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Proving the stability of cycle navigation using capture sets?

Quentin Brateau??a, Loïck Degorrea, Fabrice Le Barsa, Luc Jaulina

aENSTA Bretagne, UMR 6285, Lab-STICC, ROBEX, 2 rue François Verny, F-29 200 Brest, France.

Abstract

Navigating Autonomous Underwater Vehicles (AUVs) presents significant challenges due to the absence of traditional localization
systems. Cycle navigation emerges as a promising paradigm, enabling reliable navigation using minimal exteroceptive measure-
ments. This approach leverages predefined cyclic trajectories, which are stabilized based on environmental feedback, ensuring
frugal and discreet operations without reliance on high computational power or extensive sensor systems. This work aims to prove
the stability of the cycle navigation. As cycle navigation is a non-linear system governed by a discrete inclusion condition, con-
ventional methods have trouble to prove its stability. For this reason, this paper focuses on set methods to prove the stability of
cycle navigation. The stability is proven by exhibiting a positive invariant set, which is a set stable by application of the evolution
function of the system. This ensures that the evolution function will not remove states from the positively invariant set. Then, the
characterization of the capture basin is an asset when performing cycle navigation, as it represents the set of initial states for the
system which leads to the positive invariant set. Once the system reaches either the capture basin or the positive invariant set, which
are generalized as a capture set, it remains captured forever. This approach not only guarantees the stability of the system in the
neighborhood of the equilibrium point, but also establishes that it exists an area in which the stability of the cycle navigation will
lead to a stable behavior. This work offers a robust, computationally efficient alternative to traditional stability methods, particu-
larly suited for resource-constrained AUVs, because the underwater environment lacks suitable, cheap and easy-to-use localization
methods, which forces us finding alternative ways to navigate and explore this particular environment.
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1. Introduction

Navigating robots in GNSS-denied environments presents
significant challenges, particularly in maintaining stable trajec-
tories without access to traditional localization systems. For
Autonomous Underwater Vehicles (AUVs), ensuring reliable
navigation is critical for applications such as seabed mapping,
environmental monitoring, and search-and-rescue operations.
However, as GNSS is unavailable in underwater environments,
it becomes convoluted to use classical control laws to navi-
gate effectively. Underwater positioning systems such as Long
BaseLine (LBL) or Ultra-Short BaseLine (USBL) are becom-
ing increasingly popular, but these systems come with signifi-
cant drawbacks. They are expensive, challenging to deploy, and
often not easily integrated into small or resource-constrained
robots [1, 2]. These limitations underscore the need for alterna-
tive navigation paradigms that circumvent the dependency on
external, costly infrastructure.

Efforts have been made to develop methods that facilitate
the implementation of localization solutions in GNSS-denied
environments. For example, one such method involves localiz-
ing an AUV using a single acoustic beacon of known position
to assist navigation [3]. While these approaches mitigate some
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of the reliance on complex multi-sensor systems, they still re-
quire the deployment of additional hardware on the robot. This
can add complexity, weight, and energy demands, which are
especially undesirable for small or lightweight AUVs designed
for frugal, stealthy operations. Consequently, there remains a
pressing need for navigation methods that are inherently robust,
computationally efficient, and minimally dependent on external
systems or additional hardware.

In classical control theory, the robot’s state must first be es-
timated before it can be controlled towards a reference state.
This paradigm works well in environments where reliable state
estimation is feasible. However, in GNSS-denied environments,
the unavailability of absolute positioning data poses a critical
challenge for this approach. The proposed method addresses
this issue by fundamentally rethinking the problem. Instead of
prioritizing state estimation, the approach begins with having
the robot navigate through predefined cyclic trajectories, or cy-
cles, and collecting environmental measurements all along its
path. These exteroceptive measurements are then used to adapt
and stabilize the cycle’s position within the environment. Once
the cycle is stabilized, the robot naturally converges to a prede-
fined position, effectively solving the state estimation problem
as a consequence of its stabilized navigation.

This innovative approach enables navigation in GNSS-denied
environments using minimal exteroceptive measurements, en-
suring the robot’s discretion and frugality [4]. By relying on
a simple state machine that adjusts cycle parameters based on

Preprint submitted to Elsevier December 29, 2024



collected measurements, the approach eliminates the need for
high computational power or complex sensor arrays. This is
particularly well-suited for small, autonomous robots operating
in resource-constrained environments. Moreover, the proposed
navigation paradigm inherently reduces the risk of detection, an
important consideration for applications requiring stealth, such
as defense or sensitive environmental monitoring.

