
HAL Id: hal-04857321
https://hal.science/hal-04857321v1

Submitted on 28 Dec 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - ShareAlike 4.0 International
License

Reactive Autoscaling of Kubernetes Nodes
Tarek Menouer, Christophe Cérin, Patrice Darmon

To cite this version:
Tarek Menouer, Christophe Cérin, Patrice Darmon. Reactive Autoscaling of Kubernetes Nodes.
FRAME - 4th workshop on Flexible Resource and Application Management on the Edge, Massimo
Coppola, Hanna Kavalionak, Ioannis Kontopoulos, Luca Ferrucci, Jun 2024, Pisa (IT), Italy. �hal-
04857321�

https://hal.science/hal-04857321v1
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
https://hal.archives-ouvertes.fr

Reactive Autoscaling of Kubernetes Nodes
Tarek MENOUER∗

CGI - Le Carré Michelet
10-12 cours Michelet

Puteaux, 92800
France

tarek.menouer@cgi.com

Christophe Cérin†
INRIA DATAMOVE & Université

Sorbonne Paris Nord
LIPN - UMR CNRS 7030
Villetaneuse, 93430

France
christophe.cerin@univ-paris13.fr

Patrice Darmon∗
CGI - Le Carré Michelet
10-12 cours Michelet

Puteaux, 92800
France

patrice.darmon@cgi.com

ABSTRACT
Kubernetes is undoubtedly the most effective container orches-
tration system that automates container management with high
scalability. It allows for running containerized applications on a Ku-
bernetes cluster composed of a set of computing nodes. According
to the native Kubernetes operating mode, all nodes in the cluster are
used. This massive use of computing resources can lead to resource
waste. To address this limitation, we present in this paper a new
reactive Kubernetes autoscaler mechanism that allows the number
of active computing nodes in a Kubernetes cluster to be controlled
dynamically based on several factors. The goal is to reduce resource
waste, energy consumption, and the cost of renting a Kubernetes
cluster. The idea is to have a pilot that dynamically checks the
state of the Kubernetes cluster and scales up or down computing
nodes. To select the most pertinent node to add or remove from
the Kubernetes cluster, a multi-criteria decision-making (MCDM)
algorithm is used. The proposed autoscaler mechanism is offered
on top of the Kubernetes framework with minimal changes to make
it easy to use with future versions of Kubernetes. Experiments have
demonstrated the effectiveness of our solution in different scenarios.
The package we provided for the experiments is generic and ready
for current Kubernetes flavors.

CCS CONCEPTS
• Computer systems organization→ Cloud computing.

KEYWORDS
Efficient orchestration and Resource management for the Cloud, Au-
toscaling, Container technology, Energy consumption, Kubernetes
ecosystem

1 INTRODUCTION
Containerization is a lightweight virtualization technique that al-
lows operating system (OS) processes to be run and managed in-
dependently of each other [1]. Kubernetes is the most effective
container orchestration platform that automates the deployment,
scaling, and management of containerized applications. It provides
a highly flexible and efficient way to manage and orchestrate con-
tainers, making it easier to build, deploy, and scale applications in
a distributed environment.

Kubernetes allows for automatic allocation of containers to phys-
ical nodes using a master-slave architecture, where communication
between the master and slave is made using a Kubelet device. It
supports container-based deployment within platform-as-a-service
(PaaS) clouds, focusing especially on cluster-based systems [2].

Autoscaling is a mechanism that scales resources up or down
based on defined situations such as traffic or usage levels. In the
literature, there are different types of autoscaling strategies [3],
and, to be short, here we quote the terminology of the Middleware
company1 for positioning our work close to the reactive notion:

(1) Reactive autoscaling: It is based on predefined ’triggers’
or thresholds specified by the administrator, which activates
additional servers when crossed. You can set thresholds for
server performance metrics such as the percentage of occupied
capacity. Our work considers a form of reactive autoscaling
triggered by the loads of Kubernetes nodes and incoming
container traffic.

(2) Proactive or predictive autoscaling: This type is suitable
for applications with more or less predictable server loads. Pre-
dictive or proactive autoscaling schedules additional servers to
run automatically during peak traffic times based on the time
of day. This type of autoscaling uses artificial intelligence (AI)
to “predict” when traffic would be high and schedules server
augmentations in advance.

(3) Scheduled autoscaling: It is similar to predictive autoscal-
ing; the only difference is scheduling additional Kubernetes
nodes for peak time. Although predictive autoscaling does
this autonomously, scheduled autoscaling is more based on
human input to schedule the nodes.

Kubernetes naturally provides two autoscaler features related to
Pods: Vertical Pod Autoscaling (VPA) and Horizontal Pod Autoscal-
ing (HPA). VPA is a feature that automatically scales resources as
CPU or memory allocated to individual pods based on CPU utiliza-
tion or other metrics, which is a separate project that can be found
on GitHub2. This means that VPA can increase or decrease the re-
sources allocated to a Pod to ensure that it has the resources it needs
to run efficiently. HPA is a feature that automatically scales the
number of replicas of a Deployment, StatefulSet, or ReplicationCon-
troller based on CPU utilization or other metrics. This means that
HPA can add or remove Pods (containers) to the cluster to ensure
that the workload is running efficiently and meeting demand3.

VPA and HPA can be used together to achieve more granular
control over autoscaling. For example, VPA can be used to scale
the resources allocated to each Pod, while HPA can be used to scale
the number of Pods running a workload. In addition, HPA and VPA
assume that the number of nodes in a Kubernetes cluster is always

1https://middleware.io/blog/what-is-autoscaling/
2https://github.com/kubernetes/autoscaler/tree/bb32e8acbd71295585a/vertical-

pod-autoscaler
3https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/

https://middleware.io/blog/what-is-autoscaling/

Menouer et al.

fixed. This is because they are designed to scale the number of Pods
or the resources allocated to Pods, but not the number of nodes.

