
HAL Id: hal-04857739
https://hal.science/hal-04857739v1

Submitted on 28 Dec 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Design and Efficient Implementation of a Chaos-based
Stream Cipher

Mohammad Abu Taha, Safwan El Assad, Audrey Queudet, Olivier Déforges

To cite this version:
Mohammad Abu Taha, Safwan El Assad, Audrey Queudet, Olivier Déforges. Design and Efficient
Implementation of a Chaos-based Stream Cipher. International Journal of Internet Technology and
Secured Transactions., 2017, 7 (2), pp.89-114. �10.1504/ijitst.2017.10008009�. �hal-04857739�

https://hal.science/hal-04857739v1
https://hal.archives-ouvertes.fr


Ac
ce

pt
ed

 M
an

us
cr

ip
t

Design and Efficient Implementation of a
Chaos-based Stream Cipher

Mohammed AbuTaha
Institut d’Electronique et de Télécommunications de Rennes

IETR, Université de Nantes, France
Email: mohammad.abu-taha@etu.univ-nantes.fr

Safwan EL ASSAD
Institut d’Electronique et de Télécommunications de Rennes

IETR, Université de Nantes, France
E-mail: safwan.el-assad@univ-nantes fr

Audrey Queudet
Institut de Recherche en Communications et Cybernétique de Nantes

IRCCyN, Université de Nantes, France
E-mail: audrey.queudet@univ-nantes fr

Olivier Deforges
Institut d’Electronique et de Télécommunications de Rennes

INSA de Rennes, France
E-mail: olivier.deforges@insa-rennes.fr

Abstract: We designed and implemented a stream cipher cryptosystem based on an efficient chaotic generator of finite 
computing precision (N = 32). The proposed structure of the chaotic generator is formed by a Key-Setup, an IV-Setup, a non-
Volatile memory, an output and an internal state function. The chaotic generator uses the internal feedback mode and the 
generated keystream is used for secure stream ciphers. The cryptographic complexity mainly lies in the internal state containing 
two recursive filters, with one, two or three delays. Each recursive filter includes a perturbation technique using a linear feedback 
shift register (LFSR). The first recursive filter includes a discrete skew tent map, and the second one includes a discrete piecewise 
linear chaotic map (PWLCM). The chaotic generator is implemented in sequential and parallel versions using Pthread library. 
The proposed Stream ciphers have very good performance in terms of security and execution time. The parallel version of the 
proposed chaos-based stream cipher is faster than the eSTREAMS project, and other known chaos-based stream cipher when the 
data size is big. The security performance of the chaos-based stream cipher is analyzed, cryptanalytic analysis and statistical tests 
such as the Histogram with the Chi-square test, correlation and the NIST test are applied. Experimental results highlight the 
robustness of the proposed system. The security of the implemented stream ciphers is investigated by applying several software 
security tools.

Keywords: Stream cipher; Chaotic generator; Chaotic multiplexing; Parallel computing

Reference M. AbuTaha, S. EL ASSAD, A. Queudet and O. Deforges‘Design and Efficient Implementation of a Chaos-based 
Stream Cipher’, International Journal of Internet Technology and Secured Transaction, Vol. x, No. x, pp.xxx–xxx.

Biographical notes: Mohammed AbuTaha received the M.S. degree in Informatics from Palestine Polytechnic University, 
Hebron-Palestine, he is currently pursuing the Ph.D. degree from Nantes University, France. His research interests include 
security of image and video, Linux based Real time applications and embedded systems, Parallel programming.

Safwan El Assad, joints the University of Nantes, France in September 1987, where he is now an Associate Professor. Since 
2005, his man research are in: Chaos-based crypto and crypto-compression systems for secure transmitted and stocked data.

Audrey Queudet graduated in Computer Engineering at Polytechnic School of the University of Nantes (France), she is 
an Associate Professor at the University of Nantes. Her research interests include real-time scheduling theory, quality of 
service guarantees for soft real-time systems, and Linux-based real-time operating systems and applications.

Olivier Deforges received the Ph.D. degree in image processing in 1995. He is a Professor with the National Institute of 
Applied Sciences (INSA) of Rennes since 2005. His principal research interests are image and video lossy and lossless 
compression, image understanding, fast prototyping, and parallel architectures.

1



Ac
ce

pt
ed

 M
an

us
cr

ip
t

1 Introduction

Cryptography was used in the past to keep military
information and diplomatic correspondence secure and
to protect national security. In recent times, the range
of cryptography applications has been widely expanded,
following the development of new communication means.
Cryptography is used to ensure that the contents of a
message are confidentially transmitted and cannot be
altered. Chaos is one interesting field of research dealing
with nonlinear, deterministic, and dynamic systems. It
is applied to many different domains such as physics,
robotics, biology, finance and encryption. The most
important chaos properties are the high dependency on
initial conditions and parameter variation, ergodicity
and the random-like behavior. These properties entice
researchers to develop chaotic secure communication
systems (Kocarev (2001)), (El Assad and Farajallah
(2016)), (Farajallah et al. (2016)), (Setti et al. (2005)),
(Cimatti et al. (2007)), (AbuTaha et al. (2015)), (Arlicot
(2014)), (Caragata et al. (2010)), (Chetto et al. (2014)).
Under certain conditions, chaos can be generated by
any non-linear dynamic system (Smale (1967)). For
public channels including network communication and
for computer communication, most data transactions
(valuable information) need to be protected from
malicious attacks and threats (Li and Lee (2016)),
(Masoumi et al. (2016)), (Jo and Koh (2016)) .
A block symmetric cipher is one of the classical
encryption technique, widely used in the literature. The
Advanced Encryption Standard (AES) is one of the
most famous symmetric encryption for block ciphers.
The stream cipher is used to secure useful information
that must be transmitted continuously over the network
communication for example. Generally stream ciphers
are more efficient than block ciphers in two situations:1)
in software applications requiring a very high encryption
or decryption rate and 2) in hardware applications
where physical resources(e.g: chip area, power, etc) are
restricted. Handling a stream cipher encryption with
block ciphers is possible by using counter and output
feedback modes (CTR, OFB). Because the AES is very
secure and widely adopted, its two modes, namely CTR
and OFB are used as stream ciphers. However, to benefit
from both advantages of stream ciphers compared to
block ciphers, several stream cipher designs such as RC4
and eSTREAM algorithms have been produced. RC4 is
one of the widely known stream ciphers and a hardware
implementation was performed in an efficient way by
Gupta et al., (Gupta et al. (2013)). However, RC4 is
now broken. The eSTREAM project was a multi-year
effort, running from 2004 to 2008, to promote the design
of efficient and compact stream ciphers suitable for the
widespread adoption of Estream (eSTREAM (2008)).
Nevertheless, until now most of the eSTREAM ciphers
are still not definitely secure (Manifavas et al. (2015)).
Chaos-based stream ciphers are used to enhance the

Copyright c© 2017 Inderscience Enterprises Ltd.

security issue (Machicao et al. (2012)).
In this paper, we propose a new chaos-based stream
cipher. The proposed system is based on an efficient
chaotic generator using two chaotic recursive filters, a
technique of disturbance and chaotic multiplexing. The
remainder of the paper is structured as follows. The next
Section reviews the related work and Section 3 recalls
the main technique used in parallel programming. The
structure of the proposed stream cipher is described in
Section 4. We detail the description of the proposed
chaotic generator in Section 4.1 and Section 4.2 provides
its parallel implementation. Next Section 4.3 gives the
computation performance of the generator. In Section
5, we set out the performance of the stream cipher in
terms of encryption speed and security using known
cryptographic and statistical attacks. Finally, Section 6
concludes our contribution and outlines some directions
for future work.

