its answer.

• map_ev [E0 E1] (f : EventFam.Fun E0 E1) [A] (u : S E0 A) : S E1 A replaces
the events of u by the events given by f.

• interp [D E] (h : ∀ B. D B → S E B) [A] (u : S D A) : S E A replaces the
events of u by the semantics given by h.

• mrec [D E] (f : ∀B. D B → S (D + E) B) [A] (ini : D A) : S E A is a recur-
sive system indexed by D. Figure 4 gives an example of a system with two mutually
recursive functions. A call (including the argument values) to a function that returns
a value of type B is represented by an element d : D B. The initial call is ini. The
implementations of the calls are described by f using semantics that can perform
recursive calls by emitting events inl d.

It is possible to define map_ev from interp and trigger or interp from map_ev and
mrec. Figure 5 lists the axioms required on those operators. Most of them are similar to
some axioms of Figure 2, replacing ret by trigger, bind by interp and iter by mrec. I
also assume that interp distributes over bind and iter.
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let rec f (n : nat) =
if n <= 1
then 0
else g n

and g (n : nat) =
let m = f (n - 2) in
m + 1

Inductive D : EventFam.t :=
| Df (n : nat) : D nat
| Dg (n : nat) : D nat.

Definition body [A] (d : D A)
: S (D + EventFam.emp) A :=
match d with
| Df n⇒ if n <=? 1

then ret 0
else trigger (inl (Dg n))

| Dg n⇒ m← trigger (inl (Df (n - 2)));
ret (m + 1)

end.

Definition u (n : nat) : S EventFam.emp nat :=
mrec body (Df n).

Figure 4. Example of a system of recursive functions and definition of its semantics using
mrec (⋄)

Morphisms:
Re d e R

trigger d ≳Re,R trigger e
RefTrigger

∀A0 A1 d0 d1 r, Rd d0 d1 r⇒ h0 A0 d0 ≳Re,r h1 A1 d1 u0 ≳Rd,R u1

interp h0 u0 ≳Re,R interp h1 u1
RefInterp

∀A0 A1 d0 d1 r, Rd d0 d1 r⇒ f0 A0 d0 ≳Rd+Re,r f1 A1 d1 Rd ini0 ini1
mrec f0 ini0 ≳Re,R mrec f1 ini1

RefMRec

Interpretation:

u ≈[f],= map_ev f u
MapEvEq

interp h (trigger e) ≈ h e
InterpTrigger

interp trigger u ≈ u
InterpTriggerH

interp g (interp h) u ≈ interp (λ_ d. interp g (h d)) u
InterpAssoc

Recursion:

mrec f ini ≈ interp

(
λ_ c.

{
mrec f d if c = inl d
trigger e if c = inr e

)
(f ini)

MRecUnfold

mrec (mrec f) ini ≈ mrec (λ_ d. map_ev mergeL (f d)) ini
MRecCodiagonal

Figure 5. Axioms assumed about trigger, map_ev, interp and mrec (⋄)
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Transformations Although ITrees are also indexed by the family of events they emit,
the “equivalence up to Tau” described by [XZH+20] is homogeneous over the events3. By
considering a more general sem_ref with a relation on the events, I am able to use RefMRec
with an invariant Rd between the source and target functions, arguments and return values.
In practice, it is useful for several inter-procedural transformations:

• Renaming the functions by relating the corresponding source and target functions with
the equality as relation on the results. Unreachable source functions are eliminated by
not relating them to any target function.

• Transmitting pre-conditions on the arguments and post-conditions on the return values,
for instance the results of inter-procedural analyses.

• Relating a single source function to multiple target functions. Combined with pre-
conditions, it allows the introduction of specialized versions of functions.

However, RefMRec is restricted to transformations that preserve the call structure: each
call of the target execution matches a call in the source execution. As such, it cannot be
used for inlining transformations. This issue is similar to the one we had with RefIter in
section 3. In fact, when considering iter as a system of tail recursive functions, example 1
becomes an inlining transformation. Again, the codiagonal property allows us to prove
non-synchronized equivalences. Function inlining is obtained by the method described in
section 3 using MRecCodiagonal instead of IterCodiagonal (⋄).

