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Abstract

Multiplex networks capture multiple types of interactions among the same
set of nodes, creating a complex, multi-relational framework. A typical ex-
ample is a social network where nodes (actors) are connected by various
types of ties, such as professional, familial, or social relationships. Clustering
nodes in these networks is a key challenge in unsupervised learning, given
the increasing prevalence of multiview data across domains. While previous
research has focused on extending statistical models to handle such networks,
these adaptations often struggle to fully capture complex network structures
and rely on computationally intensive Markov chain Monte Carlo (MCMC)
for inference, rendering them less feasible for effective network analysis. To
overcome these limitations, we propose the multiplex deep latent position
model (MDLPM), which generalizes and extends latent position models to
multiplex networks. MDLPM combines deep learning with variational infer-
ence to effectively tackle both the modelling and computational challenges
raised by multiplex networks. Unlike most existing deep learning models for
graphs that require external clustering algorithms (e.g., k-means) to group
nodes based on their latent embeddings, MDLPM integrates clustering di-
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rectly into the learning process, enabling a fully unsupervised, end-to-end
approach. This integration improves the ability to uncover and interpret
clusters in multiplex networks without relying on external procedures. Nu-
merical experiments across various synthetic data sets and two real-world
networks demonstrate the performance of MDLPM compared to state-of-
the-art methods, highlighting its applicability and effectiveness for multiplex
network analysis.

Keywords: Multiplex network analysis, Node clustering, Deep latent
variable models, Graph neural networks

1. Introduction and related work

In the realm of network science, multiplex or multiview networks (Kivelä
et al., 2014) represent an advanced analytical framework where nodes main-
tain multiple types of relationships or interactions simultaneously. This
complexity is inherent in various real-world networks, such as social me-
dia platforms, where individuals can connect through different contexts like
professional, familial, or social ties. A long series of statistical methods,
such as Arroyo et al. (2021); Sosa and Betancourt (2022); MacDonald et al.
(2022) as examples, have been developed to discover the underlying clusters
of nodes in multiview networks by learning latent features for the nodes.
More recently, deep-learning-based models (Hamilton et al., 2017; Zhang
et al., 2018a) have emerged as a promising approach for analyzing multiplex
networks and they have shown abilities for representation learning on data
with complex structures. Hereafter, we split the existing approaches for node
clustering in multiview networks into two categories and briefly review them.

Statistical models for multiview clustering. The latent position model (LPM),
originally proposed by Hoff et al. (2002), posits that each node in a network
occupies an unknown position in a multivariate continuous latent space, with
the likelihood of a link between two nodes modeled as a function of their
positions. Handcock et al. (2007) extended LPM to the latent position clus-
ter model (LPCM), incorporating a clustering structure by assuming that
node positions are drawn from a Gaussian mixture model. Recently, LPM
has been adapted to accommodate multiview data, significantly enhancing
its utility for analyzing complex interactions. Key developments include
the work of Gollini and Murphy (2016), who extended LPM to multiplex
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data by proposing that edge probabilities are functions of a single latent
variable. Salter-Townshend and McCormick (2017) introduced a method to
simultaneously model network structure and correlations among multiple
networks through a multivariate Bernoulli model. Further advancing this
field, D’Angelo et al. (2019) and their subsequent study D’Angelo et al.
(2023) developed a Bayesian nonparametric model that automatically in-
fers the number of clusters, dynamically adjusting based on the number of
actors. Another significant strand of research involves stochastic block mod-
els (SBMs, Wang and Wong, 1987; Nowicki and Snijders, 2001), which have
been widely used for node clustering (Lee and Wilkinson, 2019). Notable
contributions include those by Ishiguro et al. (2010); Barbillon et al. (2017);
Paul and Chen (2020), who proposed models that enrich the understanding
of latent structures. However, these extended models often rely on Markov
chain Monte Carlo (MCMC) methods for inference, which are computation-
ally demanding and scale poorly with the size of the network, rendering
these statistical methods impractical for effective applications. The hierar-
chical block distance model (HBDM, Nakis et al., 2023) employs a multi-scale
block structure inspired by stochastic block modeling and latent distance
models. HBDM captures homophily and transitivity in graph representa-
tion by organizing embedded clusters into a hierarchical tree structure, with
the root representing the entire set of latent variable embeddings. This ap-
proach approximates the LPM across the hierarchy, providing a framework
for multi-scale graph analysis.

Deep learning models for multiview clustering. Recent advances in graph neu-
ral networks (GNNs) have notably enhanced network representation learning
and have been actively explored in multiview clustering. In this line of meth-
ods, CMNA (Chu et al., 2019) utilizes cross-network information to refine
inter-vector for network alignment and intra-vector representations for other
downstream tasks. Concurrently, mGCN (Ma et al., 2019) and HAN (Wang
et al., 2019) employ graph convolutional networks (GCNs, Kipf and Welling,
2016a) and graph attention networks (GATs, Veličković et al., 2018), respec-
tively, to address both inter and intra-network interactions within multiplex
networks. Further, DMGI (Park et al., 2020) draws inspiration from deep
graph infomax (DGI, Velickovic et al., 2019), which aims at maximizing the
mutual information between local graph patches and the global graph rep-
resentation. This approach facilitates the integration of embeddings from
various types of node relations, enhancing the overall model flexibility. De-
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spite these advancements, the aforementioned approaches, along with other
notable methods (Liu et al., 2017; Zhang et al., 2018b, 2023), primarily focus
on network embedding and typically rely on external clustering algorithms
like k-means to group the embedded nodes. This reliance separates the clus-
tering process from the generative model, potentially limiting the depth of
integration and insight that can be achieved. O2MAC (Fan et al., 2020)
represents a significant step forward by employing clustering directly in the
attributed multi-view graph. However, it uniquely selects one graph view
with the highest informative score as the primary model input. This se-
lection process may lead to information loss by excluding other potentially
valuable views, thereby constraining the overall clustering performance.

Main contributions. To address the limitations of existing models while ex-
ploring their advantages, we introduce the multiplex deep latent position
model (MDLPM) for multiview network data. Within the framework of vari-
ational auto-encoders (VAEs, Kipf and Welling, 2016b), MDLPM combines
deep learning graph models with statistical modeling, offering a flexible yet
comprehensive tool for network analysis. The MDLPM encapsulates several
key features:

• Multiplex LPM-based decoder: our method features a decoder
that models the probability of interactions between node pairs across
multiple network views, based on their distances in a joint latent space.

• Integration of multiple GCNs: MDLPM employs multiple graph
convolutional networks within a variational inference framework. This
integration addresses both the modelling and computational challenges
in multiview network analysis, ensuring robust performance with com-
plex data structures.

• End-to-end clustering: unlike traditional methods that require ex-
ternal clustering algorithms, MDLPM autonomously performs end-to-
end clustering. It estimates posterior probabilities for cluster mem-
berships directly, enabling the model to assign nodes to their groups
without additional procedures.

• Hybrid estimation algorithm: the model incorporates a novel esti-
mation algorithm that combines expectation-maximization, for explicit
posterior clustering probabilities, with stochastic gradient descent, for
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implicit graph reconstruction. This hybrid approach optimizes both
the clustering performance and the fidelity of network representation.