The central focus of this study is to analyze the stability of
such cycles at two distinct levels. First, global stability is exam-
ined, where the convergence of the robot’s position through suc-
cessive cycle iterations is proven. This ensures that the robot’s
trajectory converges reliably to a target region despite environ-
mental disturbances or initial positional inaccuracies. Second,
local stability is studied, focusing on the robot’s trajectory dur-
ing a single cycle iteration after convergence. This dual-layered
stability analysis provides a comprehensive understanding of
the proposed navigation paradigm’s robustness and adaptabil-
ity. In this work, experiments are conducted at the surface in
order to have a GNSS ground truth and demonstrate stability of
the approach.

The study of the stability of linear systems is a field that has
already been explored and whom results are well known [5].
Non-linear system stability is studied by linearizing the system
around an operating point, allowing to use established results
for linear systems. This does indeed not prove the global sys-
tem’s stability, but only exhibit a neighborhood around an op-
erating point where the linearized system is guaranteed to be
stable. Lyapunov methods or invariance principle methods, for
instance could be used to study the stability of non-linear sys-
tems [6, 7]. However, these methods struggle to deal with dis-
crete inclusion problems. Conventional methods are therefore
ill-suited to deal with non-linear problems, can only prove sta-
bility around an operating point, and offer no guarantee of re-
sults. The approach proposed in this paper not only provides a
guaranteed way of proving that a set of states is stable by ap-
plying the system dynamics, but also characterizes the set of
starting positions leading to this stability, using capture sets.

Section 2 presents the cycle navigation through experimen-
tal results. Section 3 sets out the formalism of the problem,
then section 4 proves the stability of the cycle navigation using
set methods. Section 5 concludes this paper and presents the
perspectives of this new paradigm.

2. Cycle navigation

Stable cycle navigation has proven results both in simula-
tion and in field robotics experiments 1. Figure 1 shows the
BlueBoat 2, an Uncrewed Surface Vehicle (USV) that navigates
using cycles on the Guerlédan Lake.

The robot uses a compass to track its heading, and a sim-
ple echosounder to measure depth below the surface. The au-
tonomous boat records GNSS position only for ground truth,

1Video of the experiments at the Guerlédan lake (France) https://www.
youtube.com/watch?v=MDJ6iHYhxyM

2https://bluerobotics.com

Figure 1: BlueBoat navigating on the Guerlédan Lake using cycle navigation

and the robot position is not used in the control loop during
the experiments. The USV follows a simple timed automaton
where durations are controlled relative to the echosounder mea-
surements.

The robot and the timed automaton are synchronized as de-
fined in [8] such that the robot trajectory describes a square.
For this purpose, the state machine is a succession of states that
guide the robot along straight lines and circle arcs. Then by
controlling the duration of some transitions, the position of the
cycle could be shifted in the two-dimensional plane.

Figure 2 shows an example of two trajectories of the Blue-
Boat. These trajectories are plotted on the bathymetric map of
the lake. The blue trajectory seems to converge toward a stable
cycle, whereas the red one does not seem to converge but rather
drifts alongside the isobath.

Figure 2: Two trials at the Guerlédan lake of navigation of an USV using cycles.
The blue trajectory converges on a stable cycle, while the red trajectory does
not.

This experiment shows that the stabilization of a robot using
cycle navigation is possible. However, with the same mission
script, there are some initial conditions for the USV which are
converging toward a stable cycle, and some positions which are
not. This naturally leads to the characterization of the set of
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initial states for the USV that results in the realization of stable
cycles. This set of position is the capture basin [9, 10]. Once
the robot reaches the capture basin, it remains forever trapped.

Remark. The capture basin of a predefined cycle is related to
the shape of the cycle and the topology of the seabed in the case
of the USV scanning the seafloor using an echosounder.

3. Formalism

3.1. Cycle navigation

Consider a dynamic system of state x and of input u follow-
ing Equation (1).