2 Related Work

In the following paper we recall the main related works
in standard and chaos-based stream ciphers.

2.1 AES-CTR and eSTREAM Software

AES-CTR Mode
Counter mode, a standard introduced by Diffie and
Hellman in 1979, is one of the best known modes used for
stream ciphers. Counter mode switches a block cipher
into a stream one. It generates the next keystream
block by encrypting successive values of a counter. After
each block encryption, the counter must be different
and this can be done simply by incrementation of the
counter by some constant, typically one. CTR mode
has significant efficiency advantages over the standard
encryption modes without weakening the security. In
particular its tight security has been proven. On the
other hand most of the perceived disadvantages of CTR
mode are not valid criticisms, but rather caused by a
lack of knowledge (Lipmaa et al. (2000)).

Rabbit
Rabbit is a stream cipher algorithm. Its rose/developed
as a fast software encryption method in 2004. It is one of
the most effective algorithm developed in the eSTREAM
project. Rabbit is directed to be used in both software
and hardware applications. The Rabbit Algorithm takes
a 128-bit key and a 64-bit IV vector as input. At each
iteration it, generates a 128-bit output. The output is
pseudo-random in its nature. The heart of this cipher
consists of 513 internal state bits. clearly the output
generated in each iteration is some combination of these
state-bits. The 513 bits are divided into eight 32-bit
state variables, eight 32-bit counters and one counter
carry bit. The state functions which update these state

2



Ac
ce

pt
ed

 M
an

us
cr

ip
t

variables are non-linear and thus build the basis of
the security provided by this cipher (Boesgaard et al.
(2005)), (eSTREAM (2008)). The designers provided
the security analysis considering several possible attacks:
algebraic, correlation, and statistical attacks. They
conclude that no huge weakness of Rabbit has been
found. However in 2009, Kircanski and Youssef in
their paper (Kircanski and Youssef (2009)) provide a
differential fault analysis attack on Rabbit algorithm.
The fault model in which they analyse the cipher is
the one in which the attacker is assumed to be able
to fault a random bit of the internal state. The attack
requires around 128-256 faults, a precomputed table of
size around 241.6 bytes, this technique enables to recover
the complete internal state of Rabbit in about 238 steps.

Salsa20/r
Salsa20/r is one of the eSTREAM finalist algorithms for
software implementation, where r = 8, 12, 20 represents
the number of iterations of the round function. The
algorithm is constructed on a pseudo-random function
based on a 32-bit addition, bitwise XOR and rotation
operations, which maps a 256-bit key, a 64-bit nonce (IV
initial vector), and a 64-bit stream position to a 512-bit
output (Bernstein (2008)), (eSTREAM (2008)). The
Salsa20/8 version is very fast but not secure enough.
Its weakness comes from a differential cryptanalysis
performed by Tsunoo et al. (Tsunoo et al. (2007)).
Salsa20/12 and Salsa20/20 algorithms seem to be secure
so far, because no better attack than the brute-force
attack has been reported.
HC-128 and HC-256
HC-128 is an efficient software stream cipher, which
consists of two secret tables, each one with 512 32-
bit elements. At each step they update one element
from one of the two tables using a non-linear feedback
function. All the elements of the two tables are updated
every 1024 steps. At each step, one 32-bit output is
generated from the non-linear output function. HC-256
is a new version that differs from HC-128 by the size
of secret tables which is 1024 32-bit elements instead
of 512 32-bit ones. All the elements of the two tables
are updated every 2048 steps. At each step, HC-256
produces one 32-bit output (Wu (2008)), (Wu (2004)),
(eSTREAM (2008)). However, in 2010, (Kircanski and
Youssef (2010)) provide in a differential fault analysis
attack on HC-128 their paper. The attack is based on
the fact that, some of the inner state words of HC-128
may be exploited several times without being updated.
Consequently, the complete internal state is recovered
using about 7968 faults.

SOSEMANUK
SOSEMANUK is a software stream cipher that has a
key length ranging from 128 to 256 bits. It takes an
initial value IV vector of 128 bits. SOSEMANUK has
two main components: a linear feedback register (LFSR)
and a finite state machine (FSM). The LFSR operates
on 32-bit words and at every clock a new 32-bit word is

computed. The FSM has two 32-bit memory registers: at
each step the FSM takes an input word from the LFSR,
updates the memory registers and produces a 32-bit
output (Berbain et al. (2008)), (eSTREAM (2008)). In
2011 (Salehani et al. (2011)) made a differential attack
on SOSEMANUK. The attack needed around 6144
faults to recover the secret inner state of the cipher.

2.2 Chaos-based stream cipher

Abderrahim et al. (2014) in their paper propose
a chaos-based stream cipher based on symbolic
dynamic description and synchronization. Their
main contribution concerns a pseudo-random number
generator (PRNG) based on an appropriate mixture
of perturbed chaotic maps. The synchronization of the
emitter/receiver is performed by a symbolic dynamic-
based method. One of the characteristics of their
proposed stream cipher is that the chaotic symbolic
dynamic sequences are easy to produce. The obtained
bit rate, with an Intel Core i7 processor clocked at 3.5
GHz, and 8G of RAM is 10 Mbps.
Lü et al. (2004), proposed a one-way-coupled chaotic
map lattice for cryptography of a self-synchronizing
stream cipher. The system performs an analytical
computation into real numbers, and incorporates
some algebraic operations on integer numbers. The
encryption/decryption operations is done in parallel
using multiple chaotic maps. The authors claim that the
system has a good security level, and good reliability
against strong channel noise. They provide an encryption
speed (around 914 Mbps on a 2 GHz CPU).
In 2007Li et al. (2007) published a stream cipher
also based on a spatiotemporal chaotic system as
done previously in (Lü et al. (2004)). The chaotic
system uses coupled logistic maps, and simple algebraic
computations. The system produces parallel keystreams
for encrypting plaintexts via bitwise XOR. Security
analysis is performed to prove the robustness of the
system. The encryption speed is 700 Mbits in a computer
with a 1.8 GHz CPU and 1.5 GB RAM.
The eSTREAM project ciphers have better performance
in time than the three chaos-based stream ciphers. In
the following sections we will describe our chaos-based
stream cipher in sequential and parallel implementation.