2. The multiplex deep latent position model

In this section, we introduce the generative model we propose for the
analysis of multiplex networks.

2.1. Notations

In the following, multiplex networks are modelled as a set of undirected,
unweighted graphs G(l) = (V,E(l)), l ∈ {1, · · · , L}, with N = |V | nodes and
L network views. We emphasize that the set of nodes V remains fixed across
views. Then, we introduce an N ×N adjacency matrix A(l), where A

(l)
ij = 1

if there is a link between node i and node j in the l-th view, 0 otherwise.
Each node is associated with attribute information, which collectively forms
the node feature matrix X ∈ RN×Fv . The notation Fv is used to represent
the number of dimensions of all the node features. Note that the set of edges
E(l) can be associated with an additional covariate information, stored into

the edge feature matrix Y (l) ∈ R|E(l)|×F
(l)
e . The generic entry of Y (l), denoted

y
(l)
ij , is a F

(l)
e -dimensional feature associated with the edge connecting i to j

in the l-th view. For instance, y
(l)
ij could encode the text that author i sent

to author j in a communication network view. Our objective is to learn well-
represented, latent, joint node embeddings, denoted as Z, within a space of
reduced dimensionality P . Simultaneously, we aim at partitioning the nodes
into K distinct clusters. Necessary notations are summarized in Table 1.

2.2. Generative model

The generative process of our model is described as follows. First, each
node is supposed to be assigned to a cluster via a random variable ci encoding
its cluster membership

ci
i.i.d∼ Multinomial(1, π), with π ∈ [0, 1]K ,

K∑
k=1

πk = 1. (1)

Then, conditionally to its cluster membership, a latent embedding vector
zi is generated

zi|cik = 1 ∼ N (µk, σ
2
kIP ), with σ2

k ∈ R+∗, (2)
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Table 1: List of model parameters and notations

Notation Description
L Number of network views
N Number of nodes
K Number of clusters
P Latent space dimension
A(l) Adjacency matrix in [0, 1]N×N in l-th layer
X Node feature matrix in RN×Fv

Y (l) Edge feature matrix in l-th layer in R|E(l)|×F
(l)
e

π Prior cluster probability vector
C Cluster memberships
Z Latent node embeddings in RP

δik Posterior probability that node i is in cluster k

Figure 1: Graphical representation of MDLPM at the (i, j)-th pair level (variational pa-
rameters used for inference are not included).

independently for each node, where µk and σ2
k denote the mean as well as

variance of each cluster, and IP represents the identity matrix in RP .
Finally, the probability of a connection between nodes i and j within the

l-th view, as indicated by the entry A
(l)
ij in the adjacency matrix, is modelled

using a Bernoulli random variable. This variable depends on the distance
between the latent positions corresponding to each pair of nodes

A
(l)
ij |zi, zj ∼ Bernoulli

(
g(α(l) + β(l)⊤y

(l)
ij − γ(l)∥zi − zj∥2)

)
, ∀l ∈ {1, · · · , L},

(3)
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where α(l), γ(l) ∈ R and β(l) ∈ RF
(l)
e are free parameters. Furthermore, the

function g is the logistic sigmoid function, y
(l)
ij is the covariate of the edge

connecting i with j in view l, if available, and ∥ · ∥2 is the squared Euclidean
norm. A graphical representation of the generative model described so far
can be seen in Figure 1.

3. Model inference

This section outlines the variational auto-encoding inference procedure
and introduces an original estimation method which combines explicit opti-
mization of the posterior clustering probabilities with implicit optimization
of the neural network parameters.

3.1. Variational auto-encoding inference

Before getting into the details of the inference process, we first define the
set of model parameters as

Θ = {π, µ := (µ1, · · · , µK), σ := (σ2
1, · · · , σ2

K), α := (α(1), · · · , α(L)),

β := (β(1), · · · , β(L)), γ := (γ(1), · · · , γ(L))}.

Moreover, we denote Z = (z1, · · · , zN) and C = (c1, · · · , cN) the set of all
node positions and cluster memberships, respectively. The natural inference
approach involves maximizing the integrated log-likelihood of the observed
data, denoted as A = (A(1), · · · , A(L)), with respect to Θ (and, possibly,
the optional covariate information Y = (Y (1), · · · , Y (L)), which is omitted to
keep the notation uncluttered)

log p(A|Θ) = log

∫
Z

∑
C

p(A,Z,C|Θ)dZ. (4)

Unfortunately, Eq. (4) is not tractable. Therefore, we propose a varia-
tional approach to approximate the log-likelihood

log p(A|Θ) = L(q(Z,C); Θ) +DKL(q(Z,C)||p(Z,C|A,Θ)), (5)

where DKL denotes the Kullback-Leibler divergence between the true and
approximate posterior distributions of (Z,C) given the data and model pa-
rameters.
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Figure 2: Architecture of MDLPM within the framework of variational auto-encoders.

In order to rely on a tractable family of distributions, we assume that
q(Z,C) fully factorizes under the mean-field assumption

q(Z,C) = q(Z)q(C) =
N∏
i=1

q(zi)q(ci). (6)

To leverage the representational learning capabilities of graph neural net-
works, we consider multiple GCNs. Thus,

[µ
(l)
ϕl
, log σ

(l)
ϕl
] = f

(l)
ϕl
(A

(l)
, X), (7)

where f
(l)
ϕl
(·) is the GCN for the l-th layer, which is parameterized by ϕl,

specific to the l-th network view. This layer maps the normalized adjacency

matrix, A
(l)

= D̃(l)−
1
2 (A(l)+IN)D̃

(l)−
1
2 , into a matrix of the variational means

(µ
(l)
ϕl

∈ RN×P ) and vector of the log standard deviations (log σ
(l)
ϕl

∈ RN),

for all nodes. We point out that D̃(l) is an N × N diagonal matrix, such

that D̃
(l)
ii =

N∑
j=1

(A
(l)
ij + I{i=j}),∀i. This construction of A

(l)
aligns with the

operations detailed in Kipf and Welling (2016a).
Then, to effectively aggregate information from L network views, we in-

troduce two multi-layer perceptron (MLP) layers

µ̃ϕ,wµ = MLPwµ

(
µ
(1)
ϕ1
, · · · , µ(L)

ϕL

)
, log σ̃ϕ,wσ = MLPwσ

(
log σ

(1)
ϕ1
, · · · , log σ(L)

ϕL

)
,

(8)
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where the mean vectors and the log standard deviation vectors from L net-
work views are concatenated column-wise. These concatenated vectors then
serve as the inputs for two distinct multi-layer perceptron layers, MLPwµ(·)
and MLPwσ(·), respectively.

Finally, given the integrated vectors µ̃ϕ,wµ ∈ RN×P and log σ̃ϕ,wσ ∈ RN ,
we assume

q(zi) = N
(
zi; (µ̃ϕ,wµ)i, (σ̃ϕ,wσ)iIP

)
. (9)

Moreover, a standard assumption is made for the variational clustering
probabilities

q(C) =
N∏
i=1

Multinomial(ci; 1, δi), (10)

where δik represents the variational probability that node i is in cluster k,

with
K∑
k=1

δik = 1. An overview of the model architecture is illustrated in

Figure 2.

