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Abstract: Single crystal nickel-based superalloys are extensively used in turbine blade
applications due to their superior creep resistance compared to their polycrystalline coun-
terparts. With the high creep resistance, high cycle fatigue (HCF) and low cycle fatigue
(LCF) become primary failure mechanisms for such applications. This study investigates
the fatigue life prediction of CMSX-4 using a combination of crystal plasticity and lifetime
assessment models. The constitutive crystal plasticity model simulates the anisotropic,
rate-dependent deformation behavior of CMSX-4, while the modified Chaboche damage
model is used for lifetime assessment, focusing on cleavage stresses on active slip planes to
include anisotropy. Both qualitative and quantitative data obtained from HCF experiments
on single crystal superalloys with notched geometry were used for validation of the model.
Furthermore, artificial neural networks (ANNs) were employed to enhance the accuracy of
lifetime predictions across varying temperatures by analyzing the fatigue curves obtained
from the damage model. The integration of crystal plasticity, damage mechanics, and
ANNs resulted in an accurate prediction of fatigue life and crack initiation points under
complex loading conditions of single crystals superalloys.

Keywords: crystal plasticity; artificial neural networks; lifetime assessment modelling;
turbine blades

1. Introduction
Single crystal nickel-based superalloys are widely preferred in turbine blade compo-

nents due to their high temperature resistance and mechanical properties [1,2]. Turbine
blades are subjected to both severe HCF and LCF loading conditions on top of high op-
erating temperatures, resulting in both fatigue (HCF and LCF) and creep as the main
mechanisms of failure [3,4]. Although the presence of creep–fatigue interaction has a
negative influence on component life, fatigue fracture is considered to be the main concern
of failure in such applications [1,5].

High rotational speed and the fast transient startups of the turbine result in LCF
loadings [3]. High-temperature conditions caused by the heated gas inside cause additional
creep damage along with LCF loadings [4]. As a result, nickel-based single crystals are
often subjected to severe LCF and TMF [6–8]. Understanding the creep–fatigue interac-
tion and LCF fatigue failure of these components is crucial for proper life prediction of
such components.

Turbine blades are subjected to vibration loads due to the gas flow within the
engine [3,9], resulting in severe HCF loading conditions in addition to LCF and TMF.
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Therefore, special attention is paid to HCF lifetime assessment of single crystal superalloys
since the reliability and security of aircraft engines are significantly related to the HCF
properties of such alloys. In the case of single crystals, crack initiation points and growth
directions are highly dependent on the cutting plane and loading types [10,11], unlike most
polycrystalline materials. Depending on the crystal structure and operating temperature,
plasticity is observed through active slip planes and directions. Although nominal stress is
in the elastic region for HCF loadings, plasticity is observed in stress concentration zones
as geometric irregularities and micro-cracks. Hence, considering active slip systems is
essential to the lifetime assessment of such components.

Fatigue life prediction of single crystal materials is widely investigated from many
different aspects. Experimental observations conducted by [12] suggest that for multiaxial
cases, fatigue crack initiation and growth occur along dominant slip planes. Based on this
phenomenon, many lifetime prediction formulations have been developed with critical
plane formulations on probabilistic approaches and modifications to isotropic fatigue for-
mulations to account for multiaxial anisotropy [2,9,13,14], in which resolved shear stresses
on the critical planes are chosen as the main concern for failure since it is proven that (being
controlled by shear strains) fatigue cracks initiate along crystallographic directions [12].
Once initiated, crack growth is also controlled by the maximum shear strain direction.
However, the maximum stress direction of these mechanisms may differ from one another
depending on the crystallographic orientations.

Fatigue life prediction methods based on continuum damage mechanics evaluate the
damage parameter, D, cycle by cycle, with crack nucleation occurring when the damage
reaches a critical level. Early approaches, such as the Palmgren-Miner rule, model dam-
age as a linear function of lifetime, later extended to nonlinear behaviors using models
such as Double Linear Damage Rule (DLDR), Damage Curve Approach (DCA), and Dou-
ble Damage Curve Approach (DDCA) [15]. These methods are commonly paired with
stress- or strain-based approaches for lifetime prediction under variable amplitude loading.
Chaboche and Lemaitre [16] introduced a nonlinear damage evolution equation incor-
porating multiaxial loading via equivalent stress amplitudes. Due to its mathematical
formulation, the Chaboche model can be readily implemented in computational tools,
facilitating its application in complex fatigue analyses. This model is particularly effec-
tive for single crystals, aligning with DCA under complex loading and critical slip plane
stress formulations, and its mathematical formulation allows for straightforward inte-
gration into computational tools, enabling efficient fatigue analysis compared to other
approaches [15,17].