ẋ = f(x,u) (1)

ẋ = f(x,u)A
u xω

Figure 3: Block diagram of the system controlled by a timed automaton

Suppose a timed automaton [11] is generating inputs u for
the system as defined in [8]. Each state of the timed automa-
ton is associated to an input u for the system, and transitions
between states are triggered when the clock of the automaton
exceeds a reference duration. Duration of some transition can
be adjusted using the input parameter of the automaton ω. Fig-
ure 3 shows the block diagram of the system controlled by the
timed automaton.

Previous work has established the abstraction of cycles [8].
This couple of timed automaton and system could be consid-
ered as a new system to be controlled, which has the particu-
larity to be discrete. The state of the system ηk is now the pose
of the robot at the beginning of the kth iteration of the timed
automaton, and input is ωk. Figure 4 summarizes the abstract
cycle formalism.

ηk+1 = γ(ηk,ωk)
ωk ηk+1

Figure 4: Block diagram of the abstracted cycle

At each iteration of the timed automaton, an input ωk is
provided. This input will change the duration of the transitions
in the timed automaton, and therefore the starting position of
the next cycle ηk.

3.2. Simulated seafloor

A simulated seafloor representing the trial environment is
proposed and shown in Figure 5a. This simulated seafloor rep-
resents the measurement equation σ(ηk,ωk) for the studied sys-
tem as defined in Equation (2).

µk = σ(ηk,ωk) (2)

At each position of the environment is associated a simu-
lated echosounder measurement. Along the cycle, the robot is
taking two measurements µk =

[
µk,0 µk,1

]T
as shown in Fig-

ure 5b. µ0 is taken at the beginning of the timed automaton
iteration, at the position h0(ηk), and µ1 is taken at the end of the
second straight line, at the position h1(ηk). Measurement posi-
tions on the cycle have been chosen to decouple measurements,
and regulation segments to avoid redundancy.

−20 −10 0 10 20
−20

−15

−10

−5

0

5

10

15

20

−12 −
8

−4

0

4

8

12

(a) Simulated seafloor

−2 −1
x

0.5

1.0

1.5

2.0

2.5

y

ηk

Regulation

h0(ηk)

h1(ηk)

(b) Measurement positions and regulated sec-
tions

Figure 5: Simulated seafloor and measurements along the cycle

3.3. Cycle stabilization

The system is regulated towards a reference bathymetric
measurement µ̄. The error between the measured depths µ dur-
ing one cycle and the reference is ek = µ̄−µk. Then, a controller
is designed to calculate the required cycle inputs ωk stabilizing
the cycle on the reference.

During these trials, a Sliding Mode Controller is used [6,
7]. In order to avoid any chattering effect, the usual signum
function is replaced with a hyperbolic tangent function at the
cost of non-finite time convergence as defined in Equation (3).

ωk = K · tanh
(ek

r

)
(3)

Matrix K is a diagonal control gain matrix and r corre-
sponds to the width of the damping area around the sliding sur-
face. The gain parameters of K are tuned for each bathymetric
map. Notably, the sign of these parameters are chosen to adapt
to the local depth gradient.

A Sliding Mode Control scheme has been chosen in this
work for a better control of the behavior of the cycle between it-
erations. Notably, the sliding mode approach guarantees a max-
imum deformation of the cycle between two iterations while
maintaining satisfying convergence time. Alternatively, a Pro-
portional (or Proportional Integral) scheme could be chosen.
The behavior would be different as, for large depth error, the
cycle would be greatly deformed. This can lead to issues, be-
cause a large cycle distortion could shift the cycle so that it
leaves the capture basin of the stable cycle.

In this way, over a number of iterations, the initial position
of the cycles will move in the plane, and the cycle position fol-
lows the vector field shown in Figure 6. Duration ω0 influences
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cycle position along x-axis, while duration ω1 influences posi-
tion along the y-axis.
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Figure 6: Vector field of the displacement over iterations of the cycle

Finally, Figure 7 shows the global vector field followed by
the cycle over iterations, which is the sum of vector fields as-
sociated to µ0 and µ1 measurements shown in Figure 6. The
magnitude of the error is represented by the background color,
and the displacement applied to the cycle at each iteration by
the vector field.
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Figure 7: Vector field for the cycle displacement

Figure 7 shows that the vector field seems to have an at-
tractive point around η =

[
0 0

]
. This is consistent with ex-

perimental observations. This hypothesis must now be verified
using tools to prove the system’s stability.