3 Parallel programming techniques

As processors’ speeds no longer significantly increase,
multicore systems have become more popular. Thus to
benefit from these systems, programmers have turned
to parallel programming. Therefore, programmers have
to deal more and more with parallel programming.
Parallelism is achieved thanks to multiple processes
running at the same time on multiple processors
(Rani (2011)). It explicitly breaks the task down into

3



Ac
ce

pt
ed

 M
an

us
cr

ip
t

small units of execution, where each unit can be
executed in parallel on a single processor. In this
way multiple parts of the same task can run in
parallel (Sinnen (2007)), (Lozi et al. (2016)). Parallel
programming can be implemented using several different
software interfaces, or parallel programming models. The
programming model used in any application depends on
the underlying hardware architecture of the system on
which the application is expected to run: shared memory
architecture or distributed memory environment. In
shared-memory multiprocessor architectures, threads
can be used to implement parallelism. Threads are
lightweight processes, existing within a single operating
system process. Threads share the same memory address
space and state information of the process that contains
them. Parallel programming can be implemented for
shared memory systems using automatic parallelization
(Banerjee et al. (1993)), POSIX threads (Butenhof
(1997)) and Solaris threads (Butenhof (1997)), or
OpenMP (Dagum and Enon (1998)). Among distributed
memory programming models, the Message Passing
Interface (MPI) model (Gropp et al. (1996)) is commonly
used to parallelize applications. MPI is a very explicit
programming model. The programmer implements the
distribution of the tasks, communication between them,
and decides how the work is allocated between the
various threads. With the emergence of multi-core
systems, hybrid programming models have also been
developed. Within a single node, fast communication
through shared memory can be exploited, and a
networking protocol can be used to communicate across
the nodes. Programs can then take advantage of both
shared memory and distributed memory. In our parallel
implementation we used POSIX threads.

4 Description of the proposed chaos-based
stream cipher

In this section we present a synchronous stream
cipher based on a novel chaotic generator with its
two implemented versions (sequential and parallel). In
sequential implementation, each generator call produces
a 32-bit sample, that is immediately converted into 4
bytes and stored in a buffer, before being Xored with
4 bytes from the plaintext to obtain 4 ciphered bytes
and so on. In the parallel implementation, each generator
call produces four 32-bit samples, that are immediately
converted into 16 bytes stored in a buffer and then Xored
with 16 bytes from the plaintext. Here, a question of
synchronization between generated samples arises after
each generator call. More details about this question
are given in Section 4.2. For a given plaintext data, the
generator produces the necessary keystreams to obtain
ciphering data. In Figure 1 the general structure of
stream cipher encryption and decryption processes are
shown.
As with any encryption system, the secret key K and the

initial IV vector must be shared between the sender and
the receiver. The key must be kept secret while the IV
vector is not necessarily kept secret but must be a nonce.
The common method to share the secret K between
the two parties is a symmetric key distribution based
on either symmetric encryption using a key distribution
center (KDC) or asymmetric encryption using the RSA
(Rivest, Adi Shamir and Leonard Adleman) algorithm
(Stallings (2006)). The IVg is changed every new session
as a key session.

4.1 Description of the proposed chaotic generator

The architecture of the proposed chaotic generator is
composed of several black-boxes as presented in Figure
2. The detailed description of the internal state and
the output function is given in Figure 3. The secret
key K, the initial vector Nonce IVg and parameters
are the inputs of the chaotic generator. From these
inputs, the IV-setup computes another three IVs values
and the Key-setup, in case of parallel implementation,
creates another three keys. Then, four IVs and four
keys will be used by four threads in the system. Since
chaos is sensitive to any small changes in the secret
key, the creation of each new key in the Key-setup

entity is achieved by the circular shift rotation of the
three bit value of K1 s,K1 p parameters (see Figure 3).
Moreover, the creation of each new IV in the IV-setup

entity is achieved by the circular shift rotation of the
three bit value of U s, U p. Before the execution of the
program is completed, a new IV value is generated and
stored in the Non-Volatile Memory box. The generation
of this new value comes from /dev/urandom Linux
PRNG (Gutterman et al. (2006)). The internal state,
which contains the main cryptographic complexity of the
system, is formed by two recursive filters of order three.
The first recursive cell contains a discrete Skew tent
map and the second one contains a discrete piecewise
linear chaotic map. These maps are used as non-linear
functions. We give below the outputs of the recursive
cell containing the Skew tent map and of the recursive
cell containing the PWLC map respectively. Hence the
output equation of the recursive cell Skew tent map is:

X s = STmap{F1[n− 1], P1} ⊕Q1 (1)

with

F1[n− 1] = mod[U s+
3

∑

i=1

[K(i) s×X(n− i) s], 2N ](2)

And the output equation of the recursive cell PWLC is:

X p = PWLCmap{F2[n− 1], P2} ⊕Q2 (3)

with

F2[n− 1] = mod[U p+
3

∑

i=1

[K(i) p×X(n− i) p], 2N ](4)

4



Ac
ce

pt
ed

 M
an

us
cr

ip
t

Figure 1: Stream cipher encryption/decryption structure

In the equations above, P1 and P2 are control
parameters in the range [1, 2N − 1] and [1, 2N−1 − 1]
respectively. Q1 and Q2 are perturbing signals produced
by the linear feedback shift registers (LFSRs). K1 s,
K2 s, K3 s, K1 p,K2 p,K3 p are the coefficients of the
recursive cells in the interval [1; 2N − 1 ]. U s and U p,
each of 32 bits, represent IVg of 64 bits.
The equations of the Discrete Skew Tent and Discrete
PWLCM maps are respectively given by (Masuda and
Aihara (2002)), (Lian et al. (2007)), (El Assad (2012)),
(Desnos et al. (2014)): Discrete Skew Tent Map:

Xs[n] =



































⌈

2N × Xs[n−1]
P1

⌉

if 0 < Xs[n− 1] < P1

2N − 1 if Xs[n− 1] = P1

⌈

2N × 2N−Xs[n−1]
2N−P1

⌉

if P1 < Xs[n− 1] < 2N

(5)

Discrete PWLCM map:

Xp[n] =















































































⌈

2N ×
Xp[n−1]

P2

⌉

if 0 < Xp[n− 1] ≤ P2

⌈

2N ×
Xp[n−1]−P2
2N 1−P2

⌉

if P2 < Xp[n− 1] ≤ 2N−1

⌈

2N ×
2N−P2−Xp[n−1]

2N 1−P2

⌉

if 2N−1 < Xp[n− 1] ≤ 2N − P2

⌈

2N ×
2N−Xp[n−1]

P2

⌉

if 2N − P2 < Xp[n− 1] ≤ 2N − 1

2N − 1− P2 otherwise

(6)

The values produced Xs[n], Xp[n] by the recursive cells
in the internal state are entered to the output

function. Then, the output sequence Xg(n) is obtained
using a chaotic multiplexing controlled by the chaotic
sequence X1s(n− 1)⊕X1p(n− 1) and by a threshold
Th = 2N−1, as shown in Figure 3. The output sequence
is defined as follows:

Xg(n) =
{

Xs[n], if 0 < X s[n− 1]⊕X p[n− 1] <= Th

Xp[n], otherwise
(7)

