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Strict inequality between the time constants of first-passage

percolation and directed first-passage percolation

Antonin Jacquet∗

Abstract

In the models of first-passage percolation and directed first-passage percolation on Z
d, we consider

a family of i.i.d random variables indexed by the set of edges of the graph, called passage times. For
every vertex x ∈ Z

d with nonnegative coordinates, we denote by t(0, x) the shortest passage time
to go from 0 to x and by ~t(0, x) the shortest passage time to go from 0 to x following a directed
path. Under some assumptions, it is known that for every x ∈ R

d with nonnegative coordinates,
t(0, ⌊nx⌋)/n converges to a constant µ(x) and that ~t(0, ⌊nx⌋)/n converges to a constant ~µ(x). With
these definitions, we immediately get that µ(x) ≤ ~µ(x). The first result of this short paper is the
strict inequality µ(x) < ~µ(x). To get this result, we use a lower bound on the number of edges of
geodesics in first-passage percolation (where geodesics are paths with minimal passage time), which
is the second result of this paper.

1 Introduction and results

1.1 The model of first-passage percolation.

Let d ≥ 2. We consider first-passage percolation on the usual undirected graph Z
d. The edges are those

connecting two vertices x and y such that ‖x − y‖1 = 1. We denote by E the set of edges. We consider a
family T = {T (e) : e ∈ E} of i.i.d. random variables taking values in [0, ∞] and defined on a probability
space (Ω, F ,P). The random variable T (e) represents the passage time of the edge e. Their common
distribution is denoted by L, and the minimum of its support is denoted by tmin.

A finite path π = (x0, . . . , xk) is a sequence of adjacent vertices of Zd, i.e. for all i = 0, . . . , k − 1,
‖xi+1 − xi‖1 = 1. We say that π is a path between x0 and xk. A path π is a self-avoiding path if
the vertices x0, . . . , xk are all different. Sometimes we identify a path with the sequence of edges it
visits, writing π = (e1, ..., ek) where for i = 1, . . . , k, ei = {xi−1, xi}. For two vertices x and y, we
denote by P(x, y) the set of finite self-avoiding paths between x and y. The passage time T (π) of a path
π = (e1, . . . , ek) is defined as the sum of the variables T (ei) for i = 1, . . . , k.

Then, for two vertices x and y, we define the geodesic time

t(x, y) = inf
π∈P(x,y)

T (π). (1.1)

This defines a pseudometric on Z
d and this is a metric when the passage times only take positive values.

A self-avoiding path γ between x and y such that T (γ) = t(x, y) is called a geodesic between x and y.

Time constant in first-passage percolation. The time constant describes the first-order of growth
of the geodesic time. Assume that

Emin [T1, . . . , T2d] < ∞, (1.2)

where T1, . . . , T2d are independent with distribution L. Then, a subadditive argument gives that for
every x ∈ R

d, there exists a constant µ(x) ∈ [0, ∞) such that:

lim
n→∞

t(0, nx)

n
= lim

n→∞

E [t(0, nx)]

n
= µ(x) a.s. and in L1. (1.3)
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Note that in (1.3) and in the whole paper, for x and y in R
d, we define t(x, y) as t(⌊x⌋, ⌊y⌋) where ⌊x⌋

is the unique vertex in Z
d such that x ∈ ⌊x⌋ + [0, 1)d (similarly for ⌊y⌋). We refer to Theorem 2.18 in

[5] for this result which gives a first-order of growth of the geodesic time. For more details on the time
constant and on first-passage percolation, we refer to [1].