Integrating artificial neural networks (ANNs) into fatigue life assessment has signifi-
cantly enhanced prediction accuracy and efficiency. ANNs are adept at handling complex,
nonlinear interactions between variables, which are common in fatigue scenarios. Re-
searchers like Samavatian et al. [18] have demonstrated that machine learning can predict
solder joint reliability under cyclic stress with higher precision than traditional methods.
Moreover, ANNs have been applied to interpret multiaxial fatigue data, offering new
insights into the critical stress and strain thresholds that precede material failure [19]. These
advancements underscore the potential of ANNs to refine predictive models in high-stakes
applications such as aerospace engineering, where many material failure mechanisms
occurs simultaneously.

In this study, the fatigue life of CMSX-4 is predicted, initially, by considering both
crystal plasticity and multiaxial fatigue properties. The small strain constitutive crystal
plasticity model, described later on, is used for modelling the stress–strain behaviour of
the single crystal on geometric irregularities. Lifetime assessment modelling is conducted
on the stress history obtained from the single crystal model by considering the cleavage
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stress as the main failure. Parameter optimization is performed for the Chaboche model at
three different temperatures, and the fatigue curves provided by these models are fed into
ANNs, where lifetime assessment is conducted for different temperatures with a single
optimized model, unlike the Chaboche model.

2. Experimental Procedure and Methodology
HCF test results and notched specimen geometry were taken from Aslan [10], in which

CMSX-4 specimen preparation procedures and various tensile and fatigue tests at different
R ratios are widely discussed, provided by the PREMECCY project. Testing protocols, such
as specimen preparation, environmental conditions, and failure criteria, are provided in
detail in [10]. The notched specimen geometry and cyclic loading amplitudes were used
to simulate the experimental results and to model the material behavior. Specific details
related to the modeling approach are discussed in the following sections.

2.1. Material and Specimen

Second generation nickel-based single crystal superalloy CMSX-4, whose chemical
composition (in wt%) is presented in Table 1, was solution treated below and rapidly cooled
to achieve a high volume fraction of γ′ precipitates (around 70%), which is the prime
strengthening phase in the material.

Table 1. Chemical Composition of CMSX-4 (wt%).

Ni Cr Co Mo W Al Ti Ta Re Hf

61.8 6.5 9 0.6 6 5.6 1 6.5 3 0.1

Notched specimens with a cut orientation of (100)[001] are subjected to cyclic tension
for R = 0 and R = 0.6 with a frequency of 118 Hz at 750 ◦C. Figure 1 demonstrates the
dimensions of the notched specimen with a 1.6 mm notched thickness. The presence of
a notched area leads to varying stress concentrations depending on the notch radius and
thickness. Therefore, relating lifetime to the maximum stress at the specimen’s notch, rather
than the applied stress, provides a more generalized understanding of fracture behaviour.

Figure 1. Dimensions of the notched specimen.

The elastic stress concentration factor, Kt, is determined as 2.15 for the geometry
represented in Figure 1 and the stress at the notched tip, σmax is calculated by

σmax = Kt σnom (1)

where σnom is the nominal stress across cross-section of the specimen.

2.2. Crystal Plasticity

The constitutive framework of the single-crystal plasticity model, developed from
Cailletaud’s crystallographic model [20], is presented in this section. This formulation
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primarily operates at mesoscales (10−7 m to 10−4 m) by modeling the dislocation motion
and latent interaction within the slip systems. At this scale, formulation captures the
localized plastic strains on active slip systems. The formulation does not directly predict
the macro-strain response of the material; however, the accumulation of micro-strains on
active slip systems, depending on the orientation of the material and the orientation of the
loading, averages the overall response of the material and hence gives the macro-response
of the stress–strain distribution [21]. This model was prepared to simulate the anisotropic
rate-dependent plastic behaviour of Ni-based superalloys at small strains. The linear
strain tensor can be shown as ε = sym[∇u] from the definition of the symmetric part of
the displacement gradient, and since small deformation is used in this work, an additive
decomposition is applied.

ε = εe + εp (2)

where εe is the elastic strain and εp is the plastic part. The relationship between Cauchy
stress, σ, and elastic strain is expressed as a state law as follows:

σ = C : εe (3)

where C is the fourth order elasticity moduli. Material to be simulated has an FCC structure.
It shows cubic elastic behavior. Hence, C has 3 independent constants, C11, C12, and C44,
as can be seen below.