4.2 Parallel implementation of the chaotic
generator using Pthread

Usually a multi thread process launches several threads
that run concurrently. In our implementation, we
parallelized the sequential version of our chaotic
generator using the standard API used for implementing
multithreaded applications, namely POSIX Threads
or pthread (Pacheco (2011)). pthread is a library of
functions that programmers can use to implement
parallel programs. Unlike MPI, pthread is used to
implement shared-memory parallelism. It is not a
programming language (such as C or Java). It is a
library that can be linked with C programs. The source
code is compiled with gcc and using the -lpthread
option. In our multithreaded approach, data sequences
are partitioned among several threads. Threads execute
the same instructions on different data sets. The number
of samples to be processed and the starting point of
the samples’ subset data are different for each thread.
The different threads are created and launched via
a call to pthread create(). In our case, we create a
number of threads equals to the number of cores
chosen in our system. The function pthread create()
takes the thread as parameter. Each thread will call
the computation function. This function ensures the
generation of the samples and the conversion to bytes.
Then the computed sequences from threads will be
stored in a buffer in a systematic manner to gain
a maximum performance. Each sequence from each
thread is then stored consecutively as illustrated in
Figure 4. In the main() function, we wait for the
termination of all threads by calling the pthread join()
function. To describe the decomposition of the sequences
among the threads, we give the following example:
consider that 4 cores are available on the platform
and that the sequence length is seq length=3125000
samples. 4 threads will then be created. The first thread
computes samples from index imin = 0 ∗ 3125000/4 =
0 to index imax=(0 + 1) ∗ (3125000/4)− 1 = 781249.
The second thread computes samples from index
imin = 1 ∗ 3125000/4 = 781250 to index imax=(1 +
1) ∗ (3125000/4)− 1 = 1562499 and so on until the last

5



Ac
ce

pt
ed

 M
an

us
cr

ip
t

Figure 2: Architecture of the proposed generator with internal feedback mode

Figure 3: Detailed description of the internal state and the output function

6



Ac
ce

pt
ed

 M
an

us
cr

ip
t

Figure 4: Storing of samples that generated by different threads.

Table 1 Generation time for sequential and parallel
generators

Data (Bytes) GT/Seq (µs) GT/Parl (µs)

64 6 705
128 8 726
256 11 743
512 19 753
1024 32 763
2048 57 801
4096 109 810
16384 332 835
32768 520 847
65536 712 764
125000 1282 1325
196608 1830 1869
393216 2902 2436
786432 5502 4835
3145728 21723 19539
12582912 85009 49154

Table 2 NCpB performance of some PRNG

PRNG NCpB (Cycles/B)

Wang et al. (2016) 160
Akhshani et al. (2014) 45
Ons et al.[conf icacci 2016] 24.68
Proposed algorithm 17.3

thread that will compute the rest of samples. The
remainder of samples that resulted from the division of
the number of sequences to the number of threads, if it
exist, will also be computed by the last thread. Samples
from each thread are stored in a shared result array, each
thread filling specific index values.

4.3 Computing performance of the chaotic
generator

To evaluate the computing performance of the proposed
chaotic generator we performed some experiments using
a two 32-bit multi-core Intel Core (TM) i5 processors
running at 2.60 GHz with 16 G of memory. This

Table 3 Bit rate for sequential and parallel generators

Data (Bytes) BR/Seq (Mbit/s) BR/Parl (Mbit/s)

64 85.33 0.73
128 128 1.41
256 186.18 2.76
512 215.58 5.44
1024 256 10.74
2048 287.44 20.45
4096 300.62 40.45
16384 394.8 156.97
32768 504.12 309.5
65536 736.36 686.24
125000 780.03 754.72
196608 859.49 841.55
393216 1083.99 1291.35
786432 1143.49 1301.23
3145728 1158.49 1287.98
12582912 1184.15 2047.92

hardware platform was used on top of an Ubuntu 14.04
Trusty Linux distribution. Here after, for different sizes
of data bytes, we give the average generation time in
micro second GT(µs), the average bit rate en Mega bit
par second BR(Mbit/s), and the average of the required
number of cycles to generate one byte, NCpB(Cycles/B).
The average is determined by using 100 different secret
keys for each data size. For parallel implementation
we choose 4 threads in parallel running on a 4-cores
platform. The results obtained for GT(µs), BR(Mbit/s)
and NCpB(Cycles/B) are given in Tables 1, 3 and 4 and
are depicted in Figures 5, 6 and 7 for sequential and
parallel implementation. The number of cycles required
to generate one byte NCpB is given by:

NCpB =
CPU Speed(Hertz)

Db(Byte/s)
(8)

As we can see from these results, the parallel
implementation is only better for data size equal to or
bigger than 393216 bytes. This is due to the overhead
time caused by the synchronisation between threads. In
Table 2 we compare our obtained results in terms of
NCpB with some known chaos-based generators, for data

7



Ac
ce

pt
ed

 M
an

us
cr

ip
t

Data in Bytes 

   
   

64

  1
28

  2
56

  5
12

  1
02

4

  2
04

8

  4
09

6

  1
63

84

  3
27

68

  6
55

36

  1
25

00
0

  1
96

60
8

  3
93

21
6

  7
86

43
2

 3
14

57
28

12
58

29
12

G
T

(µ
s

)

10 0

10 1

10 2

10 3

10 4

10 5

Parallel

Sequential

Figure 5: Generation time for parallel and sequential
generators.

Data in Bytes 

   
   

64

  1
28

  2
56

  5
12

  1
02

4

  2
04

8

  4
09

6

  1
63

84

  3
27

68

  6
55

36

  1
25

00
0

  1
96

60
8

  3
93

21
6

  7
86

43
2

 3
14

57
28

12
58

29
12

B
it

 R
a

te
 (

M
b

it
/s

)

10 -1

10 0

10 1

10 2

10 3

10 4

Parallel

Sequential

Figure 6: Bit Rate for parallel and sequential
generators.

size equal to 786432 bytes that correspond to a image size
of 512 ∗ 512 ∗ 3. As we can see, the obtained performance
is good.

5 Encryption speed and security analysis of
the proposed stream cipher

5.1 Time performance

The computation performance is determined by: the
average encryption time Enc T (µs), the average
encryption throughput ET(Mbit/s) defined in Equation
9, and the average number of cycles to encrypt one byte
NCpB(Cycles/B) defined previously in Equation 8.

ET =
ImageSize(Mbit)

EncryptionTime(s)
(9)

Table 4 NCpB for sequential and parallel generators

Data (Bytes) NCpB-S (Cycles/B) NCpB-P (Cycles/B)

64 232.5 27173.2
128 155 14068.4
256 106.5 7187.1
512 92 3646.4
1024 77.5 1847
2048 69 970
4096 66 490.4
16384 50.2 126.4
32768 39.3 64.1
65536 26.9 28.9
125000 25.4 26.3
196608 23.1 23.6
393216 18.3 15.4
786432 17.3 15.2
3145728 17.1 15.4
12582912 16.8 9.7

Data in Bytes 

   
   

64

  1
28

  2
56

  5
12

  1
02

4

  2
04

8

  4
09

6

  1
63

84

  3
27

68

  6
55

36

  1
25

00
0

  1
96

60
8

  3
93

21
6

  7
86

43
2

 3
14

57
28

12
58

29
12

N
C

p
B

 (
c

y
c

le
s

/B
)

10 0

10 1

10 2

10 3

10 4

10 5

Parallel

Sequential

Figure 7: NCpB for parallel and sequential generators.

