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Abstract 

We investigate the spatial and temporal correlations of micro-fractures generated during shear 
simulations of rough rock joints using the Discrete Element Method (DEM). Eight numerical joints were 
meticulously designed, characterized by distinct self-affine roughness parameters: the Hurst exponent 
𝐻, self-affine correlation length 𝐿!, and variance of heights 𝜎". Shearing was conducted under quasi-
static conditions, maintaining constant normal load (CNL) and constant shear speed. The DEM model 
underwent calibration to faithfully replicate the mechanical behavior observed in experimental 
compression, tension and shear tests on synthetic rock. Remarkably, our results unveil a power-law 
behavior in both spatial and temporal dimensions. The probability distribution 𝑃(∆d) describing the 
separation distance ∆𝑑 between two fractures follows a power-law relationship: 𝑃(∆d)~∆𝑑#$, where 
the exponent 𝑞 ranges between 0.4 and 0.8, displaying a marked sensitivity to joint roughness. 
Additionally, the probability 𝑝(∆t)  of two fractures occurring within a time interval ∆t during shearing 
also conforms to a power-law distribution: 𝑃(∆t)~∆𝑡#%. For mechanically interacting micro-fractures, 
𝑛 ranges from 0.716 to 0.869, while for micro-fractures generated across the entire joint area (not 
necessarily interacting fractures), 𝑛 takes values between 1.458 and 1.895. Notably, these findings 
underscore a remarkable analogy with the Omori law in seismic activity. 

 

Keywords: Rock joints, Discrete Element Method, Self-Affine Roughness, Direct Shear, Friction, Micro-
cracks 

 

1. Introduction 

It is well known in rock mechanics and reservoir geo-mechanics, that pre-existing fractures (or joints) 
plays a major role on the thermo-hydro-mechanical behavior of the rock masses [1–5]. One of the key 
parameters that controls such behavior is the roughness of rock joints [4,6–9], which exhibits a self-affine 
regime that expands on several order of magnitudes [10,11]. One characteristic of the self-affine profiles 



is that the mean height difference ∆ℎ(𝜀) = 〈[ℎ&'( − ℎ&]"〉 for two points on the surface separated by 
a distance 𝜀 ≪ 𝐿!  follows a power law of the form ∆ℎ(𝜀) = 𝐵𝜀"(*#+), where H is the Hurst exponent, 
whose values range from 0.4 to 0.8 [12–14] and 𝐿!  is the self-affine correlation length and 𝐵 constant 
(called topothesy). For 𝜀 ≫ 𝐿!, the rough profile is no longer self-affine and ∆ℎ(𝜀 ≫ 𝐿!) = 2𝜎" , where 
𝜎" is the variance of heights of the rough surface. 

The dependence of mechanical and hydro-mechanical behavior on the self-affine fracture roughness 
has been studied by several authors [15–18], in particular, special attention has been paid on the 
dependency between the Hurst exponent 𝐻, the shear stress 𝜏 and the dilatancy 𝛿 of the rock joint 
[19–21]. It has been reported that as the Hurst exponent decreases, the dilatancy and the shear stress 
peak 𝜏%-!  increase [19,21]. The variance of heights 𝜎" of the rough fracture, as well the self-affine 
correlation length 𝐿!, also influence the shear behavior of the joints [19] i.e., as 𝜎" increases, 𝜏%-!  
increases, and as 𝐿!  increases, 𝜏%-!  decreases [19]. Also, it is common that channels are formed 
perpendicular to the shear direction, which results on an increase of the hydraulic permeability of the 
fracture [19,22,23]. 