5 A model: Labeled Transition Systems
The theory I have presented so far is parameterized by a domain S which represents semantics
with axiomatized operations and relations. Since the interface generalizes properties identified
on ITrees, they are a possible model on which the theory can be applied (⋄). I will now
present another model: non-deterministic Labelled Transition Systems.

5.1 Definition and operations
Domain Labeled Transition Systems (LTS) are a classical approach to formalize objects

with potentially diverging execution sequences, where the steps can emit some observable
events. I will instantiate S E A with the type LTS E A of systems which emits events of E
and returns values of type A. Formally, LTS E A is a record described in Figure 6, which
contains an arbitrary type istate of internal states and a predicate step defining internal
transitions. The states are extended using stateF to model the interaction of the LTS
with its environment. The names Ret, Tau and Vis come from constructors of ITrees with
similar meanings. In fact, LTS can be seen as a formalisation of ITrees using transition
systems instead of coinductive types and with the addition of non-determinism and undefined
behaviors.

Definition 1 (⋄). The transitions of a system u : LTS E A are defined between elements
of state u by:

step u s s’

Tau s τ−→ s’

e : E B x : B

Vis e k
e,x−→ Tau (k x)

An execution is a sequence of transitions starting from ini u.

Hence, the transitions originating from a state depend on its kind:

3Actually, the ITree library also provides a heterogeneous relation, rutt, but with a different type of
relation on the events.
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Inductive stateF (E : EventFam.t) (A : Type) (istate : Type) : Type :=
| Ret (x : A)
| Tau (s : istate)
| Vis [B : Type] (e : E B) (k : B→ istate)
| Err.

Record LTS (E : EventFam.t) (A : Type) : Type := {
istate : Type;
state := stateF E A istate;
step : istate→ state→ Prop;
ini : state;

}.

Figure 6. Definition of the LTS type (⋄)

• Ret x and Err are terminal states, which signal respectively the end of the execution
with a result x and an undefined behavior.

• Tau s is an internal state, from which the system performs invisible steps (also called
τ -steps) described by step u. It is a predicate, rather than a function, to model
internal non-determinism.

• Vis e k signals the emission of an event e. If the system obtains an answer x from
its environment, it resumes its execution in the state specified by the continuation k.
In this case the choice of x models external non-determinism.

Operators I implemented all the operations described in section 2 and 4 for S := LTS (⋄).
For instance:

• ret x has no internal states. Its initial state is Ret x.

• The set of internal states of @bind E A B u k is the union of the states of u and of
the states of k x for all x : A. The step predicate of bind is defined from the step
predicate of the current sub-semantics u or k x. The states Ret x of u are replaced
by the corresponding initial states ini (k x) of the continuation.

• @mrec D E f ini is implemented using call stacks as states. Each frame contains
the index d : D B of the corresponding function, its current istate (f d) and a
continuation which stores the stack remaining after f d returns. The step predicate is
defined according to the transitions of the current function. A recursive call corresponds
to a state Vis (inl d’) k and is replaced by a τ -step that pushes a new frame for
f d’. When a function returns, its frame is discarded and the new state is obtained
from the continuation.

Interpreters A drawback of LTSs with respect to ITrees is that they are not executable
since step is a predicate. To mitigate this issue I implemented a library to build executable
transition systems without non-determinism (using a partial function for step, ⋄). It
features all the operators we have seen so far, along with a proof that they implement the
corresponding LTSs. Using this library, modular interpreters can be built, proven correct
and extracted to OCaml (⋄).
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5.2 Refinement relations
Behaviors Following [Ler09, §2.1], I define, given a LTS, its set behaves of behaviors.