Remark. Another equilibrium point seems to be at η =
[
5 −10

]
,

but this equilibrium seems to be a hyperbolic fixed point as the
vector field induce no displacements only when η =

[
5 −10

]
,

and the vector field tends to move the surrounding points away
from each other [12].

3.4. Discrete inclusion problem

The echosounder measurements µi is supposed to belong
to the interval [µi], which is modelling the uncertainty asso-
ciated to the measurement [13, 14]. This uncertainty comes
from the sensor accuracy, and from the bathymetric map pro-
duction methods, which requires a discretization of the mapped
area and another sensor with an associated accuracy. Then, the

computed error is also an interval ei ∈ [ei] and the vector field
is uncertain.

The problem is then modelled as a discrete inclusion prob-
lem and meet Equation (4) [15], as it is possible to have an ex-
pression for γ, but this one is uncertain, and then the real state
ηk+1 belongs to [γ](ηk)

ηk+1 ∈ [γ](ηk) (4)

4. Stability analysis

4.1. Set theory stability analysis

Analysis of the cycle stability is decomposed in two stages.
First, a positively invariant set must be found [16, 10], i.e. a
set Xk such that the application of the vector field on this set
gives a set Xk+1 included in the initial set Xk. Thus, this set Xk

represents a stable set of states by application of the vector field,
and as soon as the system enters this set, it is captured forever.
Then, from this positively invariant set, we need to characterize
the capture basin [16, 10] of the dynamic system defined by the
vector field, by adding to the positively invariant set the set of
points that enter it through the action of the vector field. Thus,
as soon as a point enters the capture basin, it is directed into the
positively invariant set and remains captured forever.

4.2. Lattice structure of positive invariant sets

A lattice (E,≤) is an algebraic structure, which consists of
a partially ordered set in which each element has a least upper
bound, also called a join, and a greatest lower bound, also called
a meet.

Example. (Rn,≤) is a lattice with respect to

x ≤ y,⇔ ∀i ∈ [[0, n]], xi ≤ yi

Positive invariant sets (P,⊆) have a lattice structure. The
join of two positive invariant sets P1 and P2 is the intersection
P1∩P2. The meet of two capture sets P1 and P2 is the union P1∪

P2. Figure 8 summarizes this lattice structure with the union
and intersection of positive invariant sets forming the meet and
the join.

(a) Two positive invariant sets (b) Meet and join

Figure 8: Lattice structure of positive invariant sets

This lattice structure allows to express the smallest and largest
elements of positive invariant sets. This property, inherited
from the lattice structure, will be used while searching for a
positively invariant set in the following section.
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Example. Consider the lattice (Rn,≤). The smallest element
of this lattice is the empty set ∅, and the largest is Rn, because
regardless the evolution function f : Rn 7→ Rn, f(Rn) ⊆ Rn, and
f(∅) ⊆ ∅.

4.3. Positive invariant set

A positive invariant set P is a set stable by application of the
evolution equation of the dynamical system, that is [γ](P) ⊆ P
[16, 10, 14].

A way to compute an inner approximation of this set is to
build a sequence of sets Pk which will converge towards P. P0
is initialized by a box of the state space around a supposed sta-
ble state, and Pk+1 is computed as the intersection of Pk and
[γ](Pk). Therefore, each state which belongs to Pk and which
is moved out of this set by the application of the system dy-
namics is removed of the solution for Pk+1. Thus, the set Pk is
iteratively contracted. P0 = P0

Pk+1 = Pk ∩ [γ](Pk)
(5)

Then, ∃n ∈ N,∀k ≥ n, [γ](Pk) ⊆ Pk. This index n is the
minimal index to reach the fix-point, and after this iteration Pk

is positively invariant. Pn is an inner approximation of a capture
basin associated to the starting set P0.

Figure 9 shows the computation of an inner approximation
of the largest positive invariant set contained in an initial set P0.
Because of the lattice structure, this largest positive invariant
set exists. Starting for the set P0 drawn in black, the inner ap-
proximation of the positive invariant set for the cycle navigation
is shown in pink.