During the sliding of rock joints, acoustic emission is produced because of the micro-fracturing of the 
rock [24,25]. A peak of the acoustic emission events is obtained as the shear stress approaches to 𝜏%-!  
[26,27]. The statistics of acoustic emissions (AE) in intact rock has been studied by several authors, e.g. 
by Rudajev et al. [28]. They found that the AE of sandstone subjected to compression load follows a 
Omori’s law type of behavior, 𝑛(𝑡)~𝑡#%, where 𝑛(𝑡) is the number of aftershocks occurred after the 
main quake, 𝑡 is the time passed after the main quake and 𝑝 is a parameter taking values between 0.5-
3.0 [29]. Rudajev et al. observed also that 𝑝 decreases as the compression stress increases. Bunger et 
al. [30] adjusted a modified Omori’s formula to AE from hydraulic fracture test on granite, the best fit 
was done taking 𝑝	 = 	1. Ojala et al. [31] carried out confined compression test at different 
temperatures and strain rates on porous sandstone. The AE emitted during the test follows a Omori’s 
law with the p-values related linearly with temperature. The p-values reported by Ojala et al. varied 
from 0.79 to 1.97 for the aftershocks and from 0.80 to 6.81 for foreshocks. Smirnov et al. [32] carried 
out confined compression tests on intact and fractured specimens of sandstone. They found that 𝑝 
increases with compression stress for the fractured specimens, but not change on 𝑝 was noticed for 
the intact specimens as the compression stress increases. 

The above statistical analyses are related to intact rock specimens, not to rock joints. It remains unclear 
how the acoustic emission or micro-fracturing is related to the roughness during the sliding of the rock 
joints. Thus, the main goal of this work is to present numerical analyses that should help at 
understanding better the dependency between self-affine joint roughness and micro-fracturing during 
the shearing of rock joints. 

This paper is organized as follows: section 2 provides a recap of the numerical discrete model utilized 
for the analysis and outlines the methodology for its calibration. In Section 3, temporal correlations in 
micro-fractures induced by joint shear are discussed, while Section 4 deals with spatial correlations. 
Finally, Section 5 is a summary of the primary findings and conclusions. 

  



2. Methodology 

The present analysis relies on a description of rock joints with the discrete element method (DEM) that 
has been already implemented in a previous study [19]. The joint is considered to possess a given 
thickness and the main steps of this modelling methodology are recalled in the following. 

First, we start with the calibration of a representative statistical volume element (SEV) that depicts the 
mechanical response of the joint. For this purpose, we consider a 1 cm side cube filled with spherical 
Discrete Elements (DEs). The sizes of these DEs follow a Gaussian distribution with a mean of 0.5 mm 
and a standard deviation of 0.1 mm. The DEs, with a density of 2650 kg/m³, normal stiffness of 1 N/m, 
tangential stiffness of 0.1 N/m, and a friction coefficient of 0.5, adhered to Newton's laws of motion. 
Interconnections between DEs are established to form a solid. The connections are cylindrical beams 
with a diameter equal to the smallest DE being joined. These connections, referred to as cylindrical or 
parallel bonds according to the nomenclature used by PFC3D of Itasca (the software employed for DEM 
simulations), are considered continuous, linear-elastic, and follow an elliptical fracture criterion. When 
the maximum normal and shear stresses meet the rupture criterion, these bonds break, enabling the 
simulation of the macroscopic behavior of quasi-brittle materials like concrete, mortar, or rocks. 
Additionally, it's worth noting that the parallel bonds (cylindrical beams) also have normal and 
tangential stiffness of 0.1 N/m and 0.01 N/m, respectively. The detailed parameters for this calibration, 
including elasticity modulus, Poisson's coefficient, maximum compression strength, and maximum 
tensile strength, are outlined in Table 1. 