C =



C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C44


where

C11 =
1
3
(3K + 4µ)

C12 =
1
3
(3K − 2µ)

C44 = µ + µ′

(4)

where K is bulk modulus, µ is shear modulus and µ′ is the effective shear modulus
describing shear resistance in specific crystallographic directions [22]. Another state law
can shown which represents isotropic hardening of the each slip system as:

rs = q
N

∑
s=1

hsrρs (5)

where q is a material constant defining isotropic hardening, s is the slip system, and N
is the total number of slip systems. hsr is the interaction matrix that governs the self and
latent hardening of the material caused by the interactions between the N number of slip
systems. Literature usually suggests taking hsr as the identity for single crystal Ni-based
superalloys since they do not show pro-dominant latent hardening [23]. And ρs is the
dislocation density, which can be defined as a nonlinear isotropic hardening rule as

ρs = 1 − exp(−b|γs|) (6)

where b is a model parameter; hence, rs becomes

rs = q
N

∑
s=1

(1 − exp(−b|γs|)) (7)

In order to define γs (which is plastic slip of slip system s), Schmid law must be
presented here:

f s = |τs| − rs (8)
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where τs is the resolved shear stress of slip system s, which is the driving force for the
plastic slip of the corresponding slip system. In other words, for a slip system to deform
plastically, the resolved shear stress must overcome a stress barrier defined by Schmid
law. Hence, Schmid law here can be used as a multimechanism plastic yield criterion.
The resolved shear stress can be calculated as

τs = σ : (ms ⊗ ns) (9)

where ms is the slip direction of slip system s and ns is the corresponding slip normal.
Table 2 shows a list of slip normals and directions of FCC materials.

Table 2. FCC crystal slip system list.

Slip System Family System s Slip Normal ns Slip Direction ms

Octahedral

1
(111)

[101]
2 [011]
3 [110]

4
(111)

[101]
5 [011]
6 [110]

7
(111)

[011]
8 [110]
9 [101]

10
(111)

[110]
11 [101]
12 [011]

Cubic

1 (001) [110]
2 [110]

3 (100) [011]
4 [011]

5 (010) [101]
6 [101]

Then, according to the maximum energy dissipation principle, plastic strain rate can
be written as

ϵ̇p =
N

∑
s=1

γ̇s(ms ⊗ ns) (10)

where finally, plastic slip rate of slip system s can be defined using a Norton rule with a
threshold as

γ̇s = ⟨ |τ
s| − rs

K
⟩n sign(τs − rs) (11)

where K here behaves as a plastic slip threshold and n is the rate-sensitivity parameter.

2.3. Lifetime Assessment
2.3.1. Critical Stress Determination

Selecting an equivalent stress that accounts for material and loading type specifics
is crucial for accurate life estimations, especially for complex geometries, such as those
involving triaxialty. For most metals, maximum principle stress and von Mises stress are
considered to be the correct approach for estimating multiaxial fatigue. For single crystals,
however, it is better to include the slip planes to cover the anisotropic response of every
possible cut orientation of single crystals.
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FCC single crystals have four active octahedral slip planes and three active cubic slip
planes, as presented in Figure 2a,b. The effect of cubic slip systems is observed at elevated
temperatures due to a higher activation energy requirement for plasticity, while octahedral
systems are active even at room temperature, thanks to their densely packed structure.
Motivated by the fact that fracture occurs on active slip planes, stress along cleavage stress
directions is determined to be the deciding factor for fatigue life estimations.

(a) (b)

Figure 2. Octahedral (a) and cubic (b) slip planes of a FCC crystal.

Experimental studies show that mixed-mode loadings are apparent in multi-axial
fatigue fractures for many different specimens and loading types. Figure 3 illustrates the
crack opening modes, with cleavage systems referred to as Mode I, and accommodation
systems as Modes II and III. Mode I is observed to be the most dominant among the other
modes, even under pure shear loadings, since the appearance of shearing and tearing
modes of the crack is observed to be dependent on crack incline and material orientation.
The cleavage system is always present, and the accommodation systems are observed to be
dependent on fatigue loadings. The growth of fatigue micro-cracks is under the influence
of the cleavage system more than the others [24–27]. Under these findings, critical stress is
chosen to be the cleavage stresses acting on the slip planes where cracks are initiated.