Set-inclusion then induces a homogeneous refinement:

u
beh
≳ v := behaves v ⊆ behaves u

This notion is however too strong for some transformations (such as Dead Code Elimination)
which can remove undefined behaviors. It is relaxed with a trace relating refinement
[ABC+21], using an improves relation on the behaviors, which allows the behaviors that
end with an undefined behavior to be replaced by any behavior that starts with the same
events (⋄):

u
beh’
≳ v := ∀b ∈ behaves v.∃b′ ∈ behaves u. improves b′ b (1)

This refinement can be used to specify the correctness of the compilation of a whole program
(this is for instance the notion used by CompCert in transf_c_program_preservation4).
However, it cannot be generalized easily to a relation heterogeneous over the events.

Simulation To define a heterogeneous sem_ref, I instead use a simulation relation.
u ≳Re,R v is defined to hold if an only if there exists an invariant M : Rel (istate u)
(istate v) which holds initially (or after some steps of u and v) and which satisfies the
following simulation diagram (⋄):

s0 t0

s1 t1

M

v
+

u
+

M

R x y
M (Ret x) (Ret y)

M s t
M (Tau s) (Tau t) M Err t

Re d e post ∀x y. post x y⇒ M (k x) (l y)

M (Vis d k) (Vis e l)

The invariant is extended as M to the various kinds of states. States Vis are related using
Re and with an universal quantification on the answers of the events of both sides. Undefined
behaviors Err are refined by anything, allowing the target to improve the behaviors of the
source. Using a particular case of the “FreeSim” approach [CSL+23], the diagram allows
both the source and target to perform some τ -steps before re-establishing the invariant.
However, in order to rule out infinite stuttering, they are required to both perform at least
a step. Since I consider non-deterministic LTSs, I use a backward simulation: the steps
of the target v are quantified universally whereas the steps of the source u are quantified
existentially.

Equipped with this refinement, LTS satisfies all axioms of section 2 and 4. Since backward
simulation implies the refinement of behaviors, it is possible to use the axiomatic theory to
prove a correctness property expressed on the behaviors.

5.3 Undefined behaviors and non-determinism
LTSs support undefined behaviors and non-determinism. Those two effects are exposed
in the relational theory by defining additional operators with associated refinement rules
(Figure 7).

Undefined Behaviors The operator ub0 : LTS EventFam.emp False represents an
undefined behavior. It is defined as a system without internal state and with Err as initial
state. Its type exposes that it does not emit any events nor return. It is lifted using bind
and map_ev to ub [E A] : LTS E A which is more convenient to use. The empty return

4https://github.com/AbsInt/CompCert/blob/6019bc41/driver/Complements.v#L31
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ub0 ≳Re,R ret ()
UbRef0

x ← ub; u ≳Re,R v
UbRef

ret () ≳Re,⊤ any0 A
AnyTrg0

∀x : A. u ≳Re,R k x

u ≳Re,R x ← any A; k x
AnyTrg

x : A

any0 A ≳Re,λy_. y=x ret ()
AnySrc0

∃x : A. k x ≳Re,R u

x ← any A; k x ≳Re,R u
AnySrc

Figure 7. Refinement rules for undefined behaviors and non-determinism (⋄).

type of ub0 already allows us to freely change its continuation, but with the rule UbRef0
we can even remove ub0 and derive that a source semantics starting with an undefined
behavior is refined by anything (UbRef).

Non-determinism The operator any0 A : LTS EventFam.emp A represents a non-
deterministic choice of a value of type A. It is lifted to any [E] A : LTS E A. It is
implemented with a single initial internal state, which can step to Ret x for any x : A.
The non-determinism is demonic: a refinement asks us to prove that all behaviors of the
target are improvements of some behavior of the source (Equation 1). This is reflected by
the post-conditions of AnyTrg0 and AnySrc0 but is more apparent with derived rules:

• When any is in the target semantics, AnyTrg asks us to prove the refinement for all
possible values x : A.

• When any is in the source semantics, AnySrc lets us choose a value x : A to prove
the refinement with.