 

Table 1. Comparison of DEM Model with experimental results and roughness parameters 
S1   H =0.53, Lc = 1.6 cm, σ2 = 0.547 mm2  

DEM Experimental 
data 

S2   H =0.53, Lc = 1.6 cm, σ2 = 0.328 mm2 
S3   H =0.53, Lc = 2.0 cm, σ2 = 0.547 mm2 
S4   H =0.53, Lc = 2.0 cm, σ2 = 0.328 mm2 
S5   H =0.41, Lc = 1.6 cm, σ2 = 0.547 mm2 Compressive strength 71 MPa 74.5 MPa 
S6   H =0.41, Lc = 1.6 cm, σ2 = 0.328 mm2 Tension strength 7.0 MPa 6.6 MPa 
S7   H =0.41, Lc = 2.0 cm, σ2 = 0.547 mm2 Poisson Coefficient 0.19 0.21 
S8   H =0.41, Lc = 2.0 cm, σ2 = 0.328 mm2 Young Modulus 32 MPa 31 MPa 

 

Second, once the material describing the joint has been properly described with DEM, we turn to the 
generation of the joints with a self-affine roughness. We consider a joint size of 10 cm in length and 
width, with a height of 1 cm (matching the size of the SEV). Approximately 100,000 Discrete Elements 
(DEs), possessing the same characteristics as those used in the calibration are used to construct these 
joints. The process of creating joints with controlled roughness involves the initial generation of 
numerical joint molds in which the DEs are placed. These molds, each exhibiting the desired roughness, 
are crafted using the power spectral method [19]. Through this method, self-affine rough surfaces can 
be generated while precisely controlling the variance of heights σ2, the correlation length Lc, and the 
roughness exponent H. This process ensures the replication of desired roughness characteristics in the 
generated rock joints. The details of the roughness parameters manipulated during this process are 
outlined in Table 1. It is important to recall that all parameters were rigorously validated against 
experimental roughness data [19]. Figure 0 illustrates one of the obtained joint. 



 
Figure 0 DEM joint 

 

Finally, we may advance to conduct friction tests under constant normal load conditions on the rock 
joint. A constant normal load in the direction of the z-axis, set at 14 MPa, is applied initially. Then, the 
upper part of the joint is subjected to a constant sliding velocity of 6x10-5 m/s, while the lower part 
remains fixed. Throughout these numerical tests, friction forces, vertical displacement of the joint, 
spatial localization of micro-fractures, and the timing of their occurrence are recorded.  

 

Figure 1 presents the shear response and the evolution of the dilatancy upon shearing that was 
obtained in Ref. [19]. Throughout this paper, we will place particular emphasis on the joints DEMS4 and 
DEMS5 which are the smoothest and roughest joints respectively. However, the analysis covers all the 
joints considered in Table 1 whose response is depicted in Figure 1. 

 

  
 

Figure 1. Shear response (left) and dilatancy (right) of the considered joints (after ref. 19) . 
 

Having successfully obtained the mechanical response of our DEM model, we examine now the micro-
fracturing process, more precisely temporal and spatial correlations, with the aim to elucidate 
relationships between this process and the self-affine roughness characteristics. 

 

3. Temporal correlation of micro-fractures 
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This section investigates the possible temporal correlations between micro-fractures that were 
created during the shearing of DEM joints. It is useful to point out that shearing induces a complex 
fracture process: when a bond breaks (micro-fracture), part of the elastic energy stored in the bonds 
is dissipated in the creation of a micro-fracture. The other part is converted into kinetic energy that 
may trigger subsequent micro-fractures as part of a stress redistribution process. On one hand, once 
a micro-fracture is created, more fractures around the first one [33] in a small-time interval ∆𝑡, can be 
formed. This kind of fractures are going to be named as interacting micro-fractures. On the other hand, 
during shearing, the two surfaces of the joint can be in contact on several points apart due to the 
roughness. If the stresses at these contact points are intense, micro-fractures may occur at locations 
separated by large distances. This kind of fractures are denoted as non-interacting micro-fractures. 

Estimating the distance or time interval from which the interactions between an existing micro-
fracture and subsequent ones do not interact is a challenging issue that requires to distinguish crack 
interactions from load redistribution. Theoretically, in a full dynamic process, redistribution occurs at 
a speed that is in relationship with the wave velocity. Within a sphere centered at the location of a 
given micro-fracture denoted as F1, subsequent micro-fractures Fi that occur at a time interval that is 
greater than the time needed for the wave to propagate from F1 to Fi are assumed to result from 
redistribution. It is considered that they are not interacting, whereas the remaining micro-fractures 
observed in the sphere are interacting ones.  