3.2. Optimization

In this part, we focus on maximizing the evidence lower bound (ELBO)

L(A|Θ) =

∫
Z

∑
C

q(Z,C) log
p(A,Z,C|Θ)

q(Z,C)
dZ, (11)

with respect to the model parameters Θ and the variational parameters ϕ :=
(ϕ1, · · · , ϕL).

Proposition 1. Thanks to Eq. (6)-(9)-(10), the lower bound in Eq. (11) can
be further developed as

L(A|Θ) =

∫
Z

∑
C

q(Z,C) log
p(A|Z, α, β, γ)p(Z|C, µ, σ2)p(C|π)

q(Z,C)
dZ

= E [log p(A|Z, α, β, γ)] + E
[
log p(Z|C, µ, σ2

]
+ E [log p(C|π)]− E [log q(Z|A)]− E [log q(C)]

= E [log p(A|Z, α, β, γ)] + E
[
log

p(Z|C, µ, σ2)

q(Z)

]
+ E

[
log

p(C|π)
q(C)

]
9



=
1

2
E

[
L∑
l=1

∑
i ̸=j

A
(l)
ij log η

(l)
ij + (1− A

(l)
ij ) log(1− η

(l)
ij )

]

−
N∑
i=1

K∑
k=1

δikDKL

(
N
(
(µ̃ϕ,wµ)i, (σ̃

2
ϕ,wσ

)iIP
)
||N

(
µk, σ

2
kIP
))

+
N∑
i=1

K∑
k=1

δik log(
πk

δik
),

where η
(l)
ij = g(α(l) + β(l)⊤y

(l)
ij − γ(l)∥zi − zj∥2) and the expectation is taken

with respect to the variational probability q(·).

Proposition 2. An explicit optimization of the ELBO with respect to the
parameters δik, πk, µk and σk can be performed to obtain the following updates

δ̂ik =
πke

−Dik
KL

K∑
l=1

πle−Dil
KL

, (12)

where Dik
KL = 1

2

{
log

(σ2
k)

P

(σ̃2
ϕ,wσ

)Pi
− P +

(σ̃2
ϕ,wσ

)i

σ2
k

+ 1
σ2
k
∥µk − (µ̃ϕ,wµ)i∥2

}
.

Moreover,

π̂k =
N∑
i=1

δik/N, µ̂k =
N∑
i=1

(µ̃ϕ,wµ)iδik/
N∑
i=1

δik (13)

and

σ̂2
k =

N∑
i=1

δik
(
P (σ̃2

ϕ,wσ
)i + ∥µk − (µ̃ϕ,wµ)i∥2

)
P

N∑
i=1

δik

. (14)

More detailed derivations are given in the Appendix A.
On the other hand, the implicit optimization of the encoder parameters ϕ,

the two parameters wµ and wσ of MLP layers, and decoder parameters α, β, γ,
is performed via stochastic gradient descent. In this work, it is implemented
using the Adam optimizer (Kingma and Ba, 2014) with a learning rate of
5e−3. In MDLPM, each of the multiple GCN encoders features a first hidden
layer with 64 neurons and a second hidden layer with 16 neurons, using
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ReLU activation for the initial layer. The output from these encoders is
concatenated, resulting in a dimension of L × 16, where L is the number of
views. This concatenated output serves as input to two MLP layers, which
process it to produce latent embeddings with a final dimension of P = 16.
Each of the decoders consists of a single-layer neural network that maps
these latent embeddings back into a reconstructed graph, utilizing a sigmoid
activation function for the output layer. We also point out that during the
estimation, a reparameterization trick as in Kingma and Welling (2014) is
used for the term E [log p(A|Z, α, β, γ)].

3.3. Model selection

The ELBO introduced in the previous section allows one to both estimate
the (variational) posterior law of (Z,C) as well as the model parameters Θ for
a fixed number of clusters K. If this hyper-parameter is changed, the other
estimates also might no longer be the same. Therefore, choosing appropriate
values for K can be seen as a model selection task. In order to select K we
introduce IC2L, a new model selection criterion

IC2L(K) =
L∑
l=1

max
α(l),β(l),γ(l)

log p(A(l)|Ẑ, α(l), β(l), γ(l))−

(
2L+

L∑
l

F (l)
e

)
log

N(N − 1)

2

+ max
µ,σ2

log p(Ẑ|Ĉ, µ, σ2, K, P )− KP +K

2
log (N)

+ max
π

log p(Ĉ|π,K)− K − 1

2
log (N),

where Ẑ and Ĉ are the maximum-a-posteriori estimates of Z and C, respec-
tively, obtained from the maximization of the ELBO for a given K and a
given P .

This model selection can be obtained similarly to what done (for in-
stance) by Daudin et al. (2008) for stochastic block models. The main intu-
ition is that it can be seen as the counterpart of the BIC criterion, with the
complete-data log-likelihood replacing the observed-data log-likelihood. The
three penalty terms above contain a first term accounting for the number of
model parameters and a second term accounting for the logarithm of the num-
ber of observations. In Section 4.5, we conduct several experiments to asses
the capacity of IC2L to retrieve the actual number of clusters on simulated
datasets. Two additional remarks. First, although MDLPM might benefit
from some self-regularization properties due to the use of variational auto-
encoding inference, as reported in Kingma et al. (2016); Dai et al. (2017),
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we opt here for a standard approach based on asymptotic Bayesian model
selection (via IC2L). Second, since IC2L is also dependent on P it might be
used to select the number of latent dimensions. However we leave the check
for this conjecture for future work and consider here P as given.

4. Numerical experiments

This section demonstrates the effectiveness of our model through empiri-
cal evaluations on five synthetic scenarios and the validity of the estimation
algorithm proposed.

4.1. Simulation setup

We designed five types of synthetic multiplex networks. In the following,
we manipulate these networks by varying the clusters proximity and network
similarity, respectively.

Cluster proximity. We first generate three different types of synthetic net-
works, each of which having three groups of nodes.

• Scenario A consists of three communities, with positions of nodes in a
two-dimensional space, generated with the mean of each cluster equal
to 

µ1 = [0, 0]

µ2 = [1.5 ∗ ζ1, 1.5 ∗ ζ1]
µ3 = [−1.5 ∗ ζ1, 1.5 ∗ ζ1]

respectively. The hyper-parameter ζ1 ∈ [0.2, 0.95] represents the rate
of proximity between the clusters, where a larger ζ1 means that the
three clusters are better separated. An example is shown in Figure 3.
For three network views, different α(l), β(l) and γ(l) are selected

α(1) = −1.5, β(1) = 0, γ(1) = 0.1

α(2) = −0.2, β(2) = 0, γ(2) = 0.5

α(3) = 0.2, β(3) = 0, γ(3) = 1

Then, edges are generated based on the distance within each node
pair, in dimension two. In order to simplify the simulations, we do
not consider the edge covariates Y (l), (β(l) = 0). Finally, three distinct
adjacency matrices are built based on Eq. (3), with parameter values
depending on the network views.
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View 1 View 2 View 3 All views combined

Cluster 1
Cluster 2
Cluster 3

Figure 3: Synthetic network visualization for scenario A, featuring N = 30 nodes and a
proximity rate ζ1 of 0.95. The network displays three types of connections and is organized
into three distinct clusters of nodes, each represented by a different color.