A form of reasoning about non-determinism is thus possible within the axiomatic theory.
Interestingly, it is enabled by the addition of some relational rules, without any change to
the signature of sem_ref or restrictions on the other axioms. Hence, the reasoning approach
I have presented so far remains valid. This contrasts with direct proofs by simulation, where
non-determinism prevents the use of forward simulations. However, backward simulations are
no longer complete with respect to the inclusion of behaviors in presence of non-determinism
[AL91, §1.2]. For instance, the following commutation does not hold for some u, although
the two LTSs have the same behaviors (⋄):

b ← any bool; x ← u; ret (b, x) ̸≳id,= x ← u; b ← any bool; ret (b, x)

The issue is that some u (such as triggers or semantics with diverging behaviors) cannot
be simulated in a single step. Hence, a backward simulation would need to choose a boolean
for the source any before knowing the result of the target one. It could thus not ensure that
b takes the same value on both sides.

6 Using the theory
I will show how to use the library to define the semantics of a toy language and to prove
correct a transformation on it. I will also demonstrate the possibility and benefits of proving
correct transformations generic in the domain. After defining the syntax of the language,
section 6.1 equips it with a semantics parametrized by its domain. Still considering an
arbitrary domain, section 6.2 proves the correctness of a transformation. Section 6.3 applies
this proof to an effectful domain. This approach to effect abstraction is compared with the
technique of Zakowski et al. [ZBY+21] in section 6.4.
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function identifier f : fsym
variable x, y : var
operator o : opsym
function fc : function ::= f(x∗){u; return y}
program p : prog ::= fc+

instruction u, v : instr ::= skip
| y = o(x∗)
| y = f(x∗)
| u;v

Figure 8. Syntax of a toy imperative language (⋄)

Inductive CallE : EventFam.t :=
mk_call (f : fsym) (args : list val) : CallE val.

Definition var_state := var→ val.
Definition get_function (p : prog) (f : fsym) : S EventFam.emp function := . . .

f[x ← y] := x′ 7→

{
y if x′ = x

f x’ if x′ ̸= x

[[u]]instr (s0 : var_state) : S CallE var_state
[[skip]]instr s0 := ret s0
[[x = o(xs)]]instr s0 := v←map_ev . . . ([[o]]op (List.map s0 xs)); ret s0[x←v]
[[x = f(xs)]]instr s0 := v←trigger (mk_call f (List.map s0 xs)); ret s0[x←v]
[[u;v]]instr s0 := s1←[[u]]instr s0; [[v]]instr s1

[[f]]function (args : list val) : S CallE val := . . .
[[p]]prog (entry : fsym) (args : list val) : S EventFam.emp val :=
mrec (λ _ (mk_call f vs). fc← map_ev . . . (get_function p f);

map_ev . . . ([[fc]]function vs))
(mk_call entry args)

Figure 9. Semantics parameterized by the type val of values and the domain S (⋄)

6.1 Syntax and generic semantics
The syntax of the language is defined in Figure 8. A program consists of a list of functions,

each of which takes a list of arguments and returns a single value. Functions are implemented
using an inductive type of instructions which operate over a state of local variables. Variables
can be assigned imperatively the result of an operation or of a function call.

In the first two sections, I will not commit to a specific set of operations nor to a domain
for the semantics. Figure 9 defines the semantics of the language for some parameters val
and S. This definition requires that S implements the operations I described in sections 2
and 4 and that a semantics is provided for the operators:

[[o]]op (vs : list val) : S EventFam.emp val

This signature gives operators access to all the effects of the domain, except the function
calls. Calls are represented using the family CallE. An events of this family contains the
identifier f of the callee and the values args of its arguments. The answer is a single value.
[[u]]instr s0 describes the semantics of the execution of an instruction u from a local state
s0 as an element of the domain, which can emit CallE events and which returns the local
state after u. It is defined in a denotational way, by recursion on the syntax. The semantics
of a function is derived from the semantics of its body by initialising the local state from
the values of the arguments and recovering the returned value from the final local state.
Finally, we tie the recursive knot using mrec to define the semantics of a program. Given an
entry function and values args for its arguments, [[p]]prog entry args is an element of the
domain representing the semantics of the whole program, which does not emit any events.
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g(x) { return x }
f(x, y) {
z = g(x);
w = z + y;
return x