Figure 3. Demonstration of opening modes of a crack.

2.3.2. Modified Fatigue Damage Law

Damage law is generally expressed by assuming that the fatigue damage accumulated
at each cycle is a function of the amplitude and mean values of stress:

δD = f (σamp, σmean) δN (12)

where D is the scalar variable representing fatigue damage evolution from the virgin state
(D = 0) up to fatigue fracture (D = 1). Lemaitre and Chaboche [16] proposed fatigue life
models based on the Woehler rule for both uniaxial and multiaxial cases. Multiaxial fatigue
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damage is estimated by using equivalent fatigue limit and stress values relevant to the
loading conditions. Due to the anisotropic nature of single crystals, the crack initiation
location and propagation path occur specific to the slip systems of the material. Since the
consideration of both crack initiation and propagation is essential for the fatigue lifetime
assessment of single crystals, the cleavage stress acting on the crack is considered instead
of the macroscopic equivalent amplitude stress. The differential equation of the fatigue
damage on the dominant cleavage plane is expressed as:

δDclv =
[
1 − (1 − D)β+1

]α(σclv
amp , σclv

mean)
[

σclv
amp

M(σclv
mean)(1 − D)

]β

δN (13)

where σclv
amp and σclv

mean are the dominant cleavage stress amplitude and mean stress, respec-
tively, and β is a temperature-dependent model parameter. The function α represents the
effects of nonlinear accumulation:

α(σclv
amp, σclv

mean) = 1 − a

〈
σclv

amp − σl(σ
clv
mean)

σclv
uts − σclv

max

〉
(14)

where a is a model parameter, σuts is the ultimate tensile stress, and σl is the fatigue limit in
terms of amplitude stress. The relation between fatigue limit and mean stress is represented
by Goodman’s linear relation:

σclv
l = σclv

l0 (1 − b1σclv
mean) (15)

where σl0 is the fatigue limit at zero mean stress i.e., endurance limit, and b1 is the model
parameter establishing the relation between fatigue limit and mean stress. M is expressed
with the same linear relation dependent on mean stress and model parameters b2 and M0 as

M = M0(1 − b2σclv
mean) (16)

Fatigue life, N f , of a material is determined by integrating the damage variable, D,
in Equation (13) from 0 to 1 since D = 1 represents the fatigue failure of a virgin material.

N f =
1

(β + 1)[1 − α(σclv
amp, σclv

mean)]

[
σclv

amp

M(σclv
mean)

]−β

(17)

2.3.3. Artificial Neural Networks (ANNs)

ANNs are machine learning tools designed to establish the nonlinear relation be-
tween the given input and the desired output by imitating the human brain’s neurological
structure [28]. ANNs are composed of three main parts, as demonstrated in Figure 4.

Figure 4. Structure of artificial neural networks designed for regression tasks, demonstrating input,
hidden, and output layers.
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The input vector, xj, represents the independent variables affecting the output vec-
tor, yi. Hidden layers are used for establishing the nonlinear relationship between the
input layer and the output layer. Hidden layers receive different independent variables
from the input layer and modify this information by adjusting weights, wij and biases bi.
The mathematical notation of the i-th neuron in a hidden layer as follows

yi = gi

(
∑

j
wijxj + bi

)
(18)

The activation function, gi, introduces the nonlinearity to the system by processing
the established linear relation by weights and biases. These functions are one of the main
parameters used to control the output range and learning ability of artificial neurons.
Since ANNs are built up in a feed-forward structure, the output produced from each
neuron feeds into the next neuron until the prediction in the output neuron is established.
The adjustment of weights and biases is performed by monitoring the output difference
between the predicted and actual outcome using the backward propagation algorithm:
gradient descent . ReLUs, demonstrated in Equation (19), are preferred in many cases as
activation functions since they reduce the vanishing gradient problem and its derivatives are
easier to compute. In the vanishing gradient problem, gradients tend to get smaller as the
training progresses, slowing down the learning significantly or completely terminating it.

ReLU(x) = max(0, x) i.e.,

{
x, if x > 0
0, if x ≤ 0

}
(19)

The difference between the actual output and predicted values in the output layers
is computed by establishing a loss function, L, between the two, such as mean square
error. The loss function is minimized by taking its derivatives with respect to weights and
biases in each iteration, k, until an acceptable error between predicted and actual data is
achieved. The mathematical expression of the loss function optimization, i.e., gradient
descent as follows:

bk+1
i = bk

i − α
∂L
∂bk

i
(20)

wk+1
ij = wk

ij − α
∂L

∂wi jk (21)

Convergence to the minimum value of the loss function is controlled by the learning
rate value, α, which acts like the step size between each iteration.