• Scenario B considers three clusters interacting with each other in a
complex way, far from being a community structure. For each network
view, different connection probabilities are considered

Π(l) =

b(l) a(l) a(l)

a(l) a(l) b(l)

a(l) b(l) a(l)


where 

a(1) = 0.25, b(1) = 0.01 + (1− ζ2) ∗ (a(1) − 0.01)

a(2) = 0.15, b(2) = 0.02 + (1− ζ2) ∗ (a(2) − 0.02)

a(3) = 0.1, b(3) = 0.03 + (1− ζ2) ∗ (a(3) − 0.03)

Three types of edges are then generated based on the connection ma-
trices. Similarly, we introduce a parameter ζ2 ∈ [0.4, 1.0] in order to
measure the degree of closeness between clusters, where a larger ζ2
means less overlap among the three clusters.

• Scenario C considers latent positions created from three circular-structured
clusters. Three circles have the same center and the different radius are
1, 5, and 10, respectively. For different network views, links are then
generated based on the distance between the node positions, with the
same network parameters α(l), β(l) and γ(l) as in scenario A.

By varying the values of ζ1 in scenario A (assortative) and ζ2 in scenario
B (dissortative), we can model the proximity between each cluster and thus
test the robustness of our model in both simple and difficult cases. Then,
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contrary to standard communities, with strong transitivity (your-friend-is-
my-friend effect), scenario C describes the construction of three groups of
nodes with little transitivity in each.

Network similarity. We defined two additional parameters ζ3 in scenario D
and ζ4 in scenario E, to model the similarity among different network views.
A larger value for these parameters indicates greater similarity between the
views.

• Scenario D consists of three communities, with positions of nodes being
generated with the mean of each cluster as in scenario A. Then, for three
network views, different α(3), β(3) and γ(3) are selected

α(1) = −1.5, β(1) = 0, γ(1) = 0.1

α(2) = 0.2, β(2) = 0, γ(2) = 1

α(3) = ζ3 ∗ (α(1)+α(2))
2

+ (1− ζ3) ∗ (γ(1)+γ(2))
2

,

β(3) = 0, γ(3) = ζ3 ∗ (γ(1)+γ(2))
2

+ (1− ζ3) ∗ (α(1)+α(2))
2

Similarly, we do not account for edge covariates Y (l), setting β(l) = 0
for each network view. The hyper-parameter ζ3, ranging from 0 to 1,
quantifies the degree of similarity between the networks.

• Scenario E considers three clusters interacting with each other in a
complex way, far from being a community structure. For each network
view, different connection probabilities are set as

a(1) = 0.25, b(1) = 0.01

a(2) = 0.15, b(2) = 0.02

a(3) = 0.1, b(3) = ζ4 ∗ 0.03 + (1− ζ4) ∗ (a1 + a2 + a3− b1− b2)

where the parameter ζ4 ∈ [0, 1] measures the degree of similarity be-
tween the network views.

4.2. Comparaison with “shallow” multilayer approaches

First, we compared the MDLPM we propose with two established mod-
els: SpaceNet, a multiview statistical model based on LPM as described
by D’Angelo et al. (2019), and MultiplexSBM, an extension of SBM to mul-
tiplex networks, detailed in Barbillon et al. (2017). Since SpaceNet is not an
end-to-end clustering method, we performed k-means over the learned node
embeddings for clustering.
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Table 2: Comparison of clustering performance and computational time.

Scenario A (with ζ1 = 0.95) Scenario B (with ζ2 = 0.9) Scenario C
ARI Time(s) ARI Time(s) ARI Time(s)

SpaceNet 0.5465±0.270 2434.47 0.6693±0.186 2367.54 0.2440±0.075 2522.63
MultiplexSBM 0.5354±0.115 10692.49 1.0000±0.000 275.37 0.6407±0.058 5376.38

MDLPM 0.9508±0.018 143.78 0.9993±0.004 142.17 1.000±0.000 149.45

Settings. In the experiments described below, we simulated 25 distinct net-
works for scenarios A, B and C. Each network consists of L = 3 views,
N = 600 nodes, and the nodes are spread into K = 3 clusters according to
the settings defined by the three simulated scenarios.

The clustering results and the computational times are shown in Table 2.
As it can be seen, MDLPM consistently outperforms SpaceNet across all
scenarios, achieving higher adjusted rand indexes (ARIs, Hubert and Arabie,
1985). While MultiplexSBM performs well in scenario B, it struggles with
other network structures in scenarios A and C. Additionally, MDLPM is ap-
proximately 17 times faster in computation than SpaceNet, which utilizes a
time-consuming MCMC inference procedure. The training time for Multi-
plexSBM is significantly influenced by the number of edges, resulting in slow
performance on dense networks, particularly noted in scenarios A and C.

Given the significant gap between SpaceNet, MultiplexSBM and our model
(especially in terms of computational times), henceforth we only consider
deep learning based competitors that match MDLPM in terms of algorith-
mic efficiency.

4.3. Comparaison with deep approaches

We now aim at bench-marking MDLPM with two deep models: O2MAC
(Fan et al., 2020) and DeepLPM (Liang et al., 2024), in the synthetic scenar-
ios A, B and C. It is important to note that DeepLPM is originally designed
for single-network analysis. To adapt it for multiview networks, we first ag-
gregate all network views into a single adjacency matrix by summing them
up and converting non-zero entries to 1, thus making the matrix binary.

Firstly, Figures 4a and 4b illustrate the evolution of the ARIs as a function
of the nuisance parameters (ζ1 and ζ2) in scenarios A and B, respectively. In
scenario A, our MDLPM consistently outperforms its competitors. DeepLPM
has quite similar performances whereas O2MAC is unable to effectively re-
trieve the three clusters in this situation. In scenario B, both MDLPM and
DeepLPM exhibit strong performance for proximity rates ζ2 greater than 0.6.
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Figure 4: (4a) ARI values with standard deviation for varying proximity rates ζ1 in Sce-
nario A. (4b) ARI values with standard deviations for varying proximity rates ζ2 in Sce-
nario B. For each value of ζ1 and ζ2, 25 distinct networks are generated and the average
ARIs are computed.
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(a) Scenario D.
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(b) Scenario E.

Figure 5: (5a) ARI values with standard deviation for varying similarity rates ζ3 in scenario
D. (5b) ARI values with standard deviations for varying similarity rates ζ4 in scenario E.
25 distinct networks are generated for each value of ζ3 and ζ4, and the average ARIs are
calculated.

However, in more challenging conditions where ζ2 ≤ 0.6, DeepLPM outper-
forms MDLPM. This is due to the fact that summing the network views in
input to DeepLPM favorably reduced the data sparsity without modifying
the underlying network structure. O2MAC again fails to accurately identify
the true clusters. Scenario C sees all models performing well, with MDLPM
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Table 3: Comparison of clustering performance in scenario C

Models DeepLPM O2MAC MDLPM
ARI 0.9728±0.095 0.9845±0.009 1.000±0.000

displaying remarkable stability and achieving an ARI of 1, indicating perfect
clustering, as shown in Table 3.