1.2 Euclidean length of geodesics in first-passage percolation

The following theorem is the first result of this paper and is an extension of Theorem 2.5 in [6]. It gives a
lower bound for the Euclidean length of geodesics in first-passage percolation. The assumptions on L are
those of Theorem 1.5 in [4]. In particular, there is no moment assumption. Furthermore, the assumption
on the weight of the minimum of the support of L (denoted by tmin) is less restrictive than in Theorem
2.5 in [6]. Indeed we assume that L is useful, that is

L(tmin) < pc when tmin = 0,

L(tmin) < −→pc when tmin > 0,
(1.4)

where pc denotes the critical probability for Bernoulli bond percolation model on Z
d and −→pc is the critical

probability for oriented Bernoulli bond percolation on Z
d (we refer to [2] for background on percolation

and more precisely to Section 12.8 in [2] for background on oriented Bernoulli bond percolation).
This assumption guarantees that geodesics between any vertices exist almost surely (see for example

Proposition 4.4 in [1]).
For two vertices x and y, when L(∞) = 0, we define

L(x, y) = inf{|γ|e : γ is a geodesic from x to y},

where for a finite path π, |π|e denotes the number of edges of π. In other words, L(x, y) is the minimal
Euclidean length of a geodesic between x and y.

When L(∞) > 0, there are vertices between which all paths have an infinite passage time. Assume
that L([0, ∞)) > pc. Say that an edge e is open if its passage time T (e) is finite and closed otherwise.
Thanks to this assumption, this percolation model is supercritical. We get that there exists a unique
infinite component of open edges, which we denote by C∞. Then, we define the random set

C = {(x, y) ∈ Z
d × Z

d : ∃ a path π from x to y such that T (π) < ∞}.

When (x, y) ∈ C, we can define

L(x, y) = inf{|γ|e : γ is a geodesic from x to y}.

Theorem 1.1. Assume that the support of L is included in [0, ∞], that L is useful (i.e. that L satisfies
(1.4)) and that L([0, ∞)) > pc. There exist deterministic constants α1 > 0, α2 > 0 and δ > 0 such that
for all x ∈ Z

d,
P ((0, x) ∈ C and L(0, x) ≤ (1 + δ)‖x‖1) ≤ α1e−α2‖x‖1 . (1.5)

The proof of Theorem 1.1 is given in Section 3. We state the following immediate corollary.

Corollary 1.2. Assume that the support of L is included in [0, ∞], that L is useful (i.e. that L satisfies
(1.4)) and that L([0, ∞)) > pc. Then, there exists a deterministic constant δ > 0 and of an almost surely
finite random constant K such that L(0, x) ≥ (1 + δ)‖x‖1 whenever x ∈ Z

d satisfies ‖x‖1 ≥ K.

This corollary is proven, under slightly more restrictive assumptions in [6] (see Theorem 2.5).

1.3 Directed first-passage percolation

Denote by {ε1, . . . , εd} the vectors of the canonical basis. A directed path ~π = (x0, . . . , xk) is defined
as a path such that for all i = 0, . . . , k − 1, there exists j ∈ {1, . . . , d} such that xi+1 = xi + εj . For
x = (x1, . . . , xd) ∈ R

d and y = (y1, . . . , yd) ∈ R
d, we say that x ≤ y (resp. x ≥ y) if for all j ∈ {1, . . . , d},

xj ≤ yj (resp. xj ≥ yj). For two vertices x and y such that x ≤ y, we denote by ~P(x, y) the set of
directed paths between x and y.
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Then, for two vertices x and y such that x ≤ y, we also define the directed geodesic time

~t(x, y) = inf
~π∈ ~P(x,y)

T (~π). (1.6)

A directed path ~γ between x and y such that T (~γ) = t(x, y) is called a directed geodesic between x and
y. Directed geodesics between any vertices x and y exist almost surely since there is a finite number of
directed paths between x and y.

Assume now that E[T (e)] < ∞ where T (e) is a random variable with distribution L. The same
subadditive argument as the one used to get (1.3) allows us to describe the first-order of growth of the
directed geodesic time. We get for every x ∈ R

d such that x ≥ 0 the existence of a constant ~µ(x) ∈ [0, ∞)
(called here the directed time constant) such that

lim
n→∞

~t(0, nx)

n
= lim

n→∞

E
[
~t(0, nx)

]

n
= ~µ(x) a.s. and in L1. (1.7)

We refer to [7] and to [8] for the definition and for results on this directed time constant.

Comparison between the time constant and the directed time constant One of the main
result of this paper is the strict inequality between the time constant and the directed time constant.
It is given below in Theorem 1.4, which is a consequence of Theorem 1.3. The proof of Theorem 1.3 is
based on the lower bound of the Euclidean length of geodesics given by Theorem 1.1.