2.3.4. Finite Element Model of the Nothced Specimen

The finite element model of the notched specimen presented in Figure 1 is created via
Abaqus/CAE 2018 by using quadratic axisymmetric elements (CAX8), and the correspond-
ing FEA mesh of the specimen is presented in Figure 5a. Single crystal material behaviour
is implemented using the small strain crystal plasticity theory described in Section 2.2 as a
user material subroutine (UMAT).

Concerning mesh sensitivity, rate dependency smooths deformation gradients, helping
prevent the sharp localizations often observed in elasto-plastic models. This effect, along
with the absence of softening behavior, which also avoids localization of the plastic field,
reduces the model’s sensitivity to mesh refinement [29,30].

The boundary conditions applied to the finite element model are as follows: the bottom
edge of the specimen is fixed along the y-axis, with the left edge set as a symmetry axis due
to the model’s axisymmetric geometry. A cyclic force amplitude is applied on the top face
to simulate loading conditions, as shown in Figure 5b.
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(a) (b)

Figure 5. Finite element mesh (a) and the boundary conditions (b) of the notched specimen.

2.3.5. Post-Scripting of Modified Chaboche Model

The stress history at each integration point was obtained from the output database
(ODB) of the single crystal plasticity model using Abaqus post-scripting Python 2.7 modules.
The process utilized the odbAccess module for accessing ODB data, the abaqusConstants
module for specifying data positions such as integration points, and visualization for
analyzing the extracted data. Stress tensor components (S, SDV) at all integration points
and nodal displacement values (U) were extracted for each frame to obtain the cyclic
loading history and nodal positions throughout the analysis.

Based on the stress histories, the peak-valley algorithm was used to determine the
maximum and minimum stress values for each cycle. These values were then used to
compute the mean and amplitude stresses, which are required inputs for the modified
Chaboche model. By applying the multiaxial anisotropic lifetime assessment theory de-
scribed in Section 2.3.2, the lifetime at each node is estimated. Lifetime values and the
mesh information of the FEA model are stored in the visualization toolkit data format
(.vtk) to obtain lifetime contours via Paraview, which is an open-source post-processing
visualization engine.

2.3.6. ANN Model Configuration

ANNs are made up of 20 hidden layers with 20 neurons and a single output layer and
neuron to predict the lifetime. The stochastic gradient descent optimizer “Adam” is used
since it adjusts its learning rate with a corresponding decrease in the loss function, and the
initial learning rate is set to 0.0001.

Loss function and metric are chosen as Mean Square Error (MSE) and Root Mean
Square Error (RMSE), respectively. The training data, formed with the damage model, is
consistent and does not contain data points that differ significantly from others, making
MSE a suitable loss function for this case. Stress-lifetime values fed into the ANNs are on a
logarithmic scale, eliminating the need for a logarithmic error. This yields better training
results rather than using actual lifetime values with mean squared logarithmic error (MSLE).
Lifetime data ranges from 1 to 1010, and it is normalized before being fed into the input
layer. Logarithmic scaling decreases the difference between maximum and minimum
lifetime values, thus making it easier for ANNs to compute the nonlinear relation.
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Loss (MSE) =
1
n

n

∑
i=1

(yi − ŷi)
2

Metric (RMSE) =

√
1
n

n

∑
i=1

(yi − ŷi)
2

where yi = log(N f )i and ŷi = log(N̂ f )i (22)

The dataset is divided into 70% for training, 15% for validation, and 15% for an
independent test set. During training, the validation set is used to monitor performance by
tracking validation loss and metrics, ensuring the model does not overfit. After training,
the independent test set, unseen during training and validation, is evaluated to assess the
model’s generalization and predictive accuracy on unseen data.

3. Results and Discussion
3.1. Lifetime Prediction of the Notched Specimen at 750 ◦C

The plastic slip threshold parameter K and the rate sensitivity parameter were chosen
to mimic the stress–strain behaviour of CMSX-4 at 750 ◦C. The elastic moduli constants of
CMSX-4 provided in Table 3 were taken from the literature [31].

Table 3. Parameters of crystal plasticity model for CMSX-4.