}
entry(x) {
y = f(x, x);
return y

}

dce_prog−→

g(x) { return x }
f(x) {
z = g(x);
skip;
return x

}
entry(x) {
y = f(x);
return y

}

Figure 10. Example of a Dead Code Elimination transformation (⋄)

6.2 Dead Code Elimination
I will now consider a transformation which removes some local variables and operations which
do not affect the observable behavior of the program, a kind of Dead Code Elimination (DCE)
or ghost code erasure. Because operators have side-effects, some of them need to be kept
even if their results are not used. A semantic criterion is used to exclude them from the
DCE:

Definition 2 (op_removable). An operator o is removable if for any arguments vs:

[[o]]op vs ≳⊤ ret ()

that is if, ignoring the value returned, its semantics can be replaced by an effect-free
computation.

The transformation is inter-procedural and can remove some function arguments but not
function calls. An example is given Figure 10. The general transformation is described
syntactically in Figure 11 using predicates which relate corresponding parts of the source and
target programs. Those predicates take parameters specifying which variables are removed.
The main predicate, dce_instr lva lvv0 src trg lvv1, describes how a source instruction
src can be erased into a target instruction trg. The parameter lva : live_args specifies
which function arguments are removed and lvv0 : live_vars (resp. lvv1) which local
variables are removed at the program point before (resp. after) the instruction. Rule
RemoveOp allows the removal of operations which satisfy two conditions: their result must
not affect the remainder of the computation and the operator must be removable. The
first one is enforced by setting the assigned variable as Dead after the instruction. The
transformation of a whole program is specified by a predicate dce_prog entry src trg. It
requires each source function to be erased into the corresponding target function for some
global choice lva of removal of the function arguments which does not affect the entry
function.

I prove that a transformation matching this static specification yields a target program
which refines the source one:

Theorem 1 (dce_prog_spec ⋄). If two programs src an trg are related by dce_prog for
an entry function, then the semantics of trg refines the semantics of src for any arguments
argsv:

[[src]]prog entry argsv ≳= [[trg]]prog entry argsv

Idea of the proof. The proof is done compositionally, following the structure of the syntactic
description by giving a specification of each predicate using the semantics of the objects
involved. I use the following relations between calls and states:
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Definition 3. Given a specification lva : live_args of the removal of function arguments,
dce_Call lva : EventFam.Rel.t CallE CallE is the relation on events generated by:

dce_list (lva f) args args’
dce_Call lva (mk_call f args) (mk_call f args’) eq

That is, source calls are replaced by target calls of the same function f but with arguments
filtered using lva f. The post-condition is the equality, meaning that corresponding source
and target calls return the same value.

Definition 4 (dce_var_state). Two variable states s0 and s1 are related for a specification
lvv : live_vars if they agree on the values of the live variables.

Those relations are used to state the correctness of the erasure of the instructions:

Lemma 2 (⋄). If trg is a valid erasure of an instruction src according to the syntactic
criterion dce_instr lva lvv0 src trg lvv1, then from any source and target states s0
and s′0 related for lvv0, the semantics of trg refines the semantics of src:

[[src]]instr s0 ≳dce_Call lva, dce_var_state lvv1 [[trg]]instr s′0

This lemma is proven by induction on dce_instr. Compositionality is achieved thanks
to RefBind for DceSeq and to RefMRec for the derivation of the refinement between
the whole programs from the pairwise refinements between the functions (using dce_Call
as invariant).

Inductive liveness := Live | Dead.
Definition live_args := fsym→ list liveness.
Definition live_vars := var → liveness.

dce_list [] u u
dce_list lv src trg

dce_list (Live :: lv) (x :: src) (x :: trg)

dce_list lv src trg
dce_list (Dead :: lv) (x :: src) trg

List.Forall (λx. lvv x = Live) ys
dce_instr lva lvv (x = o(ys)) (x = o(ys)) lvv[x ← Live]

KeepOp

op_removable o
dce_instr lva lvv (x = o(ys)) skip lvv[x ← Dead]

RemoveOp

dce_list (lva f) ys ys’ List.Forall (λx. lvv x = Live) ys’
dce_instr lva lvv (x = f(ys)) (x = f(ys’)) lvv[x ← Live]

DceCall

dce_instr lvv0 u u’ lvv1 dce_instr lvv1 v v’ lvv2
dce_instr lva lvv0 (u;v) (u’;v’) lvv2

DceSeq

Definition dce_prog (entry : fsym) (src trg : prog) : Prop := . . .