For the example shown in Figure 9a, the starting set P0 is
the box [−4, 4]× [−4, 4], while it is the box [−8, 8]× [−8, 8] for
the example shown in Figure 9b. It is noticeable that this pink
set Pn follows the vector field describing the system dynamics
shown in Figure 7, and that each point of Pn enters the pink area
by application of the system dynamics.
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(a) P0 = [−4, 4] × [−4, 4]
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(b) P0 = [−8, 8] × [−8, 8]

Figure 9: Inner approximation of the positive invariant set

The computed set Pn is the inner approximation of the largest
positive invariant of the starting set P0. Computing the outer
approximation of the positive invariant set P is computationally
demanding, as the set of state out of P should be proved to never
enter this set.

4.4. Capture basin

The capture basin is a set from which the system cannot
escape once it has reached it. This capture basin B is defined
by Equation (6) [16, 10, 14].

B = {x ∈ B0 | ∃t0 ∈ R+,∀t ≥ t0, x(t) ∈ B} (6)

As P is positive invariant, then it is already a capture basin [14,
16]. Then this set Pn will be the starting set to compute the cap-
ture basin B for the dynamical system.

Using the lattice structure, if B is a capture basin for a
dynamical system governed by an evolution function f, then
∀k ∈ N, f−k(B) is also a capture basin. It comes from the fact
that ∀x ∈ S, fk(x) ∈ B.

It is then possible to expand a capture basin by using the
reciprocal of the evolution function [γ] iteratively on a first
identified capture basin. By starting from the identified positive
invariant set P, it is then possible to compute an inner approxi-
mation of a capture basin for the stable cycles by computing the
sequence presented in Equation (7) [10]. B0 = Pn

Bk+1 = Bk ∪ [γ]−1(Bk)
(7)

The more iterations are performed to determine the basin of
attraction, the larger the basin of attraction becomes. This is
because, at each iteration, we add the set of points that enter the
basin of attraction by the application of the evolution function
[γ].

Remark. Unlike the computation of the positively invariant set
P, where the computation could only be stopped when the con-
dition Pk ⊂ [γ](Pk) was met, the characterization of the capture
basin can be stopped whenever desired. The more iterations are
performed, the larger is the characterized area, but stopping
computations early does not alter the guarantee of the results.

Figure 10 shows an example of the computed capture basin
after n1 = 5 and n2 = 20 iterations from the previously com-
puted positive invariant set P shown in Figure 9b. States added
iteratively to the capture basin is shown in yellow, and the start-
ing positive invariant set is shown in pink. States entering the
yellow area will be iteratively displaced in the pink area. Once
the system state has reached the pink set, the system state will
remain capture forever.

There is obviously points outside the computed capture basin
which could be added to it by applying more iterations of the
vector field. However, each iteration is time-consuming and
while the set Bk inflates, new states could be added at the next
iteration.

5. Conclusion

In conclusion, this work analyzes the stability of cycles us-
ing set methods, which allows us to obtain guaranteed results.
This proves the stability of a discrete system governed by a con-
dition of discrete inclusion.
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(a) 5 iterations of the vector field
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(b) 20 iterations of the vector field

Figure 10: Capture basin computation

Firstly, the identification of a positively invariant set for our
system has proved the existence of stable cycles. This corrobo-
rates the experimental observations made with the BlueBoat on
the Guerlédan Lake, with the fact that it is possible to stabilize
a robot in a GNSS-denied environment using stable cycles.

Then, by characterizing the capture basin, we were able to
determine the set of starting points for the mission, such that
the cycle would converge and stabilize around the equilibrium
position. This is also the experimental observation shown in
Figure 2, where some starting pose for the cycle will lead to a
convergence to a stable cycle, and some other will slide and not
reach the stability.

The drawback of the presented methods is the difficulty to
characterize the set of starting position which will not be stable.
Actually, only an inner approximation of the positive invari-
ant set enclosing the equilibrium point and the capture basin
are computed. The computation of the outer approximation re-
quires guaranteeing that starting poses for the robot will never
reach the capture basin. Therefore, the proposed method does
not attempt to characterize the outer approximation.

Finally, this method was proposed on a USV to validate the
concept of navigation by stable cycles, and to record GNSS sig-
nals in order to have ground truth available. The validation of
these methods, and the proof of stability demonstrated in this
paper, enable cycles to be used in a GNSS-denied environment.
This means that these navigation methods can be applied to un-
derwater robotics, enabling robots to navigate without localiza-
tion solutions and without getting lost.
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