K (MPa1/n) n Q b C11 (GPa) C12 (GPa) C44 (GPa)

2200 7.5 100 250 296 204 125

The temperature-dependent material parameters of the lifetime assessment model,
yield strength (σyield), and ultimate tensile strength (σuts) of CMSX-4 at 600 ◦C, 750 ◦C,
and 900 ◦C were taken from the literature [32]. The amplitude stress and mean stress
were calculated from HCF results, and the temperature-dependent model parameters were
adjusted for a proper lifetime estimation on both R ratios.

The Table 4 demonstrates the parameter set of both the crystal plasticity and lifetime
assessment models. Since CMSX-4 does not exhibit an actual fatigue limit due to its FCC
microstructural nature, the endurance limit (σl0 ) was determined to be 0 instead of choosing
a specific lifetime as the infinite lifetime and corresponding stresses as the fatigue limit for
better visualization of lifetime throughout the specimen. Since fatigue limit computed for
different mean stress would also yield zero, the parameter, b1 becomes obsolete in this case.
The remaining parameters were manually fitted to the experimental data, which includes
at most two R-ratios per temperature. Optimization algorithms, such as gradient descent
or genetic algorithms, were not used as they offered no significant advantage in this case.

Table 4. Parameters of anisotropic lifetime assessment model for CMSX-4.

σuts (MPa) σyield (MPa) M0 (MPa) σclv
l0

(MPa) b1 (MPa−1) b2 (MPa−1) a β

1200 1100 1800 0 1.12 × 10−4 1.12 × 10−4 0.65 7.8

The maximum cyclic stress–strain distribution of the CMSX-4 notched specimen with a
cut orientation of (100)[001] is represented in Figure 6. Stress on the notch tip remains elastic
throughout the whole cyclic loading for R ratios of 0 and 0.6, as observed in HCF loadings.
Figure 6 suggests that the maximum applied stress distribution and lifetime distribution
differ according to the dominant cleavage stress directions along active slip systems.
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(a)

(b)
(c)

Figure 6. Stress in 22-direction (a), logarithmic strain in 22-direction (b), and lifetime (c) contours of a
single crystal notch specimen under HCF with R= 0.6 and cut orientation of (100)[001].

For (100)[001] cut orientation, octahedral slip planes are observed to be more dominant
compared to cubic systems, even at elevated temperatures. Therefore, it is only natural
to expect crack initiation on {111} planes and crack growth paths along cleavage (Mode I
opening) stress directions. As a result, crack initiation points are completely dependent
on the orientation of the specimen with the same applied elastic stress distribution as in
Figure 6.

Lifetime distributions for different cut orientations are determined by adjusting the
local coordinate system of the crystal plasticity model to align with the tensile loading
direction. A comparison of crack initiation points with simulation results for different cut
orientations of the notch specimen is provided in Figures 7 and 8.

Fatigue crack initiation of the notched specimen with crystal orientation of <001>
takes place above the notch tip in spite of the higher geometric stress concentration on
the notch tip, as represented in Figure 8a. This result is due to the high accumulation
of slip in these regions caused by the elastic and plastic anisotropy of the cut orienta-
tion [33]. In Figures 7a and 8c, this phenomenon is observed on the notch tip for <011> and
<111> orientations since dominant slip systems provided in Table 2 are along the tensile
loading directions.

In Figures 7 and 8, lifetime prediction contours of these cut orientations yield consistent
crack initiation points with the experimental results since maximum cleavage stress appears
on the slip accumulation regions.

HCF lifetime simulation results of the notched CMSX-4 specimen geometry provided
in Figure 1 for different R ratios at 750 ◦C, with the parameter set in Tables 3 and 4, are
provided in Figure 9. Lifetime predictions for both R = 0 and R = 0.6 are consistent with
the experimental results.
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(a) (b)

Figure 7. Fatigue crack initiation at the surface of SC16 nickel-base single crystal with tensile crystal
orientation <001> is represented in (a). Reproduced with permission from S. Forest, Crystal plasticity
and damage at cracks and notches in nickel-base single-crystal superalloys; published by Elsevier,
2022 [33]. Lifetime assessment of the same specimen orientations is represented in (b), where the
minimum lifetime on the FEA model is marked as the predicted crack initiation location.

(a) (b)

Figure 8. Cont.
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(c) (d)

Figure 8. Fatigue crack initiation at the surface of SC16 nickel-base single crystal with tensile
crystal orientations <011> and <111> are represented in (a,c). Reproduced with permission from S.
Forest, crystal plasticity and damage at cracks and notches in nickel-base single-crystal superalloys;
published by Elsevier, 2022 [33]. Lifetime assessment of the same specimen orientations is represented
in (b,d), respectively, in which the minimum lifetime on the FEA model is marked as the predicted
crack initiation location.