Figure 11. Selected parts of the syntactic specification of a DCE (⋄). A proposition
List.Forall P u holds if and only if the predicate P is satisfied by all elements
of the list u.

JFLA 2025 – 36es Journées Francophones des Langages Applicatifs

https://gricad-gitlab.univ-grenoble-alpes.fr/bonneaub/smonad/-/blob/76d3e3e12066363af85f958b9e02fdba92e71ad7/examples/coq/Imp.v#L261
https://gricad-gitlab.univ-grenoble-alpes.fr/bonneaub/smonad/-/blob/76d3e3e12066363af85f958b9e02fdba92e71ad7/examples/coq/Imp.v#L134


Relational reasoning on monadic semantics BONNEAU

[[Const c]]op [] :=retS c
[[Add]]op [m; n] :=retS (m + n)
[[Div]]op [m; n] :=if n =? 0 then ubS else retS (m / n)
[[Any]]op [] :=b←anyS bool; retS (if b then 1 else 0)
[[Input]]op [] :=λm. r←triggerLTS (inr EInput); retLTS (r, m)
[[Output]]op [n] :=λm. _←triggerLTS (inr (EOutput n)); retLTS (0, m)
[[Read]]op [p] :=λm. retLTS (m p, m)
[[Write]]op [p; v] :=λm. retLTS (0, m[p←v])

Figure 12. Semantics of operators in a domain S with external events and a global memory
state (⋄). The semantics are either defined directly in S or by unfolding its
definition and using the operators in LTS. The indexes specify for each operator
the corresponding domain. The semantics of ub and any are described in
subsection 5.3.

6.3 Instantiation of the domain
I have thus proven that the DCE we described statically implies the refinement of the
semantics defined for an arbitrary domain S. I can now instantiate S to some particular
domain expressive enough for the operators I want to consider. I will use a domain based
on LTS (section 5) but with some external IO events and a global memory state (⋄):

Inductive EventFam.State (M : Type) (E : EventFam.t) : EventFam.t :=
mk [A] (e : E A) (s : M) : EventFam.State M E (A * M).

Definition S (E : EventFam.t) (A : Type) : Type :=
memory→ LTS ((EventFam.State memory E) + IO) (A * memory).

This domain is formally seen as the result of applying successively two monad transformers
to LTS:

• A first transformer adds external events hidden from the signature of the semantics by
defining S0 E A := LTS (E + IO) A.

• Then the state monad transformer adds a memory state as input, in the events and as
output: S E A = memory → S0 (EventFam.State memory E) (A * memory).

The operators of sections 2 and 4, plus any and ub, are implemented for S from their
definitions for LTS. The refinement is also defined from sem_ref on LTS by quantifying
universally over input memories and requiring the equality between output memories and
the external events:

u
S
≳Re,R v := ∀m, u m

LTS
≳ RState memory Re + id, R×= v m

where RState is defined by:

Re d e R
RState M Re (mk d m) (mk e m) (R× =)

Figure 12 describes the implementation of some operators. Effectful operators such as Div
(partial), Any (non-determinism), Input (external events) or Write (global memory state)
can be defined since op_sem is specified as an element of S. All operators except Input,
Output and Write are removable. I prove in particular by unfolding the definition of the
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refinement on S that Read, which accesses the memory state, is removable. I thus obtain
the correctness of a transformation which removes memory reads using dce_prog_spec,
although it never mention a memory state. The key ingredients that enabled this proof are
that:

• The domain S has a notion of refinement sem_ref with the signature expected by my
theory (which does not mention the memory).

• All properties needed about S to justify the correctness of the transformation can be
expressed using sem_ref as properties of the combinators (that is, the axioms of my
theory) or as local properties (here op_removable).