For the sake of discussion, let us assume that the mean speed of propagation,𝑣%	of the elastic P-waves 
in the DEM model can be approximated as. [34]: 

 

𝑣% ≈ 𝐷C
𝑘(1 − 𝛼)

𝑚
 (1) 

 

where 𝐷 is the mean diameter of the particles, 𝑘 is the stiffness of the bonds, 𝛼 is the local damping 
coefficient and 𝑚 is the mean mass of the particles. Intoducing the corresponding values in Eq. (1), a 
mean value for the P-wave velocity 𝑣% ≈ 9.8	𝑚𝑚/𝑠 is obtained. Then the time interval limit between 
interacting and non-interacting subsequent micro-fractures will be set arbitrarily. It will correspond to 
the time needed for the wave to propagate through the height of the joint. 

3.1. Interacting fractures produced during shearing 

Figure 2Erreur ! Source du renvoi introuvable.a shows all the fractures (black dots) that were 
produced after 6mm of shearing of the DEMS5 joint. Consider a small set of fractures 𝐹-  (i=1: N, N = 
number of fractures) formed during a time period 𝑡𝑜 + ∆𝑡% and localized inside a sphere of radius 
∆𝑑%	centered at 𝑑𝑜 (Figure 2b), 𝑡𝑜 is the time at which the first fracture 𝐹* is formed and 𝑑𝑜 is its 
position. The value of ∆𝑑% is fixed at 10 mm, the height of the DEM joint, and ∆𝑡% is the time that the 
elastic P-waves takes to travel the distance ∆𝑑% (10 mm) at a velocity 𝑣%. 

 



 

Figure 2 Schematic representations for the calculation of waiting times between fractures represented 
by small circles. 

Then, the differences in time ∆𝑡 (or waiting times) between the formation of fracture	𝐹* and the rest 
of fractures 𝐹-  occurring inside the sphere of radius ∆𝑑% is computed. Because all the fractures 𝐹-  are 
created at time intervals ∆𝑡 smaller that the time needed of the P-wave to travel the distance ∆𝑑%, 
these are considered as interacting fractures.  

As an example, Figure 3 shows the probability distribution, i.e., histogram formed from the waiting 
times ∆𝑡, for the joints DEM S4 and DEM S5. This figure reflects the possible interactions between 
fractures that are localized in time and space.  

 

 
Figure 3 Distribution of waiting times ∆𝑡 between fractures. p=0.869 for DEMS4 (blue curve) and 
p=0.720 for DEMS5 (red curve). 

 

In this figure, 𝑃".(∆𝑡) can be interpreted as the conditional probability that a fracture 𝐹-  is formed 
after a time interval ∆𝑡 once the fracture 𝐹* is created. It can be seen from Figure 3 that for small time 
intervals (∆𝑡 < 10#"𝑠 ) there is relatively high probability that a secondary fracture occurs, then, the 
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conditional probability for the formation of the second fracture decreases following a power law 
behavior reminiscent of Omori’s law for the aftershocks [29]: 

 

𝑃".(∆𝑡) =
𝐴

(∆𝑡)%
 (2) 

 

where 𝐴,and 𝑝 are constants. The exponent	𝑝 estimated from the fitted equation to the numerical 
data in Figure 3 ranges between 0.716-0.869 (Table 2), similar to the experimental values for the 
foreshocks and aftershocks reported for earthquakes [29,35], for the fracture of sandstone in confined 
compression test [31,32], and for earthquakes produced by volcanic eruptions [36]. Note that the 
exponent 𝑝 depends slightly on the joint roughness: when the roughness of the joint decreases (DEM 
S4) 𝑝 increases and vice versa for the roughest joint DEM S5. Finally, after a waiting time of around 
0.11 seconds, the conditional probability of occurrence of the two fractures takes a relatively constant 
low value (Figure 3), indicating that the fracture process is not correlated in time afterwards.  