We report in Table 5 and in Figures 8, 9, 10 the obtained
results of the computation performance for sequential
and parallel implementation of the proposed stream
cipher. The decryption time is approximatively equal to
the encryption time.
For big data size, from 196608 bytes upwards, the
parallel implementation is better than the sequential one
and on average the NCpB of the stream cipher takes
approximatively 8 cycles more compared to the NCpB
of the chaotic generator.
In Table 6, we report a comparison of time computation
for the proposed algorithm (for different data size images
of Lena) with three chaos-based algorithms and the
most Known stream ciphers of eStream project (Maxime
(2016)). For big data, the proposed algorithm has better
results than (Abderrahim et al. (2014)), (Lü et al.
(2004)). We also observed that the time computation of
eStream’s algorithms is better than the proposed system
until we reach the big data size, for which, our system
will be faster. For very big data size (201326592) such

8



Ac
ce

pt
ed

 M
an

us
cr

ip
t

Table 5 Performance results of proposed sequential Stream Cipher with different data bytes

Data in Bytes Enc-T(µs) Seq/Parl ET (Mbit/s) Seq/Parl NCpB (Cycles/B) Seq/ Parl

512 21/ 778 213.01/ 5.31 92.9/ 3650.7
1024 33/ 792 259.1/ 11.1 78.2/ 1889
2048 60/ 806 286.5/ 19.9 70.2/ 973
4096 116/ 822 299.3/ 39.3 67.0/ 491.3
49152 659/ 1619 569.0/ 231.6 34.8/ 85.6
196608 2455/ 2419 610.9/ 620.0 31.9/ 31.2
786432 9088/ 8099 660.2/ 740.8 30.0/ 26.7
3145728 35560/ 24190 674.9/ 978.8 29.3/ 20.2
12582912 121899/ 88597 787.5/ 1083.5 25.1/ 18.3
50331648 398089/ 319785 964.6/ 1200.8 20.5/ 16.5

Table 6 Performance results comparison of some stream ciphers

Stream cipher-Alg Image size(B) Enc-Time(µs) ET(Mbit/s) NCpB(cycles/B)

Abderrahim et al. - - 10 2800

Hauping et al. - - 914 17

Ping et al. - - 700 20

Rappit 256x256x3 811.3 1848.8 9.5
512x512x3 3256 1842.6 9.5
1024x1024x3 12950 1853.9 9.5

HC-128 256x256x3 1221 1228.1 14.4
512x512x3 4895 1225.6 14.4
1024x1024x3 19647 1221.5 14.4

Salsa20/12 256x256x3 836.4 1793.4 9.8
512x512x3 3389 1770 9.9
1024x1024x3 13483 1779.9 9.9

SOSEMANUK 256x256x3 880.3 1704 10.3
512x512x3 3570 1680 10.5
1024x1024x3 14134 1698 10.4

AES-CTR - - - 21.2

Proposed chaos stream cipher (Seq) 256x256x3 2455 610.9 31.9
512x512x3 9088 660.2 30.0
1024x1024x3 35560 674.9 29.3

Proposed chaos stream cipher (Parl) 256x256x3 2419 620 31.2
512x512x3 8099 740.8 26.7
1024x1024x3 24190 978.8 20.2
201326592 1200178 1881 8.8

9



Ac
ce

pt
ed

 M
an

us
cr

ip
t

Data in Bytes 

  5
12

  1
02

4

  2
04

8

  4
09

6

  4
91

52

  1
96

60
8

  7
86

43
2

  3
14

57
28

 1
25

82
91

2

50
33

16
48

2

E
n

c
-T

(µ
s

)

10 1

10 2

10 3

10 4

10 5

10 6

Parallel

Sequential

Figure 8: Encryption time for parallel and sequential
cryptosystem.

Data in Bytes 

  5
12

  1
02

4

  2
04

8

  4
09

6

  4
91

52

  1
96

60
8

  7
86

43
2

  3
14

57
28

 1
25

82
91

2

50
33

16
48

2

E
T

(M
b

it
/s

)

10 0

10 1

10 2

10 3

10 4

Parallel

Sequential

Figure 9: Encryption throughput for parallel and
sequential cryptosystem.

as videos, the obtained NCpB is around 9. In addition,
the proposed chaotic system has a strong non-linearity
compared to the other systems thus, its robustness
against cryptographic attacks is higher.

5.2 Security analysis

In this section we evaluated the software security
implementation and the security of the proposed chaotic
system against cryptanalytic and statistic attacks.

5.2.1 Software security implementation

Software security analysis is another crucial factor to
ensure the quality of the source code and to restrict
all security threats. Because it is still possible to
read data out of memory even if the application no

Data in Bytes 

  5
12

  1
02

4

  2
04

8

  4
09

6

  4
91

52

  1
96

60
8

  7
86

43
2

  3
14

57
28

 1
25

82
91

2

50
33

16
48

2

N
C

p
B

(C
y

c
le

s
/B

)

10 1

10 2

10 3

10 4

Parallel

Sequential

Figure 10: NCpB for parallel and sequential
cryptosystem.

longer has pointers to it, it is necessary to incorporate
data security within the source code. In cryptographic
applications, sensitive information (e.g., secret keys)
must be kept in memory for the minimum amount of
time possible and should be written over/deleted, not
just released, when no longer needed. One first step
consists in erasing such sensitive data from memory once
it is no longer needed in order to prevent any security
attacks. The idea is to zero-fill buffers which contained
sensitive information. In practice, we used the following
functions to decontaminate (i.e., zero) a buffer and
guarantee that the compiler will not optimize it away:
The secure memzero() function depends on a function
pointer memset ptr that itself points to the memset()

function. It uses the key and the key size and will
put zero value on the allocated memory related to the
key by call memset(). The function memset() is invoked
to write a specific value in a buffer that was allocated
previously. We used this function to write a zero value in
the buffer. While Some compilers optimize away the call
to memset() function. To overcomes this , we declared
memset ptr as a volatile pointer. Since a volatile pointer
can be manipulated outside the scope of the application,
the code is not optimized by the compiler, thus keeping
the program unchanged. Furthermore, the data in main
memory may leak to the disk through virtual memory,
thus representing another source of the most serious
leaks (leaks to physical mediums). One solution, which
is sufficient to include, is to deactivate the swap space
altogether, thus preventing data from being written to
the page file by locking it in memory. In our code,
we used the mlock() function that locks pages in the
address range starting at the address and continuing
for byte lengths. All pages that contain a part of the
specified address range are secured to be resident in the
main memory when the call returns successfully. Then,
the pages are guaranteed to stay in the main memory
until later unlocked.
In order to guarantee the validity of our solution, we

10



Ac
ce

pt
ed

 M
an

us
cr

ip
t

carried out a security code review using several static
and dynamic techniques: Clang, Gdb, Valgrind, DRD,
Callgrind and Leak-analysis tools. Results match up well
with the security level requested by our chaos-based
stream cipher (Taha et al. (2016)).