Recall that we denote by tmin the minimum of the support of L and that −→pc is the critical probability
for oriented Bernoulli bond percolation on Z

d. We assume that

L(tmin) < −→pc . (1.8)

Theorem 1.3. Assume that the support of L is included in [0, ∞) and that (1.8) holds. Then, there
exist constants δ > 0, α1 > 0 and α2 > 0 such that for all x ∈ R

d such that x ≥ 0,

P
(
t(0, x) ≤ ~t(0, x) − δ‖⌊x⌋‖1

)
≥ 1 − α1e−α2‖x‖1 . (1.9)

Theorem 1.4. Assume that the support of L is included in [0, ∞), that (1.8) holds and that E[T (e)] < ∞
where T (e) is a random variable with distribution L. Then, for every x ∈ R

d such that x ≥ 0 and x 6= 0,

µ(x) < ~µ(x),

where µ(x) and ~µ(x) are defined at (1.3) and (1.7).

The proofs of Theorem 1.3 and 1.4 are given in Section 2. Note that since for all x and y in R
d such

that x ≤ y, ~P(x, y) ⊂ P(x, y), we always have t(x, y) ≤ ~t(x, y). It gives that for all x ∈ R
d such that

x ≥ 0,
µ(x) ≤ ~µ(x),

and thus the result of Theorem 1.4 is on the strict inequality.

Comments on the positivity of these constants. In [8], Zhang proves results on the positivity
of the directed time constant (defined here at (1.7)) in dimension 2. In particular, it is proven, when
the passage times are nonnegative and when L has a finite first moment, that for all x ∈ R

d such that
x ≥ 0 and x 6= 0, ~µ(x) > 0 when L(0) < −→pc . It is known in this setting that µ(x) = 0 for all x ∈ R

d if
L(0) ≥ pc, and that µ is a norm if L(0) < pc (where pc denotes the critical probability for Bernoulli bond
percolation model on Z

d). Since Theorem 1.4 holds even if L(0) ∈ [pc, −→pc), it provides an alternative
proof of the strict positivity of ~µ(x) for all x ∈ R

d such that x ≥ 0 and x 6= 0 when L(0) < −→pc in any
dimension d.
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1.4 Ideas of proofs

The proof of Theorem 1.1 is based on the notion of patterns developed in [4]. The idea is to consider a
pattern in which the optimal path for the passage time between its endpoints is not optimal in terms of
the number of edges. Then, using Theorem 1.5 in [4], we get that every geodesic crosses a linear number
of this pattern, which gives the desired lower bound in (1.5).

Theorem 1.4 is an easy consequence of Theorem 1.3. The idea of the proof of Theorem 1.3 is to use
the lower bound of the Euclidean length of geodesics in a shifted environment, that is an environment
in which we add the same constant at the passage time of each edge of Zd. Since a directed geodesic
between two vertices x and y such that x ≤ y has exactly ‖y − x‖1 edges, we get a lower bound on the
difference between the Euclidean length of a geodesic and of a directed geodesic. Then, we use the fact
that, as in every environment, the geodesic time is lower than or equal to the directed geodesic time
in the shifted environment. Finally, we get the difference between the geodesic time and the directed
geodesic time desired in (1.9) in the initial environment using the three following tools:

(i) we have a lower bound on the difference of the number of edges between a geodesic and a directed
geodesic in the shifted environment,

(ii) a path is a directed geodesic in the shifted environment if and only if it is a directed geodesic in
the initial one,

(iii) the difference of the passage time of a path between the initial environment and the shifted one is
proportional to its number of edges.

Comments on the assumptions of Theorem 1.3 and Theorem 1.4. Note that in Theorem 1.1,
it is assumed that the support of L is included in [0, ∞] and that L is useful (i.e. L satisfies (1.4)). But
since this theorem is used in a shifted environment in the proof of Theorem 1.3, it allows us to consider
in Theorem 1.3 and Theorem 1.4 distributions such that L(tmin) < −→pc instead of L(tmin) < pc.

2 Proofs of Theorem 1.3 and Theorem 1.4

Proof of Theorem 1.3 using Theorem 1.1. Assume that L satisfies the assumptions of Theorem 1.3. Fix
∆ > 0.