3.2. Interacting and noninteracting fractures produced during shearing 

As shear proceeds, successive fractures are formed (broken bonds), where each fracture 𝐹-, is formed 
at a time 𝑡-. To study the possible time-correlation between consecutive fractures 𝐹-  and 𝐹-'*, 
whether they interact or not, the differences in time ∆𝑡	 = 	 𝑡-'* 	− 	𝑡-  between the formation of both 
fractures is computed. Figure 4 shows the probability distribution of the waiting times ∆𝑡 for all the 
fractures as they were produced chronologically during the shear simulations. The waiting time 
distribution for all fractures also follows a power law behavior given by Eq. (2), but with exponents 𝑝  
that ranges between 1.458 to 1.895, which seems to be systematically higher than the p exponent 
obtained for interacting fractures (p = 0.716-0.869). 

 

 
Figure 4 Waiting time distribution for all the fractures and for joints DEMS4 and DEMS5. pDEMS5 = 
1.895 (red curve), pDEMS4 = 1.458 (blue curve). 

 



Recall that carrying out such an analysis implies to consider the waiting times ∆𝑡 between fractures 
that not necessarily lies in the region enclosed by the red circle of Erreur ! Source du renvoi 
introuvable., but also far away from each other. This is the reason why the p exponents in Figure 4 are 
different from those in Figure 3. Table 2 summarizes the results for all the 8 DEM joints.  

It is important to remark that in Figure 4, the steady-state regime (as shown in Figure 3 with constant 
probability) is not observed. This is because the shear displacement is only 6 mm, whereas the 
minimum correlation length of the joints is 16 mm. There is a strong correlation between the upper 
and lower parts of the joint through the roughness. This will be observed in Figure 7, where micro-
fractures concentrate in specific zones. For uncorrelated frictional surfaces, homogeneous micro-
fracturing would be expected across the surface. 

It is intriguing to observe the power law  𝑃(𝑡)~𝑡#% has been observed not only in foreshocks and 
aftershocks [29] but also in Acoustic Emissions (AE) during confined compression tests [31,32] and in the 
fracture of 2D materials like paper subjected to tension [37], suggesting a potential universality in 
fracture behavior.  

 

Table 2 Exponents of the waiting time distribution between fractures 
Joint p1 (interacting 

fractures) 
P2 (all fractures) 

S1 0.810 1.616 
S2 0.802 1.480 
S3 0.831 1.481 
S4 0.869 1.458 
S5 0.720 1.895 
S6 0.785 1.653 
S7 0.716 1.557 
S8 0.826 1.690 
average 0.794 1.604 

  

As explained earlier, for a self-affine profile, the structure of the surface follows the relationship,  
∆ℎ(𝜀) = 𝐵𝜀"(*#+), when 𝜀 = 𝐿𝑐, ∆ℎ(𝜀) = 2𝜎", so the topothecy 𝐵 of the self-affine surface can be 
expressed as 𝐵	 = 2𝜎" 𝐿𝑐"(*#+)⁄  . Figure 5 illustrates the dependence of the exponents 𝑝* and 𝑝" 
observed for interacting micro-fractures and for all fractures respectively, on the surface roughness 
expressed in terms of the topothecy 𝐵. 

 



 
Figure 5. Dependence of the p-exponent with the roughness of the joint expressed in terms of tis 
topothesy B. Exponents 𝑝* and 𝑝" correspond to interacting micro-fractures and to all fractures 
respectively. 