5.2.2 Cryptanalytic attacks

The proposed system has the ability to resist common
attacks such as ciphertext only (Siegenthaler (1985)),
chosen plaintext attack, brute force attack, and key
sensitivity attack. Indeed, encrypting an image several
times using the same secrete key, produces totally
different ciphered images. This is due to the IV-setup
block.
Key Space
The size of the secret key, formed by all the initial
conditions and by all the parameters of the system,
varies from 299 bits, with delay = 1, to 555 bits, with
delay =3. This means that the brute force attack is
impracticable.

Key security and sensitivity attack
From the generated sequences it is impossible to find
the secret key and this is because of the structure
of the chaotic generator which in addition includes a
chaotic switching. The knowledge of part of the secret
key is not very useful for an attacker because of the
intrinsic property of chaotic signal, which is extremely
sensitive to the secret key. Besides, we computed the
average Hamming distance (of 100 secret keys) of two
Keystreams generated each time with two secret keys
that differ only by one bit and the result obtained
is equal to 0.499993, therefore very close to 50%. In
conclusion, the produced keystreams are highly secure. A
cryptosystem must be sensitive to one bit change per key
used. This property is important in order to resist many
attacks (Lian et al. (2005)). To test the key sensitivity of
the proposed chaos stream cipher, we encrypted ”Lena”
image 100 times using 100 secrete keys that differ
only by the LSB bit. Then we computed the following
parameters: the Number of Pixel Change Rate (NPCR),
the Unified Average Changing Intensity (UACI) and
the Hamming Distance (HD). The parameters (NPCR,
UACI) are necessary but not sufficient to ensure that
the proposed cryptosystem is resistant against the key
sensitivity attack. For this reason, we add the Hamming
Distance measurement (Mar and Latt (2008)).
The NPCR and UACI, introduced by Eli Biham and
Adi Shamir (Biham and Shamir (1991)) are given by
the following equations:

NPCR = 1
L×C×P ×

∑P
p=1

∑L
i=1

∑C
j=1 D(i, j, p)× 100% (10)

where

D(i, j, p) =

{

0, if C1(i, j, p) = C2(i, j, p)

1, if C1(i, j, p) 6= C2(i, j, p)
(11)

UACI = 1
L×C×P×255 ×

∑P
p=1

∑L
i=1

∑C
j=1 |C1(i, j, p)− C2(i, j, p)| × 100% (12)

Table 7 The NPCR, UACI and HD

Cryptosystem NPCR UACI HD

Proposed Cipher Cryptosystem 99.665 33.459 0.499999

In the previous equations, i, j and p are the row, column,
and plane indexes of the image, respectively. L, C and
P are, the length, width, and plane sizes of the image
respectively. The optimal NPCR and UACI values are
99.61% and 33.46% respectively (Wu et al. (2011)).
The HD is defined by:

HD(C1, C2) =
1

|Ib|

|Ib|
∑

K=1

(C1(K)⊕ C2(K)) (13)

where |Ib| = LxCxPx8, is the size of the image in bits.
The optimum HD value is 50%. A good stream cipher
should produce an HD close to 50% (Wang et al. (2014)).
Table 7 indicates that the NPCR, UACI and HD values
of the proposed stream cipher are very close to Optimal
values. Consequently a high resistance to differential
attack is achieved.

5.3 Statistical analysis

5.3.1 NIST Test

To evaluate the statistical performances of the Key
stream produced, we also used one of the most popular
standards for investigating the randomness of binary
data, namely the NIST statistical test (Elaine and John
(2012)). This test is a statistical package that consists of
188 tests that were proposed to assess the randomness of
arbitrarily long binary sequences. We applied the NIST
test to many ciphered texts, and all the NIST results
obtained, are as expected (good NIST values). In Figure
11 we present one of the NIST result obtained. This
means that the ciphered texts have a high randomness.

0 50 100 150 200

50

60

70

80

90

100
Prop vs Test

Figure 11: NIST test key stream results.

11



Ac
ce

pt
ed

 M
an

us
cr

ip
t

(a) Lena plain image (b) Lena cipher image

results
i
mage

0 100 200 300

F
re

q
u

en
cy

 D
is

tr
ib

u
ti

o
n

0

1000

2000

3000

4000

5000

6000

7000

(c) Histogram for plain
Image

Histogram

0 100 200 300

F
r
e
q

u
e
n

c
y

 o
f 

D
is

tr
ib

u
ti

o
n

0

500

1000

1500

2000

2500

3000

3500

(d) Histogram for the
cipher image

Figure 12: Histogram of the lena plain image and its
ciphered image

5.3.2 Histogram and Chi-square test

A cryptosystem is considered to be strong against
statistical attacks, if the histogram of the ciphered text
is uniformly distributed. Visually, the uniformity test is
necessary, but it is not sufficient. The chi-square test
is applied to statistically confirm the uniformity of the
histogram:

χ2
exp =

Q−1
∑

i=0

(oi − ei)
2

ei
(14)

Table 8 Chi-square value for ciphered Lena, Boat and
C-man with different sizes

Image Experimental value Theoretical value

lena 256x256x3 261.085938 293.247835
lena 512x512x3 263.013852 293.247835
lena 1024x1024x3 270.300127 293.247835

boat 256x256x3 260.186354 293.247835
boat 512x512x3 266.465369 293.247835
boat 1024x1024x3 272.669811 293.247835

C-man 256x256x3 261.339680 293.247835
C-man 512x512x3 267.317852 293.247835
C-man 1024x1024x3 274.397541 293.247835

In equation (14), Q is the number of levels (here Q =
256), oi is the observed occurrence frequency of each
color level (0-255) on the histogram of the ciphered
image, and ei is the expected occurrence frequency of the
uniform distribution, given here by ei =

L×C×P
Q . For a

secure cryptosystem, the experimental chi-square value
must be less than the theoretical chi-square one, which
is 293 in case of α = 0.05 and Q = 256. In Figures 12,

(a) Boat plain image (b) Boat cipher image

boat

0 100 200 300

F
re

q
u

e
n

c
y
 D

is
tr

b
u

ti
o

n

0

500

1000

1500

2000

2500

3000

(c) Histogram for plain
Image

Histogram

0 100 200 300

F
r
e
q

u
e
n

c
y

 o
f 

D
is

tr
ib

u
ti

o
n

0

500

1000

1500

2000

2500

3000

3500

(d) Histogram for the
cipher image

Figure 13: Histogram of the Boat plain image and its
ciphered image

(a) Camera man plain
image

(b) Camera man cipher
image

Hist2

0 100 200 300

F
re

q
u

e
n

c
y
 D

is
tr

ib
u

ti
o

n

×10 4

0

1

2

3

4

5

6

7

8

9

(c) Histogram for plain
Image

Histogram

0 100 200 300

F
r
e
q

u
e
n

c
y
 o

f 
D

is
tr

ib
u

ti
o
n

0

500

1000

1500

2000

2500

3000

3500

(d) Histogram for the
cipher image

Figure 14: Histogram of the Camera man plain image
and its ciphered image

13 and 14 we give the histograms for the plain/cipher
images for lena, Boat and Camera man images on size
512*512*3 . As we can see the histogram of the ciphered
image seems to be uniform. To assess the uniformity,
we performed the chi square test with the following
parameters: alpha=0.05, and number of classes equal
to 256. Experimental value obtained is less than the
theoretical one that equal 293. This means that the
histogram is uniform (see Table 8).