For each environment T = {T (e) : e ∈ E} of independent random variables with distribution L, we
define the environment T∆ as the environment in which for every e ∈ Z

d,

T∆(e) = T (e) + ∆. (2.1)

Recall that for every x ∈ R
d, we denote by ⌊x⌋ the unique vertex in Z

d such that x ∈ ⌊x⌋ + [0, 1)d. For
every x ∈ R

d such that x ≥ 0, we denote by γ∆(x) the first geodesic in any fixed deterministic order from
0 to ⌊x⌋ in the shifted environment T∆, and by |γ∆(x)|e the number of edges of γ∆(x). The environment
T∆ satisfies the assumptions guaranteeing the existence of geodesics between any vertices almost surely.
Then, we denote by ~γ∆(x) the first directed geodesic in any deterministic order from 0 to ⌊x⌋ in the
shifted environment T∆.

Denote by L∆ the distribution of T∆(e). Using the assumptions on L, we have that the support of
L∆ is included in [0, ∞) and that L∆(t∆

min) < −→pc where t∆
min > 0. Thus, L∆ is useful and satisfies the

assumptions of Theorem 1.1. By Theorem 1.1, we get constants α1 > 0, α2 > 0 and δ > 0 such that for
every x ∈ R

d,
P (|γ∆(x)|e ≥ (1 + δ)‖⌊x⌋‖1) ≥ 1 − α1e−α2‖x‖1 . (2.2)

Now, let x ∈ R
d such that x ≥ 0. Assume that |γ∆(x)|e ≥ (1 + δ)‖⌊x⌋‖1. Then we have the following

sequence of inequalities, whose justifications are given just below:
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t(0, x) ≤ T (γ∆(x)) (2.3)

= T∆(γ∆(x)) − ∆|γ∆(x)|e (2.4)

≤ T∆(γ∆(x)) − ∆(1 + δ)‖⌊x⌋‖1 using the assumption |γ∆(x)|e ≥ (1 + δ)‖⌊x⌋‖1,

≤ T∆(~γ∆(x)) − ∆(1 + δ)‖⌊x⌋‖1 (2.5)

≤ T∆(~γ∆(x)) − ∆|~γ∆(x)|e
︸ ︷︷ ︸

=T (~γ∆(x))

−∆δ‖⌊x⌋‖1 (2.6)

= ~t(0, nx) − ∆δ‖⌊x⌋‖1. (2.7)

The inequality (2.3) comes from the fact that γ∆(x) ∈ P(0, ⌊x⌋) and from the definition of the
geodesic time given at (1.1). For (2.4), we use the definition of the shifted environment given at (2.1).
Indeed, with this definition, for every path π, we have

T∆(π) = T (π) + ∆|π|e. (2.8)

We get (2.5) using that, since ~P(0, ⌊x⌋) ⊂ P(0, ⌊x⌋), a geodesic from 0 to ⌊x⌋ has a lower passage time

than a directed geodesic from 0 to ⌊x⌋. For (2.6), we use the fact that every path ~P(0, ⌊x⌋) has exactly
‖⌊x⌋‖1 edges and thus that |~γ∆(nx)|e = ‖⌊x⌋‖1. Then, we use again (2.8). Finally, using again these
arguments, a path is a directed geodesic from 0 to ⌊x⌋ in the environment T if and only if it is a directed
geodesic from 0 to ⌊x⌋ in the environment T∆. Hence T (~γ∆(x)) = ~t(0, x).

From the sequence of inequalities above, we get

{|γ∆(x)|e ≥ (1 + δ)‖⌊x⌋‖1} ⊂
{

t(0, x) ≤ ~t(0, nx) − ∆δ‖⌊x⌋‖1

}
, (2.9)

which gives (1.9) using (2.2).