We further compare the three deep models in scenarios D and E to ex-
amine how network similarity across different views impacts clustering per-
formance. As shown in Figures 5a and 5b, DeepLPM fails to detect clusters
when network similarity degree is below 0.8 in scenario D and 0.6 in scenario
E, making it suitable only for multiplex networks with similar structures
across views. O2MAC is not suited for networks in scenario D, but outper-
forms DeepLPM in scenario E when network similarity is smaller than 0.4,
indicating it is more suitable for dissimilar network views. MDLPM achieves
significantly higher ARI values in both scenarios, outperforming DeepLPM
and O2MAC, which demonstrates excellent clustering performance with dis-
tinct network structures.

4.4. A detailed illustration example

In this subsection, we provide a more detailed illustration for Scenario
A, with ζ1 = 0.95. Figures 6a and 6b track the evolution of the training
loss and the clustering performance (ARI values), respectively. Both metrics
are observed to converge after 600 epochs, indicating stable model perfor-
mance. Figure 6c displays the original node positions, with different clusters
represented by distinct colors. Finally, we visualize the latent embeddings
generated by the proposed MDLPM. These embeddings are mapped to a
two-dimensional space using t-SNE (Van der Maaten and Hinton, 2008) for
visualization, as shown in Figure 6d. The clear recovering of three clus-
ters in the latent space illustrates the model clustering capability, where the
learned embeddings successfully preserve this network structure by retaining
the closeness between latent positions.

4.5. Model selection

We now highlight the ability of our model selection criteria IC2L to cor-
rectly select the number of groups K.
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(a) Training loss (negative ELBO). (b) Clustering ARI.

(c) Original node embeddings. (d) Embeddings learned by MDLPM.

Figure 6: A detailed illustration of scenario A with ζ1 = 0.95: (6a) Evolution of the
training loss; (6b) Evolution of ARI values. (6c) Original node positions, with clusters
represented by distinct colors; (6d) Latent embeddings learned by MDLPM, visualized in
two dimensions.

Number of clusters. Letting the number of clusters vary from 2 to 7, we
demonstrate in the following how the IC2L criterion can be used to estimate
the number of clusters. In this experiment, for each specific cluster value, we
produced 25 synthetic networks from scenario A. We then trained MDLPM
using a latent embedding dimension of P = 16. Firstly, for each network,
we selected the largest IC2L value from 5 distinct initializations. Figure 7
displays the results from a random synthetic network, with the standard
deviations indicating variance across different initializations. Subsequently,
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Figure 7: IC2L criterion computed for different number of clusters on one synthetic net-
work in scenario A, for 5 independent initializations. MDLPM was able to estimate K = 3
by displaying a maximum of the IC2L value.

Figure 8: IC2L criterion computed for different number of clusters on 25 synthetic networks
in scenario A. GETM was able to estimate K = 3 by displaying a maximum of the IC2L
value.

we calculated the average IC2L values over the 25 simulated networks. The
standard deviations reported in Figure 8 reflect the variance among different
networks. Observably, for both the results on a single specific network and
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across 25 networks, the largest and average IC2L values achieve their maxi-
mum at K = 3, thereby recovering the actual value of K in the simulation
setting.

5. Unsupervised analysis on real-world networks

In this section, we fit (and test) MDLPM to two real data sets: the Enron
network and the DBLP multiplex network.

5.1. Enron email network

We first consider the Enron email dataset, a classical communication net-
work that contains all email exchanges between the firm employees between
1999 and 2002. In the network, nodes represent individuals, and an undi-
rected edge is established between two nodes i and j if the employee i sent
at least one email to individual j. For our experiments, we focused on the
data from September to December 2001 to form a multiplex network char-
acterized by two types of connections. The first layer represents direct “to”
connections, comprising 1,688 links, while the second layer represents “cc”
(carbon copy) connections, consisting of 673 links. Each layer of this network
contains N = 148 nodes, representing the employees.

Model selection. MDLPM was fitted to the Enron email network for different
numbers of clusters, ranging between 2 and 7, with fixed dimension (P =
16) for the latent space, and we used IC2L for selecting the number K of
clusters. The evolution of the IC2L criterion with various cluster numbers is
shown in Figure 9. The reported result represents the IC2L values achieved
after executing MDLPM 15 times, with standard deviations accounting for
variations due to different initializations for each cluster number. Finally,
the estimated number of clusters is K = 4 displayed by a clear maximum of
the IC2L value.

Visualisation and analysis. To compare the clustering results between two
multiview deep models: MDLPM and O2MAC, we set the number of clus-
ters to K = 4. Then, we employed t-SNE to reduce the latent embeddings
to a two-dimensional space for visualization purposes. As illustrated in Fig-
ures 10a and 10b, MDLPM effectively separates clusters of nodes in the latent
space, with each of the four groups distinctly colored. Central nodes, identi-
fied by the largest degree within each cluster, are represented with a larger
node size compared to others. In contrast, as shown in Figures 11a and 11b,
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Figure 9: IC2L criterion with different number of clusters on the Enron email network.
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(a) MDLPM layer 1.
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(b) MDLPM layer 2.

Figure 10: (10a) Visualization of the first view of the Enron email network as learned
by MDLPM; (10b) Visualization of the second view. In both, each cluster is distinctly
represented by different colors, and central nodes are marked by a larger node size to
denote their higher degree within the cluster.

O2MAC primarily displays one clearly defined group in purple, while the
remaining embeddings are not very well-separated.

To further delve into the visualization results of MDLPM, we examine the
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Figure 11: (10a) Visualization of the first view of the Enron email network as learned by
O2MAC; (10b) Visualization of the second view. Each cluster is represented by different
colors.

Table 4: Detailed information of central nodes in the Enron network

Network layer 1
node id firstName lastName email id status cluster

98 Mike Grigsby mike.grigsby@enron.com Manager 1
22 Kam Keiser kam.keiser@enron.com Employee 2
122 Sally Beck sally.beck@enron.com Employee 3
73 Drew Fossum drew.fossum@enron.com Vice President 4

Network layer 2
node id firstName lastName email id status cluster

98 Mike Grigsby mike.grigsby@enron.com Manager 1
30 Jonathan Mckay jonathan.mckay@enron.com Director 2
14 Louise Kitchen louise.kitchen@enron.com President 3
17 Kimberly Watson kimberly.watson@enron.com N/A 4

central nodes in each cluster to understand their roles and influence within
the network. More detailed information is provided in Table 4.

In the first network view:

• the central node of Group 1 (cyan), node 98, is identified as Mike
Grigsby, a manager at Enron. Notably, he was also recognized as one
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of the top-10 prestigious employees at Enron in 2001. His role highlights
his importance within the network structure.

• node 22 in Group 2 (yellow) is Kam Keiser, noted for being one of the
top-10 prestigious employees at Enron in 2002. His extensive commu-
nications throughout the network are indicative of his key role.