 

On this figure, it can be observed that the roughness of the joint has a significant effect on the micro-
fractures generated during friction. There is a linear relationship between the roughness and the 
exponent 𝑝" for all fractures with slope 𝑏" ≈ 25 and there is another linear relationship in the case of 
interacting fractures with slope 𝑏* ≈ −	8.7. Fractures linked to p2 are considered to  do not interact 
through elastic waves but through the joint roughness. In fact, exponent 𝑝* might be considered as 
being almost independent from the roughness of the joint. The range of variation is small compared 
to that of exponent 𝑝". Micro-fractures that occur close to each other (interacting micro-fracture 
linked to p1) are not sensitive to the roughness which is more influent when micro-fractures are far 
apart (fractures linked to p2). 

 

4. Spatial correlation between fractures 

Figure 6 and Figure 7 show the spatial distribution of the fractures at the end of the shear simulation 
in the joints DEM S5 and DEM S4 (the joints were sheared in the –X direction). 
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Figure 6. Distribution of fractures at the end of the shear simulations for the joint DEM S5. 

 

The fractures form clusters in the X-Y plane that normally corresponds to the location of the higher 
asperities in the joints, see for instance (Figure 8) [19]. Further, the fractures tend to be aligned in bands 
in the planes X-Z and Y-Z (zones were the density of fractures increases and zones where there are 
almost not fractures).  

 

  



  
Figure 7. Distribution of fractures at the end of the shear simulations for the joint DEM S4. 

 

 
Figure 8. Localization of micro fractures (red dots) after shearing 6mm of the joint DEM S4 

 

For the sake of qualitative comparison, Figure 9 shows the distribution of earthquakes along an active 
fault in Turkey as reported in [38]. Note that at the planetary level seems that the seismic zones also 
tend to be localized in bands perpendicular to the fault. Figure 9 seems to be qualitatively like the 
present results on small joint (although there is, without doubt some effects of the scale and accuracy 
of the measurement of the seismicity). 

 



 
 
Figure 9. Seismicity in the Çınarcık basin since 17 August 1999 (yellow: 17 August 1999–12 November 
1999, red: 2001–2010) from [38]. 

 

Figure 10 shows the probability 𝑃". to find two fractures separated by a distance ∆𝑑. The probability 
to find two fractures at small distances is high and constant. Then, it decreases following a power law 
𝑃".(∆𝑑)~∆𝑑#$. 

 

 
Figure 10. Distribution of distance ∆𝑑 between fractures, q=0.84 for DEMS4 (blue) and q=0.46 for 
DEMS5 (red). 

 

The	𝑞 exponents obtained from linear regression range from 0.4 to nearly 0.85, with joint DEM S6 
exhibiting the lowest value of 0.4, and joint DEM S1 displaying the highest value. The power-law 
relationship 𝑃".(∆𝑑) 	∝ 	∆𝑑#$ can be integrated to obtain the spatial correlation function [39], 
denoted as 𝐶(∆𝑑,𝑤), which represents the normalized sum of fracture pairs with distances less than 
∆𝑑 and 𝑤 is the moment of 𝐶.  



If the set of distances between these fracture pairs forms a fractal object, then 𝐶(∆𝑑,𝑤) should be 
proportional to ∆𝑑/, where 𝐷	 = 	−𝑞	 + 	1 represents the fractal dimension of the set off distances. 
Indeed, considering a fractal object with dimension 𝐷	 = 	1 − 𝐻, where 𝐻 represents the Hurst 
exponent of the fractal set of fractures, it follows that the 𝑞 exponent is equivalent to the Hurst 
exponent 𝐻. Therefore, by averaging the 𝑞 values (see Table 3), the fractal dimension 𝐷 of the distance 
set between fractures is approximately 𝐷	 ≈ 	0.4. Similar 𝑞 (𝐻 values) values of 0.4, and 0.8 have also 
been observed in earthquake epicenter distances [40]. 