12



Ac
ce

pt
ed

 M
an

us
cr

ip
t

 5.3.3 Correlation analysis

Correlation analysis is also one of the statistical attacks
that are used to cryptanalyze the cryptosystem. The
attacker should not have any information of the used
secret key or any partial information on the original plain
image. This means that the encrypted image should be
extremely different from its original version. Correlation
analysis is one of the regular and standard methods
to measure this property. Indeed, it is well-known that
adjacent pixels in the plain images are very redundant
and correlated. Thus, in the encrypted images, adjacent
pixels should have a redundancy and a correlation as low
as possible. The following mathematical equations are
used to calculate the correlation coefficient (Song et al.
(2013)):

ρxy =
cov(x, y)

√

D(x)
√

D(y)
(15)

where

cov(x, y) =
1

N

N
∑

i=1

([xi − E(x)][yi − E(y)]) (16)

D(x) =
1

N

N
∑

i=1

(xi − E(x))2 (17)

E(x) =
1

N

N
∑

i=1

(xi) (18)

In the previous equations, xi and yi are the values
of the two adjacent pixels in the plain image or the
corresponding ciphered image.
To test the security of our proposed stream cipher
algorithm, regarding to this type of attack, first N pairs
of adjacent pixels in vertical, horizontal, and diagonal
directions are selected from the plain image and its
ciphered version. Figure 15 shows the correlation curves
of the adjacent pixels in the horizontal direction for the
plain image and its ciphered one. The values of their
corresponding correlation coefficient are 0.96606 and
0.0035. Similar results are obtained for the correlation in
vertical and diagonal directions.

6 Conclusion

We proposed a new chaos-based stream cipher, useful
for continuous communication as used in network
communications. The heart of the system relies on
a proposed chaotic generator that is designed and
implemented in a secure and efficient manner with a
sequential and parallel version. Its structure is modular,
generic, and allow the production of high secure
sequences. The performance in time for the proposed
generator is better than other known PRNG. Also, For
very big data size, the obtained performance results are

(a) Plain image correlation of adjacent pixels

(b) ciphered image correlation of adjacent pixels

Figure 15: correlation of the boat plain image and its
ciphered image

better than other known stream ciphers. The proposed
chaotic system is robust against cryptographic attacks.
Furthermore, it has strong non-linearity compared to
the other systems. Indeed, the results obtained from
the cryptographic analysis and of common statistical
tests indicate the robustness of the proposed stream
cipher. Our future work will focus on the design of chaos-
based joint crypto-compression systems to secure videos:
HEVC bitstream and MPEG-4.

References

L. Kocarev, “Chaos-based cryptography: a brief
overview,” Circuits and Systems Magazine, IEEE,
vol. 1, no. 3, pp. 6–21, 2001.

S. El Assad and M. Farajallah, “A new chaos-based
image encryption system,” Signal Processing: Image
Communication, vol. 41, pp. 144–157, 2016.

M. Farajallah, S. El Assad, and O. Deforges, “Fast
and secure chaos-based cryptosystem for images,”
International Journal of Bifurcation and Chaos,
vol. 26, no. 2, pp. 1 650 021–1–1 650 021–21, 2016.

G. Setti, R. Rovatti, and G. Mazzini, “Chaos-based
generation of arti. cial self-similar traffic,” in Complex

13



Ac
ce

pt
ed

 M
an

us
cr

ip
t

Dynamics in Communication Networks. Springer,
2005, pp. 159–190.

G. Cimatti, R. Rovatti, and G. Setti, “Chaos-
based spreading in ds-uwb sensor networks increases
available bit rate,” Circuits and Systems I: Regular
Papers, IEEE Transactions on, vol. 54, no. 6, pp.
1327–1339, 2007.

M. AbuTaha, S. El Assad, M. Farajallah, A. Queudet,
and O. Deforge, “Chaos-based cryptosystems using
dependent diffusion: An overview,” in 2015 10th
International Conference for Internet Technology and
Secured Transactions (ICITST). IEEE, 2015, pp. 44–
49.

A. Arlicot, “Sequences generator based chaotic maps,”
Université de Nantes, Tech. Rep., FEB 2014.

D. Caragata, S. El Assad, H. Noura, and I. Tutanescu,
“Secure unicast and multicast over satellite dvb using
chaotic generators,” International Journal of Internet
Technology and Secured Transactions, vol. 2, no. 3-4,
pp. 357–379, 2010.

M. Chetto, S. El Assad, and M. Farajallah, “A
lightweight chaos-based cryptosystem for dynamic
security management in real-time overloaded
applications,” International Journal of Internet
Technology and Secured Transactions 7, vol. 5, no. 3,
pp. 262–274, 2014.

S. Smale, “Differentiable dynamical systems,” Bulletin
of the American mathematical Society, vol. 73, no. 6,
pp. 747–817, 1967.

L. Li and J.-H. Lee, “On the security of a strong
provably secure identity-based encryption scheme
without bilinear pairing,” International Journal of
Internet Technology and Secured Transactions, vol. 6,
no. 3, pp. 178–185, 2016.

M. Masoumi, P. Habibi, A. Dehghan, M. Jadidi,
and L. Yousefi, “Efficient implementation of power
analysis attack resistant advanced encryption
standard algorithm on side-channel attack standard
evaluation board,” International Journal of Internet
Technology and Secured Transactions, vol. 6, no. 3,
pp. 203–218, 2016.

I.-H. Jo and B.-S. Koh, “Building a common encryption
scrambler to protect paid broadcast services,”
International Journal of Internet Technology and
Secured Transactions, vol. 6, no. 3, pp. 167–177, 2016.

S. S. Gupta, A. Chattopadhyay, K. Sinha, S. Maitra,
and B. P. Sinha, “High-performance hardware
implementation for rc4 stream cipher,” IEEE
Transactions on Computers, vol. 62, no. 4, pp. 730–
743, 2013.

eSTREAM, eSTREAM: the ECRYPT Stream
Cipher Project, 2008. [Online]. Available:
http://www.ecrypt.eu.org/stream/

C. Manifavas, G. Hatzivasilis, K. Fysarakis, and
Y. Papaefstathiou, “A survey of lightweight stream
ciphers for embedded systems,” Security and
Communication Networks, vol. 9, pp. 1227–1246,
2015.

J. Machicao, A. G. Marco, and O. M. Bruno,
“Chaotic encryption method based on life-like cellular
automata,” Expert Systems with Applications, vol. 39,
no. 16, pp. 12 626–12 635, 2012.

H. Lipmaa, D. Wagner, and P. Rogaway, “Comments
to nist concerning aes modes of operation: Ctr-mode
encryption,” vol. 1, pp. 1– 4, 2000.

M. Boesgaard, M. Vesterager, T. Christensen, and
E. Zenner, “The stream cipher rabbit,” ECRYPT
Stream Cipher Project Report, vol. 6, 2005.

A. Kircanski and A. M. Youssef, “Differential fault
analysis of rabbit,” in International Workshop on
Selected Areas in Cryptography. Springer, 2009, pp.
197–214.