(a) (b)

Figure 9. Comparison of numerical and experimental results of CMSX4 notched specimen under
HCF loading at 750 ◦C with R = 0 (a) and R = 0.6 (b).

3.2. Fatigue Curve Predictions with Artificial Neural Networks
Training Dataset Configuration

The temperature-dependent material parameter of the lifetime assessment model,
ultimate tensile strength (σuts) of CMSX-4 at 600 ◦C and 900 ◦C, was taken from the
literature [32]. This parameter also serves as model input, and parameter optimization
was performed separately for each temperature, as represented in Table 5. Fatigue curves
at these temperatures are producible with the damage model; however, this temperature
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dependency makes it impossible to predict temperature variation without making further
modifications to the damage law. Artificial neural networks (ANNs) do not have this
restriction since temperature is another variable to establish the nonlinear relation between
input variable maximum stress, R ratio, and output variable lifetime result.

Table 5. Parameters of modified damage model of CMSX-4 for various temperatures.

T (◦C) σclv
uts (MPa) M0 (MPa) σclv

l0
(MPa) b1 (MPa−1) b2 (MPa−1) a β

600 840 1010 480 1.24 × 10−3 1.22 × 10−3 0.01 14.5

900 675 800 375 2.2 × 10−3 1.15 × 10−3 0.12 12.2

ANNs require a wide range of loading information at these temperatures to accurately
predict the lifetime of components under complex loadings. Since producing experimental
results for single crystal superalloys such as CMSX-4 is not feasible, the combination of
ANNs and the modified damage model enhances the performance of both approaches
in lifetime assessment by providing the data range from the damage model and making
predictions without parameter restrictions with ANNs. The parameter optimization of the
modified damage model for 600 ◦C and 900 ◦C is demonstrated in Table 5. Although FCC
materials do not generally demonstrate a clear fatigue limit, for this case, a target lifetime of
108 is considered as infinite life; the fatigue limit is adjusted by defining σl0 as the endurance
limit for R = −1 and establishing the relation between mean stress and fatigue limit with
parameter, b1.

Fatigue curves produced by Chaboche Model for 600 ◦C and 900 ◦C with R ratios from
0 to 0.4 are fed into ANNs to achieve temperature variance between 600 ◦C and 900 ◦C.
These curves are illustrated in Figure 10.

(a) (b)

Figure 10. Comparison of modified Chaboche model (CM) and experimental results of CMSX4 at
600 ◦C for R = 0 and R = 0.4 (a) and at 900 ◦C for R = 0 (b).

RMSE of training and validation set are monitored during training and RMSE of
independent test set is evaluated to assess the general behavior of the model. In addition to
this evaluation, mean absolute error (MAE) and R2 score for both sets are also evaluated to
address the model’s predictive accuracy.
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Since the evaluated lifetime values are in the log10-domain, translating the errors,
represented in Table 6, back to the original scale results in multiplicative factors for the
validation and independent test sets of 1.419 and 1.429 for MAE, and 1.822, and 1.845
for RMSE, respectively. Small MAE and RMSE values in the log10-domain correspond
to reasonable multiplicative errors in the original domain, making the model reliable for
practical fatigue life prediction. The high R2 score highlights the model’s reliability and
strong correspondence with the underlying data.

Table 6. Performance metrics of the model on validation and independent test sets.

Dataset RMSE MAE R2

Validation Set 0.2605 0.1521 0.9919
Independent Test Set 0.2659 0.1549 0.9902

Fatigue curves produced on the training data spectrum, Figure 11, demonstrate that it
is possible to reproduce the lifetime results obtained by modified Chaboche models with
two different parameter sets using ANNs. The smooth data flow suggests that training
performed with a batch size of 3.5% of the training data for 250 epochs provides sufficient
data to establish the effects of fatigue limit and temperature, as well as the convergence to
ultimate tensile strength for each R ratio at the same temperature, without over-training
the model.

The uncertainty analysis indicates that the model performs reliably under small (1%)
and moderate (5%) perturbations, resulting in multiplicative uncertainties of approximately
1.3 and 3.5, respectively, for both validation and test datasets, as represented in Table 7.
These findings suggest that the model maintains consistent predictions within the trained
input range. For larger perturbations (10%), however, the uncertainty increases significantly,
highlighting the model’s sensitivity to inputs beyond the training data distribution.