Proof of Theorem 1.4. Assume that L satisfies the assumptions of Theorem 1.4. In particular, L satisfies
the assumptions of Theorem 1.3. Fix x ∈ R

d such that x ≥ 0 and x 6= 0. Using that E[T (e)] < ∞, where
T (e) is a random variable with distribution L, and using Theorem 1.3, we get the existence of a constant
δ′ > 0 such that for every n sufficiently large,

E [t(0, nx)] ≤ E
[
~t(0, nx)

]
− δ′‖⌊nx⌋‖1. (2.10)

Dividing by n in the inequality (2.10), we get

E [t(0, nx)]

n
≤

E
[
~t(0, nx)

]

n
− δ′

(

‖x‖1 −
d

n

)

.

Finally, taking the limit in each side, we obtain

µ(x) = lim
n→∞

E [t(0, nx)]

n
< lim

n→∞

E
[
~t(0, nx)

]

n
= ~µ(x),

which concludes the proof of Theorem 1.4.

3 Proof of Theorem 1.1

Proof of Theorem 1.1. This proof is based on the notion of patterns defined in [3] and follows the ideas
of the proof of Section 4.2 in [3]. Assume that L satisfies the assumptions of Theorem 1.1.

• Assume first that L has at least two finite points in its support ant let 0 ≤ a < b < ∞ two points
in the support of L. The case where there exists a′ ∈ R such that L(a′) + L(∞) = 1 is dealt with
at the end of the proof. When L(∞) = 0, the existence of at least two different finite points in the
support of L is guaranteed by the fact that L is useful. Fix

ℓ >
2a

b − a
. (3.1)
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We define the subset Λ = {0, . . . , ℓ} × {0, 1} ×
d∏

i=3

{0}, and the vertices uΛ = (0, . . . , 0) and vΛ =

(ℓ, 0, . . . , 0). We denote by EΛ the set of edges linking vertices of Λ. We define the path π+ as the
path going from uΛ to vΛ by ℓ steps in the direction ε1 and the path π++ as the path going from
uΛ to uΛ + ε2 by one step in the direction ε2, then to vΛ + ε2 by ℓ steps in the direction ε1 and
then to vΛ by one step in the direction ε2.

For a deterministic family (te)e∈EΛ
of passage times on the edges of Λ and for a path π, we denote

∑

e∈π

te by T (π). For all δ ≥ 0, we consider the set G(δ) of families (te)e∈EΛ
of passage times on the

edges of Λ which satisfy the following two conditions:

– for all e ∈ π++, te ∈ [a − δ, a + δ],

– for all e ∈ Λ \ π++, te ∈ [b − δ, b + δ].

Then, consider the set H of families (te)e∈EΛ
such that π++ is the unique optimal path from uΛ to

vΛ among the paths entirely contained in Λ.

Claim 3.1. There exists δ > 0 such that G(δ) ⊂ H.

The proof of the claim is given below and, for now, we assume the claim to be true.

Using Claim 3.1, fix δ > 0 such that G(δ) ⊂ H . Define the event AΛ = {(T (e))e∈EΛ
∈ G(δ)}. Then

P = (Λ, uΛ, vΛ, AΛ) is a valid pattern in the terminology of [4] (see Definition 1.2 in [4]). Indeed,
a 6= ∞ and b 6= ∞, and since a and b belong to the support of L, we have that P((T (e))e∈EΛ

∈
G(δ)) > 0.

For every x ∈ Z
d, if (0, x) ∈ C, we denote by γ−(x) the first geodesic in the lexicographical order

between 0 and x among those whose number of edges is equal to L(0, x).We denote by NP(γ−(x))
the number of patterns P visited by γ−(x). Since the distribution L is useful and L([0, ∞)) > pc,
we can apply Theorem 1.5 in [4] to get constants δ, β1, β2 > 0 such that

P
(
(0, x) ∈ C and NP(γ−(x)) ≤ δ‖x‖1

)
≤ β1e−β2‖x‖1 . (3.2)

Claim 3.2. For all vertices z1 and z2 and every path π between z1 and z2, we have

|π|e ≥ ‖z2 − z1‖1 + NP(π).

The proof of this claim, given below, is based on easy geometrical considerations. For now, assume
the claim to be true.