D. J. Bernstein, “The salsa20 family of stream ciphers,”
in New stream cipher designs. Springer, 2008, pp.
84–97.

Y. Tsunoo, T. Saito, H. Kubo, T. Suzaki, and
H. Nakashima, “Differential cryptanalysis of
salsa20/8,” in Workshop Record of SASC, 2007.

H. Wu, “The stream cipher hc-128,” in New stream
cipher designs. Springer, 2008, pp. 39–47.

——, “A new stream cipher hc-256,” in International
Workshop on Fast Software Encryption. Springer,
2004, pp. 226–244.

A. Kircanski and A. M. Youssef, “Differential fault
analysis of hc-128,” in International Conference on
Cryptology in Africa. Springer, 2010, pp. 261–278.

C. Berbain, O. Billet, A. Canteaut, N. Courtois,
H. Gilbert, L. Goubin, A. Gouget, L. Granboulan,
C. Lauradoux, M. Minier et al., “Sosemanuk, a
fast software-oriented stream cipher,” in New stream
cipher designs. Springer, 2008, pp. 98–118.

Y. E. Salehani, A. Kircanski, and A. Youssef,
“Differential fault analysis of sosemanuk,” in
International Conference on Cryptology in Africa.
Springer, 2011, pp. 316–331.

N. Abderrahim, F. Benmansour, and O. Seddiki,
“A chaotic stream cipher based on symbolic
dynamic description and synchronization,” Nonlinear
Dynamics, vol. 78, no. 1, pp. 197–207, 2014.

H. Lü, S. Wang, X. Li, G. Tang, J. Kuang, W. Ye, and
G. Hu, “A new spatiotemporally chaotic cryptosystem
and its security and performance analyses,” Chaos: An
Interdisciplinary Journal of Nonlinear Science, vol. 14,
no. 3, pp. 617–629, 2004.

14



Ac
ce

pt
ed

 M
an

us
cr

ip
t

P. Li, Z. Li, W. A. Halang, and G. Chen, “A stream
cipher based on a spatiotemporal chaotic system,”
Chaos, Solitons & Fractals, vol. 32, no. 5, pp. 1867–
1876, 2007.

M. S. Rani, “An efficient and scalable core allocation
strategy for multicore systems,” Ph.D. dissertation,
Florida Atlantic University Boca Raton, FL, 2011.

O. Sinnen, Task scheduling for parallel systems. John
Wiley & Sons, 2007, vol. 60.

J.-P. Lozi, F. David, G. Thomas, J. Lawall, and
G. Muller, “Fast and portable locking for multicore
architectures,” ACM Transactions on Computer
Systems (TOCS), vol. 33, no. 4, p. 13, 2016.

U. Banerjee, R. Eigenmann, A. Nicolau, D. A.
Padua et al., “Automatic program parallelization,”
Proceedings of the IEEE, vol. 81, no. 2, pp. 211–243,
1993.

D. R. Butenhof, Programming with POSIX threads.
Addison-Wesley Professional, 1997.

L. Dagum and R. Enon, “Openmp: an industry standard
api for shared-memory programming,” Computational
Science & Engineering, IEEE, vol. 5, no. 1, pp. 46–55,
1998.

W. Gropp, E. Lusk, N. Doss, and A. Skjellum, “A
high-performance, portable implementation of the
mpi message passing interface standard,” Parallel
computing, vol. 22, no. 6, pp. 789–828, 1996.

W. Stallings, Cryptography and network security:
principles and practices. Pearson Education India,
2006.

Z. Gutterman, B. Pinkas, and T. Reinman, “Analysis of
the linux random number generator,” in Security and
Privacy, 2006 IEEE Symposium on. IEEE, 2006, pp.
2 – 16.

N. Masuda and K. Aihara, “Cryptosystems with
discretized chaotic maps,” Circuits and Systems
I: Fundamental Theory and Applications, IEEE
Transactions on, vol. 49, no. 1, pp. 28–40, 2002.

S. Lian, J. Sun, J. Wang, and Z. Wang, “A chaotic stream
cipher and the usage in video protection,” Chaos,
Solitons & Fractals, vol. 34, no. 3, pp. 851–859, 2007.

S. El Assad, “Chaos based information hiding
and security,” in Internet Technology And Secured
Transactions, 2012 International Conference for.
IEEE, 2012, pp. 67–72.

K. Desnos, S. El Assad, A. Arlicot, M. Pelcat, and
D. Menard, “Efficient multicore implementation of
an advanced generator of discrete chaotic sequences,”
in Chaos-Information Hiding and Security (CIHS),
International Workshop on, 2014.

P. Pacheco, An Introduction to Parallel Programming,
1st ed. Morgan Kaufmann, 1 2011. [Online].
Available: http://amazon.com/o/ASIN/0123742609/

Y. Wang, Z. Liu, J. Ma, and H. He, “A pseudorandom
number generator based on piecewise logistic map,”
Nonlinear Dynamics, vol. 83, no. 4, pp. 2373–2391,
2016.

A. Akhshani, A. Akhavan, A. Mobaraki, S.-C. Lim,
and Z. Hassan, “Pseudo random number generator
based on quantum chaotic map,” Communications in
Nonlinear Science and Numerical Simulation, vol. 19,
no. 1, pp. 101–111, 2014.

B. Maxime, “Comparative analysis of estream ciphers,”
Université de Nantes, Tech. Rep., March 2016.

M. A. Taha, S. El Assad, O. Jallouli, A. Queudet,
and O. Déforges, “Design of a pseudo-chaotic number
generator as a random number generator,” in The 11th
International Conference on Communications, 2016,
pp. 401 – 404.

T. Siegenthaler, “Decrypting a class of stream ciphers
using ciphertext only,” IEEE Transactions on
computers, vol. 100, no. 1, pp. 81–85, 1985.

S. Lian, J. Sun, and Z. Wang, “Security analysis of a
chaos-based image encryption algorithm,” Physica A:
Statistical Mechanics and its Applications, vol. 351,
no. 2, pp. 645–661, 2005.

P. P. Mar and K. M. Latt, “New analysis methods on
strict avalanche criterion of s-boxes,” World Academy
of Science, Engineering and Technology, vol. 48, pp.
150–154, 2008.

E. Biham and A. Shamir, “Differential cryptanalysis of
des-like cryptosystems,” Journal of CRYPTOLOGY,
vol. 4, no. 1, pp. 3–72, 1991.

Y. Wu, J. P. Noonan, and S. Agaian, “Npcr and
uaci randomness tests for image encryption,” Cyber
journals: multidisciplinary journals in science
and technology, Journal of Selected Areas in
Telecommunications (JSAT), vol. 1, pp. 31–38, 2011.

X. Wang, D. Luan, and X. Bao, “Cryptanalysis
of an image encryption algorithm using chebyshev
generator,” Digital Signal Processing, vol. 25, pp. 244–
247, 2014.

B. Elaine and K. John, “Recommendation for random
number generation using deterministic random bit
generators,” NIST SP 800-90 Rev A, Tech. Rep., 2012.

C.-Y. Song, Y.-L. Qiao, and X.-Z. Zhang, “An image
encryption scheme based on new spatiotemporal
chaos,” Optik-International Journal for Light and
Electron Optics, vol. 124, no. 18, pp. 3329–3334, 2013.

15