Table 7. Average uncertainty (standard deviation) for validation and test datasets under different
input perturbations.

Perturbation Level (%) Validation SD Test SD

1% 0.1269 0.1106
5% 0.5397 0.5158

10% 0.9812 0.9581

(a) (b)

Figure 11. Fatigue curves produced on training data spectrum for different temperatures and R
ratios and their comparison with the experimental data (a) and for different R ratios at the same
temperature (b).
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The ultimate tensile strength (UTS) of metals typically exhibits a slight decrease
with increasing temperature due to thermal relaxation effects up to a certain threshold
temperature. Beyond this threshold, a rapid and nonlinear decrease in UTS is commonly
observed. For nickel-based superalloys, this threshold temperature is often around 500 ◦C
to 600 ◦C, although it may vary depending on the alloy composition [34]. Prediction results
between 600 ◦C and 900 ◦C exhibit coherent behavior with respect to temperature, in which
ultimate tensile strength (UTS) and fatigue limit decrease with increasing temperature
since the material becomes softer. Since the predictions presented in Figure 12 are above
the threshold temperature, material properties like yield strength and UTS are considered
significantly affected, leading to pronounced changes in fatigue behavior. In contrast,
the predictions represented in Figure 11b for different R-ratios at the same temperature
still start from the same UTS, as the initial lifetime is always defined as 1 cycle. This
results in the temperature influence being more dominant in the low-cycle region. Since
UTS and fatigue limit values are not provided to ANNs for 700 ◦C and 800 ◦C due to the
characterization of these properties not being performed at these temperatures, real-life
values may differ from the represented data in Figure 12. However, this difference can be
overcome by simply introducing the ANNs characterized fatigue limit and UTS values to
further enhance the performance of the model.

Figure 12. Fatigue curves prediction at various temperatures for CMSX-4.

4. Conclusions
In this study, the damage-based lifetime prediction model presented by Chaboche and

Lemaitre is modified as an anisotropic lifetime assessment model by considering Mode I
crack opening stress to predict the effect of anisotropy on single crystal component lives.
This lifetime assessment model is combined with the rate-dependent crystal plasticity
model presented in Section 2.2 to achieve the octahedral and cubic slip system behaviour
of FCC single crystals.

HCF lifetime estimation of Ni-based single crystal CMSX-4 for a notched specimen at
750 ◦C for different R ratios is in good agreement with the experimental data. In addition,
crack initiation locations are predicted for different crystal orientations of the notched
specimen, showing coherent results with the fatigue tests conducted on another Ni-based
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single crystal SC16 specimen. This proves that the model is coherent in estimating both
lifetime values and crack initiation points of geometries with stress concentration zones.

Choosing cleavage stress as the critical stress for lifetime estimation considers both
crack initiation and propagation contributions to the life of the specimen, even under fast
crack propagation loadings and life HCF loadings. These results show that it is possible to
achieve correct predictions for real-life geometries, like turbine blades, under both creep
and combined fatigue loadings since cleavage systems are more apparent under LCF
loadings. Further modifications, such as creep–fatigue interaction (which has already been
developed by Chaboche [16]) and HCF-LCF superimposition, are required for the modified
Chaboche model presented in this paper to predict real-life single crystal components with
complex geometries.

ANNs achieve accurate predictions with low uncertainty for small and moderate
perturbations. At 5% perturbation, the average multiplicative uncertainty of approximately
3.5 is acceptable for fatigue lifetime predictions, supported by strong performance metrics
with R2 values above 0.99 and MAE near 0.15 on both validation and test datasets.

While the parameters of the modified damage model are inherently temperature-
dependent, necessitating careful optimization for each specific temperature condition,
ANNs present a robust alternative for predicting fatigue curves across varying temperatures.
The research highlighted that with a sufficient dataset, ANNs could effectively internalize
and replicate the complex behaviors captured by the damage model, adapting to different
thermal environments without the need for manual re-parameterization. This capability
not only streamlines the predictive process but also enhances the scalability of fatigue life
assessments in practical engineering applications.

Integrating ANNs with traditional damage models like the Chaboche damage model
could significantly improve the efficiency and accuracy of lifetime predictions for critical
components under diverse operational stresses and temperatures. Provided fatigue tests
with dwell times and HCF-LCF combinations, wide-range lifetime predictions with ANNs
for such loading conditions seem attainable.
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