When (0, x) ∈ C, by Claim 3.2, |γ−(x)|e ≥ ‖x‖1 + NP(γ−(x)). Thus, we get

P((0, x) ∈ C and L(0, x) ≤ (1 + δ)‖x‖1) = P((0, x) ∈ C and |γ−(x)|e ≤ (1 + δ)‖x‖1)

≤ P((0, x) ∈ C and NP(γ−(x)) ≤ δ‖x‖1)

≤ β1e−β2‖x‖1 by (3.2),

which concludes the proof.

It remains to prove Claim 3.1 and Claim 3.2.

Proof of Claim 3.1. Let us first prove that G(0) ⊂ H . Consider a family (te)e∈EΛ
∈ G(0). We have

T (π++) = (ℓ + 2)a and T (π+) = ℓb. By (3.1),

T (π++) < T (π+).

The path π+ is the only path entirely contained in Λ which does not take edges in the direction ε2.
Let π be a path from uΛ to vΛ entirely contained in Λ different from π+ and π++. For a path π′,
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we denote by T 1(π′) (resp. T 2(π′)) the sum of the passage times of the edges of π′ which are in the
direction ε1 (resp. ε2). Since the paths entirely contained in Λ only take edges in the directions ε1

and ε2, we have

T (π++) = T 1(π++) + T 2(π++) and T (π) = T 1(π) + T 2(π).

Now, since π is different from π++, π takes some edge in the directio, ε2 different from {uΛ, uΛ+ε2}
and {vΛ, vΛ+ε2}. Furthermore, π has to take an even number of edges in the direction ε2. Since the
only edges in the direction ε2 whose passage time is equal to a are {uΛ, uΛ + ε2} and {vΛ, vΛ + ε2},
it gives

T 2(π) > T 2(π++). (3.3)

Then, π also has to take at least ℓ edges in the direction ε1. Thus,

T 1(π) ≥ ℓa = T 1(π++). (3.4)

Combining (3.3) and (3.4) yields T (π++) < T (π), which proves that (te)e∈EΛ
∈ H and that

G(0) ⊂ H .

Then, H is an open set since for a family (te)e∈EΛ
to belong to H , it is required that the time of

one path is strictly smaller than the time of every path of a finite family of paths. Hence, for δ > 0
small enough, we have

G(δ) ⊂ H. (3.5)

Proof of Claim 3.2. Consider two vertices z1 and z2 in Z
d and a path π between z1 and z2. For

every j ∈ {1, . . . , d}, denote by z1(j) and z2(j) the j-th coordinates of z1 and z2, and let χj =
|z1(j) − z2(j)|. The path π has to take at least χj edges in the direction εj for every j ∈ {1, . . . , d}.
This gives

|π|e ≥

d∑

j=1

χj = ‖z2 − z1‖1.

More precisely, the χ2 edges in the direction ε2 the path π has to take are χ2 edges linking the
hyperplanes H2

ℓ = {(i1, . . . , id) ∈ Z
d : i2 = ℓ} and H2

ℓ+1 = {(i1, . . . , id) ∈ Z
d : i2 = ℓ + 1} for

every ℓ ∈ {0, . . . , χ2 −1}. But, each time π crosses a pattern P, π takes two edges linking the same
hyperplanes H2

ℓ = {(z1, . . . , zd) ∈ Z
d : z2 = ℓ} and H2

ℓ+1 = {(z1, . . . , zd) ∈ Z
d : z2 = ℓ + 1} for

some ℓ ∈ Z. This yields
|π|e ≥ ‖z2 − z1‖1 + NP(π). (3.6)

• It remains to deal with the case when there exists a′ ∈ R such that L(a′) + L(∞) = 1 but this
case is simpler than the others. We replace the pattern P in the proof above by the pattern

P∞ = (Λ∞, uΛ
∞, vΛ

∞, AΛ
∞) where Λ∞ = {0, 1}2 ×

d∏

i=3

{0}, uΛ
∞ = (0, . . . , 0), vΛ

∞ = (1, 0, . . . , 0)

and AΛ
∞ is the event on which T (e) = a′ for every edge e ∈ Λ∞ different from {uΛ

∞, vΛ
∞}, and

T ({uΛ
∞, vΛ

∞}) = ∞. Then the proof follows the one of the case L(∞) > 0 above but with this
pattern.
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