• node 122 is identified as Sally Beck, the Chief Operating Officer (COO)
of Enron. Her responsibilities included overseeing the daily operations
of the company, a role that typically reports directly to the Chief Ex-
ecutive Officer (CEO). As a central node in Group 3 (red), the data
shows that she handled a significant volume of messages, aligning with
the expectations of her position and her central role in managing the
company operations.

• the central node of Group 4 (purple), node 73, is identified as Drew Fos-
sum, who served as a vice president at Enron. His prominent position
within the network underscores his significant influence and connectiv-
ity.

In addition, in the second network view:

• the central node of Group 1 (cyan), node 98, is consistently identified
across views as Mike Grigsby, further highlighting his prominent role
at Enron.

• node 30, the central node of Group 2 (yellow), is Jonathan Mckay, a
director at Enron, indicating his substantial influence within the net-
work.

• the central node of Group 3 (red), node 14, represents Louise Kitchen,
who served as the president and chief operating officer of EnronOnline.
Her significant role within the company is reflected in her numerous
connections across the network, highlighting her deep engagement and
significant influence. Additionally, she was recognized as the second
most prestigious employee at Enron in 2001, further underscoring her
prominent standing within the organization.

• in Group 4 (purple), node 17 is Kimberly Watson. Although specific
details of her role at Enron were not fully documented, her work on
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pipeline facility planning is similar as Lynn Blair, who handled gas
pipeline logistics and held the position of director. This parallel sug-
gests that Watson likely held a significant role at Enron.

Moreover, we analyzed the learned model parameters α(l), γ(l) for each
layer l on Enron, β(l) = 0 since we do not have covariate information in this
dataset. The parameters we obtained are α(1) = 1.4104, α(2) = −0.8638,
γ(1) = 1.0378 and γ(2) = 0.2508, providing insights into the structure of the
two layers in the Enron network. In the first layer, the positive α(1) indicates
a relatively dense network structure, and the γ(1) shows a strong influence
of node distances in the latent space on the likelihood of link formation. In
the second layer, the negative α(2) suggests a sparser structure compared to
the first. Fewer links are present overall, implying that connections are less
frequent. The much lower γ(2) indicates that node distances in the latent
space have a weaker influence on link formation in this layer. These findings
show that the two layers of the Enron network exhibit different structures,
with the first layer being more cohesive and structured, while the second layer
is more diffuse and less reliant on node proximity for forming connections.

6. DBLP collaboration network

In this section, we analyze a network of scientific authors extracted from
the DBLP dataset1, with authors divided into four research areas: database,
data mining, machine learning, and information retrieval. The research area
labels are assigned based on the conferences to which the authors submitted
their work (Xiao et al., 2019). The network is represented as a multiplex
structure with three layers: co-authorship (authors who collaborated on pa-
pers), co-conference (authors who published at the same conference), and co-
term (authors who published papers with the same terms). This multiplex
DBLP network contains N = 4, 057 nodes (authors), with 11,113 links in the
co-authorship layer, 5,000,495 links in the co-conference layer, and 6,772,278
links in the co-term layer. Each node in the dataset has features represented
as a bag-of-words for keywords. Using this information, we construct the
covariate matrix y

(l)
ij , which represents the cosine similarity between the fea-

ture vectors of nodes i and j. For simplicity, we assume the covariate matrix
remains the same across all three layers.

1https://dblp.uni-trier.de/
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Figure 12: IC2L criterion computed for different number of clusters on DBLP network.
MDLPM estimates K = 5 by showing the maximum of the IC2L value.

Model selection. MDLPM was fitted to the DBLP network for different num-
bers of clusters, ranging between 2 and 7, with fixed dimension (P = 16) for
the latent space, and we used IC2L for selecting the number K of clusters.
The evolution of the IC2L criterion with various cluster numbers is shown in
Figure 12. The reported result represents the IC2L values achieved after ex-
ecuting 5 times for each value of K, with standard deviations accounting for
variations dues to different initializations for each cluster number. Finally,
the estimated number of clusters is K = 5 by displaying a clear maximum of
the IC2L value.

Confusion matrix. We first plot the confusion matrix for the predicted la-
bels with K = 5 clusters and the actual author research areas, as shown in
Figure 13, to examine the distribution of authors across clusters. The in-
troduction of a covariate information, which represents the node’s similarity,
leads to some interesting groupings. Group 2, Group 4, and Group 5 pri-
marily consist of authors from machine learning, database, and information
retrieval, respectively. However, we also observe that Group 1 contains a
mix of individuals from information retrieval and authors from other areas,
suggesting shared similarities in their research content. Group 3 is particu-
larly notable, as it includes a large proportion of data mining authors along
with contributors from other fields. This is likely due to the overlap of com-
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Figure 13: Confusion matrix of predicted clusters compared to research areas.

mon terms in papers related to machine learning, database, and information
retrieval, all of which intersect with data mining. This demonstrates that
the incorporation of covariate information, such as keyword-based similarity
between authors, results in a clustering that is not solely based on research
area, allowing MDLPM to capture patterns that would otherwise remain
hidden.

Figure 14 further illustrates the distribution of the research areas within
each cluster. It provides a visual breakdown of the predominant research
areas in each group. For example, Group 4 is dominated by authors from
the database field, while Group 2 is primarily composed of machine learning
researchers. Interestingly, Group 3 contains a substantial number of data
mining authors, along with contributors from other research areas. This
highlights the interconnectedness of these fields, further supporting the ob-
servation that certain authors may work across multiple domains or share
similar research interests based on the content of their publications.

Together, these figures demonstrate that the integration of node features
via their similarity, encoded as covariate information, allows MDLPM to
capture meaningful patterns that extend beyond predefined research areas,
leading to more insightful clustering results.
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Figure 14: Author’s research area distribution across predicted clusters.

Visualisation and analysis. Figure 15a presents the visualization of the first
view of the DBLP network learned by MDLPM, with t-SNE applied to the
latent embeddings. The node colors represent the different clusters identified
by MDLPM. It is worth noting that we display only the embeddings of the
first view, as the node positions are shared across the three views, but the
connection types differ. The number of links in the second and third views is
too large, making them difficult to visualize effectively. Figure 15b displays
the embeddings of the first view, but with node colors now based on the
author research areas. The inclusion of keyword similarity between node
pairs as covariates uncovers more hidden information within the clusters.
Notably, groups such as Group 1 and Group 3 now contain a broader mix
of research areas, illustrating that in unsupervised problems, the number
of clusters cannot be inferred solely from the number of predefined classes
(research areas), as is often the case in supervised tasks.

Next, to better understand the clustering results, more analysis on the
obtained clusters are performed. Figure 16 presents the number of links
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(a) Co-authorship network with learned cluster labels.
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Figure 15: Embedding visualization of the first view of the DBLP network, with each node
indicating an author. (15a) Colors indicate the five clusters learned by MDLPM. (15b)
Node color indicates one of the four research areas: Area 1 (Machine Learning), Area 2
(Data Mining), Area 3 (Database), and Area 4 (Information Retrieval).
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within and between clusters in the three layers of the multiplex DBLP net-
work: (16a) Co-authorship network, (16b) Co-conference network, and (16c)
Co-term network. The differences in interaction patterns across these layers
reflect distinct network structures, which are further explained by the model
parameters α(l), β(l), γ(l) for each layer l from Table 5.