 

Table 3. Localized fractures in time and space (coupled and uncoupled fractures) 
 q  
S1 0.894  
S2 0.624 
S3 0.70 
S4 0.843 
S5 0.459 
S6 0.400 
S7 0.451 
S8 0.409 
average 0.60 

 

The process of friction gives rise to distinct regions of fracture clouds that span into the joint from the 
frictional surface along the ±z direction (see Figs. 6,7). Within each of these observed fracture clouds, 
it is conceivable that a macroscopic fracture is forming. In other words, these micro-fracture clusters 
can be regarded as a process zone, as experimentally detected through acoustic emissions [41]. Ponson 
et al. [42] studied the self-affine behavior of fractures induced by indirect tension in sandstone. They 
showed that fracture surfaces exhibit self-affine behavior characterized by a roughness exponent, 𝜁, 
ranging from 0.4 to 0.5. Similarly, Morel et al. [43] found similar roughness exponents, 𝜁	 = 	0.4 and 
𝜁	 = 	0.8, for fracture surfaces in mortar. The self-affine nature of these surfaces implies that the 
height difference, 𝛿𝑧(𝑑𝑥), between two points separated by a distance 𝑑𝑥 in the rough surfaces 
follows a power-law 𝛿𝑧(𝑑𝑥)~𝑑𝑥0 .  

As discussed above, the micro-fracture cloud exhibits fractal characteristics, and within this fracture 
cloud, macroscopic cracks form and propagate. These macro-cracks also demonstrate a self-affine 
behavior [42,43]. It might then be proposed that the self-affine behavior of these macro-cracks emerges 
from their formation and propagation within a fractal micro-fracture cloud. In this case, the micro-
fracture cloud is characterized by a Hurst exponent of 0.4 for DEM joints S5 to S8 and 𝐻 ≈ 0.8, for 
DEM joints S1 to S4, closely resembling the roughness exponent measured by Ponson et al. [42] and 
Morel et al. [43].  

Finally, Figure 11 shows the evolution of micro-fracture density as function of the perpendicular 
distance (±z direction) to the average joint surface. Note that the fracture density logarithmically 
decreases with the distance from the average joint plane. This agrees with the experimental results 
reported by Vermilye et al. [44]. 



 
Figure 10 Evolution of micro-fracture density perpendicular to the mean plane of the fracture (±z 
direction). Each color represents a DEM joint. 

 

5. Conclusions 

In summary, our study underscores the existence of spatial-temporal correlations among micro-
fractures in self affine rough joints subjected to shear.  

• Our approach is based upon a DEM model that faithfully reproduces mechanical behaviors 
akin to real-world scenarios, encompassing compression, tension, and shear responses. The 
DEM-generated joints underwent shear under constant normal load conditions at a consistent 
shear speed. 

• To explore the temporal relationships between fractures, we computed the waiting times (Δt) 
separating successive fractures. We distinguished between two critical cases: 1) interacting 
micro-cracks, occurring in proximity within a confined region, and 2) non-interacting micro-
cracks, where fractures emerged across the entire joint volume. The probability of 
encountering two fractures within a specified time lapse follows a power-law distribution akin 
to Omori's law, commonly employed in earthquake studies. The exponent for interacting 
micro-fractures ranged between 0.716 and 0.869, while for all micro-fractures, it spanned 
from 1.458 to 1.895. Notably, we observed a dependence of these temporal correlations on 
the roughness characteristics of the joints for all micro-fracturing events, this dependency is 
more visible between the smoothest (DEMS4) and roughest (DEMS5) joints. The events 
corresponding to interacting cracks depend only slightly on the joint roughness. They are too 
close to each other to feel the effect of roughness. 

• Observations reveals also a propensity for micro-fractures to cluster during shearing. The 
probability of finding two fractures separated by a given distance (Δd) follows a power law of 
this distance with an exponent q. This exponent fluctuates from 0.459 for the roughest joint 
(DEM S5) to 0.843 for the smoothest joint (DEM S4). Micro-fracture clouds exhibit fractal 
characteristics and the hurst exponent of the fractal set of micro-fracture is equivalent to 
exponent q.  



• It is worth highlighting that our findings also show remarkable agreement with the 
experimentally reported values in the literature for the 𝑝 and 𝑞 exponents. 
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