This abstraction over the domain enables some factorizations and makes the proofs robust
to a change of the domain. But as demonstrated, it also simplifies the proof: if it was done
directly with the refinement on LTS, we would have needed to take the memory into account
and specifies proof invariants on it. On the other hand, doing so could have allowed some
reasoning on the memory and maybe the removal of some Write operations.

6.4 Comparison with abstraction using events
Zakowski et al. [ZBY+21, §4.3,§5.3] offer another approach to abstract away some effects.
Instead of directly defining the semantics in a domain S expressive enough, programs are
denoted into a simpler domain S0 by replacing effectful operations with the emission of
events of some family E . Those denotations can then be interpreted into S by using a monad
morphism which replaces the events by their implementations:

interpE [A]: S0 E A → S EventFam.emp A

this interpretation has the following property:

u
S0
≳id,R v⇒ interpE u

S
≳...,R interpE v

which can be used to derive a refinement in S from a refinement in the simpler domain S0.
Since a refinement requires the events to be preserved, this approach cannot be used if some
effectful operations are affected. In our case, Read could not be removed. More generally,
one cannot use refinements (such as op_removable) proven in S. On the other hand, this
approach only requires a refinement on a fixed domain S0, whereas I ask for a refinement on
an arbitrary domain satisfying some relational properties. Reasoning on S0 can enable the
use of techniques specific to this domain, for instance coinduction.

7 Related work
On relational theories Xia et al. [XZH+20] prove a relational theory on ITrees and

show that the correctness of some transformations can be derived without further coinductive
reasoning. Nearly all axioms I use are properties proven in this theory. Yoon et al. [YZZ22]
identify an interface satisfied by ITrees and other monadic domains, and which includes some
axioms for relational reasoning. However, some of their axioms rule out asymmetric relations
and non-deterministic domains. Moreover, they do not include mrec in their interface. The
axioms of Figure 2 on sem_ref, ret and bind are equivalents to a subset of the properties
needed for sem_ref to be a relator for the monad S [LGL17] modulo the equivalence relation
≈.
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On equational theories of iteration Iterative monads [AMV04] extends monads
with iteration by requiring the existence and unicity of solutions to guarded equations. On
ITrees and LTS the τ -steps could be used as guards, however in both cases sem_ref is
instantiated with a weak refinement which does not distinguish semantics that differ only
by finite sequences of τ -step. Hence ≈ is too coarse to be a congruence for a notion of
guardedness based on τ -steps. Following the interface defined for the ITrees, I only assume
a canonical iteration operator iter. The axioms we use about this operator are a subset
of those of complete Elgot monads [GMR16]. The other iteration operator, mrec, can also
be understood with this framework by considering event handlers instead of continuations
[XZH+20].

On relations on events A refinement heterogeneous over the events, rutt, is defined
in the ITree library5. It is parameterized by a relation on the events and a relation on their
answers. There is an injection from the type of pairs of such relations into my EventFam.Rel,
but the converse is not true. Michelland et al. [MZG24] define a notion of EventLattice6,
similar to the relations on events used by rutt but specialized for abstract interpretation.
Koenig et al. [KS21] specify and compose simulations on open components using simulation
conventions, a concept similar to EventFam.Rel.

On non-determinism There have been several proposals to extend ITrees with non-
determinism. Zakowski et al. [ZBY+21] consider sets of ITrees as domain. Although the
bind operator can be defined, one of the directions of its associativity does not hold. Other
formalisms [CSL+23, CHH+23] avoid this problem by defining variants of ITrees which
natively support non-determinism thanks to dedicated constructors. Works that prove
transformations corrects with explicit simulations often avoid non-determinism in order
to use forward simulations ([Ler09, §2.1]). Yet even when the final target language is
deterministic, non-determinism is useful to quantify over some choices resolved by later
passes. This is harder with deterministic semantics and often involves ad-hoc simulations.
For instance in CakeML [KTMK+19, §7.1], a “permute oracle” models the effect of a garbage
collector before its behavior is fully determined.
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