• Co-authorship network (layer 1): in this layer, we observe that most
interactions (i.e., co-authorship links) occur within clusters, indicating
a clear community structure. For example, Group 3 has a substantial
number of internal links (2,270), suggesting strong internal collabo-
ration among authors in this cluster. Other groups, such as Group
1 and Group 4, also show prominent internal links (1,103 and 2,441,
respectively). There are relatively few interactions between clusters,
reinforcing the notion that co-authorship ties are more concentrated
within communities. The model parameter α(1) = 2.4066 for this layer
reflects a denser structure, β(1) = −0.5285, which is related to covariate
information (keyword similarity), is lower in this layer, showing that
keyword similarity plays a lesser role compared to the other two layers.
The parameter γ(1) = 1.5497 suggests that the distance between nodes
significantly affects the likelihood of collaboration. Authors who are
closer in the latent space are more likely to co-author papers, reinforc-
ing the strong within-cluster community structure.

• Co-conference network (layer 2): this layer reveals a more complex
structure, where we still observe some community patterns, but cer-
tain clusters exhibit stronger connections to other groups. For in-
stance, Group 3 shows a substantial number of links within its clus-
ter (645,336), but also significant interactions with Group 1 (207,323)
and Group 4 (288,183). Group 4 has a high number of internal links
(900,543), indicating a dense cluster, but it also maintains notable
cross-cluster links, particularly with Group 3 and Group 1. This sug-

Table 5: Model parameters of each network layer

Co-authorship network Co-conference network Co-term network

α(l) 2.4066 0.7490 -0.2085
β(l) -0.5285 3.3120 3.5475
γ(l) 1.5497 0.0183 0.0043
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Figure 16: Number of links within each cluster in the multiplex DBLP network.
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gests that co-conference participation encourages both within-cluster
and cross-cluster collaboration. The model parameter α(2) = 0.7490 is
lower than in the co-authorship network, indicating a slightly less dense
structure, while β(2) = 3.3120 highlights the importance of covariate
information, showing that keyword similarity significantly influences
the connections in this layer. The parameter γ(2) = 0.0183 is much
lower than in the co-authorship layer, meaning that node distances in
the latent space have a minimal impact on link formation in this layer.

• Co-term network (layer 3): the structure in this layer is distinctly dif-
ferent from the previous two. While there are still strong internal con-
nections (e.g., Group 3 with 818,308 internal links and Group 4 with
613,544), the interaction between different clusters is much more pro-
nounced. For example, Group 3 and Group 2 share a considerable
number of links (427,546), indicating a significant overlap in terms be-
tween these clusters. This suggests that the co-term network reflects
a broader thematic overlap among research areas, where authors from
different clusters share common terms and keywords, even though they
may not directly collaborate. The model parameters α(3) = −0.2085
and γ(3) = 0.0043 further emphasize the distinctive structure of this
layer. The low α(3) value suggests a more dispersed structure compared
to the co-authorship and co-conference networks. The parameter γ(3)

is the smallest among all layers, indicating that node distance in the
latent space has very little effect on link formation. Additionally, the
high β(3) = 3.5475 reflects the significant role of keyword similarity,
further reinforcing the observation that co-term interactions are driven
by shared research interests rather than spatial proximity in the latent
space.

Overall, the three views demonstrate varying levels of community struc-
ture. In the co-authorship network, interactions are primarily within clusters,
spatial proximity in the latent space plays a significant role, showing strong
community structures. On the other hand, the co-conference and co-term
networks, rely more on covariate information (keyword similarity) to form
links, leading to more cross-cluster interactions and broader thematic over-
laps.

Furthermore, as shown in Figure 15, nodes associated with Area 4 (in-
formation retrieval) are primarily divided into Group 1 and Group 5 in the
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Table 6: Detailed information of top-5 nodes in Group 1 and 5

Group 1
node id firstName lastName degree research area

2951 Jiawei Han 45 2
3363 Christos Faloutsos 42 2
471 Qiang Yang 35 3
1558 Wei-Ying Ma 34 4
547 Drew Fossum 29 1

Group 5
node id firstName lastName degree research area

4 Azin Ashkan 4 4
647 Gavin Jancke 4 4
911 Daniel C. Robbins 4 4
1137 Prasenjit Majumder 4 4
1299 Kazuko Kuriyama 4 4

latent space. To explore the differences between these two clusters, we exam-
ined the node degrees for both groups, focusing on the top-5 highest degree
nodes, as detailed in Table 6. As we can see, in Group 1, the top-5 authors
have notably high node degrees. Additionally, Group 1 consists of authors
from diverse research areas, including database (Area 1), data mining (Area
2), and machine learning (Area 3). This suggests that Group 1 represents a
cross-disciplinary collaboration network, with authors actively collaborating
across various domains. In contrast, Group 5 consists solely of authors from
the information retrieval field (Area 3), with all top-5 nodes having a de-
gree of 4. This indicates a more specialized research community, with fewer
cross-domain interactions compared to Group 1. The lower node degrees in
Group 5 further highlight the specific nature of this group, which is more
homogeneous in its research focus.

We also investigated Group 3, which contains a majority of authors from
data mining, along with a number of authors from the other three research
areas. To explore the interdisciplinary connections within this group, we
examined the top author from each research area, based on node degree, as
shown in Table 7.

• For author Weiguo Fan, his work focuses on the intersection of informa-
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Table 7: Detailed information of top-1 nodes in Group 3 from 4 areas

Group 3
node id firstName lastName degree research area

1162 Weiguo Fan 20 4
1100 Alon Y. Halevy 18 1
3366 Aoying Zhou 13 2
1323 Bruce G. Buchanan 9 3

tion retrieval and data mining, with papers such as “Mining the web
for answers to natural language questions” and “Intelligent fusion of
structural and citation-based evidence for text classification”. These
works illustrate his use of data mining techniques to address challenges
in information retrieval, highlighting his relevance to both areas.

• Alon Y. Halevy has published papers like “Efficiently ordering query
plans for data integration” and “Learning to map between ontologies
on the semantic web”, where the term “data” frequently appears. His
work, often centered on data integration and knowledge representa-
tion, shares strong thematic overlaps with data mining, particularly in
processing and extracting insights from large datasets.

• Aoying Zhou has published works such as “Mining functional depen-
dency rules of relational databases” and “Incremental mining of schema
for semi-structured Data”. The keyword “mining” features prominently
in his research, underlining his close ties to the data mining field, mak-
ing him a central figure in Group 3 in the data mining area.

• Finally, Bruce G. Buchanan has contributed to knowledge-based sys-
tems, with papers like “Learning intermediate concepts in constructing
a hierarchical knowledge base” and “Partial compilation of strategic
knowledge”. His work on hierarchical knowledge structures shares sim-
ilarities with data mining, where extracting and organizing knowledge
from large datasets is a core objective.

In summary, the interdisciplinary nature of Group 3 is evident in how
these authors from distinct research areas incorporate data mining techniques
and themes into their work. This suggests that Group 3 serves as a hub for
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cross-domain collaboration, with data mining as the unifying theme that
connects authors from machine learning, information retrieval and database.

7. Conclusion

We introduced the multiplex deep latent position model (MDLPM), a
novel approach for performing node clustering on multiview network data in
an end-to-end manner. By integrating multiple GCN encoders with multiplex
LPM-based decoders, our model combines the interpretability of statistical
models with the robust representation learning capabilities of graph neu-
ral networks. An original estimation procedure was developed that merges
explicit optimization via variational inference, with implicit optimization us-
ing stochastic gradient descent. Numerical experiments demonstrated the
clustering performance of MDLPM compared to state-of-the-art methods.
Real-world applications, exemplified by our analysis of the Enron network
and the DBLP network, underscore the practical utility of our model for
unsupervised analysis. While the current focus is on identifying and ana-
lyzing non-overlapping clusters, future research will also consider extending
MDLPM to more effectively handle scenarios involving overlapping clusters.
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Appendix A. Derivatives of the ELBO

We perform the explicit optimization of the ELBO with respect to the
parameters δik, πk, µk and σk by calculating the derivatives of the ELBO.
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Under the equality constraint
K∑
k=1

δik = 1, ∀k, we use the method of La-

grange multipliers. Firstly, we introduce a Lagrange multiplier λi

L̃ = L −
N∑
i=1

λi

(
K∑
k=1

δik − 1

)
, (A.1)

then, we derive L̃ according to δik

∂L̃
∂δik

= log πk − log δik −
δik
δik

−Dik
KL − λi = 0, (A.2)

thus, we have

log δik = log πk − 1−Dik
KL − λi (A.3)

δik = e{log πk−1−Dik
KL−λi} =

e{log πk−Dik
KL}

e{1+λi}
. (A.4)

By using the constraint on
K∑
k=1

δik, we can get

K∑
k=1

δik =

K∑
k=1

e{log πk−Dik
KL}

e{1+λi}
= 1 (A.5)

log
K∑
k=1

e{log πk−Dik
KL} = log e{1+λi} (A.6)

λi = log
K∑
k=1

e{log πk−Dik
KL} − 1. (A.7)

After putting the value of λi into Eq. A.4

δik =
e{log πk−Dik

KL}

e
{1+log

K∑
k=1

e
{log πk−Dik

KL
}−1}

=
e{log πk−Dik

KL}

K∑
k=1

e{log πk−Dik
KL}

. (A.8)

Finally, we obtain

δ̂ik =
πke

−Dik
KL

K∑
l=1

πle−Dil
KL

. (A.9)
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Similarly, since
K∑
k=1

πk = 1, ∀k, we introduce another Lagrange multiplier

τ

L̃ = L − τ

(
K∑
k=1

πk − 1

)
, (A.10)

then, we derive L̃ according to πk

∂L̃
∂πk

=
N∑
i=1

δik
πk

− τ = 0, (A.11)

next, we use the equality constraint to solve τ

K∑
k=1

N∑
i=1

δik =
K∑
k=1

πkτ (A.12)

τ = N, (A.13)

and finally, we have

π̂k =
N∑
i=1

δik/N. (A.14)

Lastly, we need to calculate the derivatives for µk and σ2
k. We start by

deriving L̃ according to µk

∂L̃
∂µk

= −1

2

N∑
i=1

δik{
1

σ2
k

(
2µk − 2(µ̃ϕ,wµ)i

)
} = 0, (A.15)

then, we obtain

µk

N∑
i=1

δik =
N∑
i=1

(µ̃ϕ,wµ)iδik (A.16)

µ̂k =

N∑
i=1

(µ̃ϕ,wµ)iδik

N∑
i=1

δik

, (A.17)
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Figure B.17: Computational complexity versus number of nodes.

and finally for σ2
k, we have

∂L̃
∂σ2

k

= −1

2

N∑
i=1

δik{
P

σ2
k

− 1

σ4
k

(
P (σ̃2

ϕ,wσ
)i + ∥µk − (µ̃ϕ,wµ)i∥2

)
} = 0

P
N∑
i=1

δik
σ2
k

=
N∑
i=1

δik
σ4
k

(
P (σ̃2

ϕ,wσ
)i + ∥µk − (µ̃ϕ,wµ)i∥2

)
P

N∑
i=1

δikσ
2
k =

N∑
i=1

δik
(
P (σ̃2

ϕ,wσ
)i + ∥µk − (µ̃ϕ,wµ)i∥2

)

σ̂2
k =

N∑
i=1

δik
(
P (σ̃2

ϕ,wσ
)i + ∥µk − (µ̃ϕ,wµ)i∥2

)
P

N∑
i=1

δik

.

(A.18)

Appendix B. Computational time

The computational time for the simulated network with 600 nodes and
75,292 edges across three network views, is roughly 0.04s per epoch, resulting
in a total of 25.59s for 600 epochs on a GeForce RTX 4070 Ti GPU. We also
evaluated larger datasets, with node counts ranging from 600 to 3,000. The
corresponding computation times are displayed in Figure B.17. As seen, the
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largest dataset we analyzed consisted of 3,000 nodes and the training time
was approximately 100.67s. For the Enron network, which consists of 148
nodes and 2,361 edges across two network views, the training takes about
0.15 seconds per epoch, around 180 seconds for 1,200 epochs on the same
GPU. For the DBLP network, consisting of 4,057 nodes, with 11,113 links
in the first layer, 5,000,495 links in the second layer, and 6,772,278 links in
the third layer, the training process takes approximately 1.30 seconds per
epoch, totaling 1,058 seconds for 800 epochs on the same GPU. This finding
demonstrates the scalability of our approach and its capability to handle
larger datasets, while still maintaining a reasonable training time.

Appendix C. Implementation details

In this paper, SpaceNet and MultiplexSBM are implemented using the
spaceNet and sbm packages available on CRAN. DeepLPM and O2MAC are
conducted using their respective Python code, which is available on GitHub:
https://github.com/ldggggg/deepLPM, https://github.com/googlebaba/
WWW2020-O2MAC/tree/master.
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2019. Deep graph infomax. ICLR (Poster) 2, 4.

Wang, X., Ji, H., Shi, C., Wang, B., Ye, Y., Cui, P., Yu, P.S., 2019. Hetero-
geneous graph attention network, in: The world wide web conference, pp.
2022–2032.

Wang, Y.J., Wong, G.Y., 1987. Stochastic blockmodels for directed graphs.
Journal of the American Statistical Association 82, 8–19.

Xiao, W., Houye, J., Chuan, S., Bai, W., Peng, C., P., Y., Yanfang, Y., 2019.
Heterogeneous graph attention network. WWW .

Zhang, D., Yin, J., Zhu, X., Zhang, C., 2018a. Network representation
learning: A survey. IEEE transactions on Big Data 6, 3–28.

Zhang, H., Qiu, L., Yi, L., Song, Y., 2018b. Scalable multiplex network
embedding., in: IJCAI, pp. 3082–3088.

Zhang, P., Zhang, Y., Wang, J., Yin, B., 2023. Mvma-gcn: Multi-view multi-
layer attention graph convolutional networks. Engineering Applications of
Artificial Intelligence 126, 106717.

41