In Kubernetes, many nodes may remain active despite a minimal
number of running containers, leading to significant resource waste.
In this case, human intervention is required to control the utilization
rate of the compute nodes, which can reduce the total cost of using
a Kubernetes cluster.

To improve this limitation, we propose in this paper a new reac-
tive autoscaler mechanism that allows the number of active nodes
to be controlled dynamically while satisfying the Quality of Service
(QoS) requirements. To the best of our knowledge, there is a lack
of studies that propose autoscaling by considering the Kubernetes
compute nodes. The main objective of this paper is to present a
mechanism that dynamically adapts the number of active nodes
according to the state of the computing infrastructure and uses
a multi-criteria decision-making (MCDM) algorithm to select the
most pertinent Kubernetes node that must be considered as active
nodes.

The main contributions of this paper include:

• Introducing our reactive Kubernetes autoscaler mechanism.
• Implementing and packaging our Kubernetes autoscaler.
• Providing experiments to demonstrate the performance of

the proposed autoscaler on top of Kubernetes.

The remainder of this paper is organized as follows. The related
literature is reviewed in Section 2. In Section 3, the algorithm and
the principle of the proposed autoscaler mechanism are illustrated
and explained. Section 4 shows an example of how our autoscaler
mechanism works. Section 5 presents the experimental designs and
results of the proposed autoscaler. Section 6 concludes the work
and highlights further possible improvements.

2 RELATEDWORK AND POSITIONING
In this section, we will start by presenting in Subsection 2.1 some
container management tools. Then, we present in sub-section 2.2 an
overview of some works proposed in the context of autoscaling. Fi-
nally, we will conclude this section by positioning in sub-section 2.3.

2.1 Container management tools
In the literature, many container management tools come from
different companies and open-source communities. As an example,
we can consider Docker SwarmKit [4], Apache Mesos [5], Red Hat
OpenShift [6] and Google Kubernetes [7].

Docker Swarmkit [4] is an important container scheduling frame-
work developed by Docker. The Swarm manager schedules contain-
ers and chooses a node for each container. The Docker Swarmkit
goes through two steps to select one node for each newly submitted
container. First, it uses a filter mechanism to select a set of candidate
nodes capable of running the container. Then, it selects the most
suitable one, from the set of candidate nodes, according to a specific
container scheduling strategy.

Mesos [8] is an Apache project. It is a thin resource-sharing
layer that enables fine-grained sharing across various cluster com-
puting frameworks by giving frameworks a common interface for

accessing cluster resources. Marathon 4, runs on top of Mesos and
orchestrates container-based applications on Mesos nodes.

Red Hat OpenShift [6] is a container orchestration platform
optimized for web applications. It enables building, testing, and
deploying web applications without provisioning and maintain-
ing dedicated servers for each application. Applications hosted in
OpenShift are managed through administration servers. All appli-
cations management interactions can be performed through a CLI
(Command Line Interface) or a web interface [9].

Google Kubernetes [7] is a well-known open-source container
orchestration tool. It performs automatic deployment, scaling, and
management of container-based applications. Kubernetes is based
on the Pod concept, each Pod is an abstraction that aggregates one
or several containers. Pods can be run on-premises or on public
cloud infrastructures. It sets up a cluster consisting of a Kubernetes
master and a set of Kubernetes workers.

The Kubernetes scheduler assigns a Pod to a single node going
through two steps. The first step consists of filtering all nodes to
remove the ones that do not meet certain requirements of the Pod;
if there are not enough resources in the infrastructure, the Pod goes
into pending mode. The second step is ranking the remaining nodes
to choose the most suitable Pod placement. The scheduler assigns
a score to each node that survived filtering.

2.2 Autoscaling studies
In the literature, several studies have been proposed that intro-
duce autoscaling mechanisms, and we review some of them in the
following [10–16].

In [10], the authors propose a comparison between a new model-
based reinforcement learning policy and the default threshold-based
scaling policy of Kubernetes. The proposed solution consists of
learning a suitable scaling policy from experience to meet the qual-
ity of service requirements expressed in terms of average response
time. Using prototype-based experiments, the authors show the ben-
efits and flexibility of the reinforcement learning policy compared
to the default Kubernetes scaling solution.

In [11], the authors propose KOSMOS, a novel autoscaling so-
lution for Kubernetes. Containers are individually controlled by
control-theoretical planners that manage container resources on
the fly (vertical scaling). A dedicated component handles resource
contention scenarios between containers deployed on the same
node (a physical or virtual machine). Finally, at the cluster level, a
heuristic-based controller is in charge of the horizontal scaling of
each application.

In [12], the authors designed a Resource Utilization-Based Au-
toscaling System (RUBAS) that can dynamically adjust the alloca-
tion of containers running in a Kubernetes cluster. RUBAS improves
upon the Kubernetes Vertical Pod Autoscaler (VPA) system non-
disruptively by incorporating container migration. As a result, the
authors show that compared to Kubernetes VPA, RUBAS improves
the CPU and memory utilization of the cluster by 10% and reduces
the runtime by 15%, with an overhead for each application ranging
from 5% to 20%.

In [13], the authors investigate the Horizontal Pod Autoscaler
(HPA) through various experiments to provide critical knowledge

4https://mesosphere.github.io/marathon/

https://mesosphere.github.io/marathon/

Reactive Autoscaling of Kubernetes Nodes

on its operational behaviors. They also discuss the essential differ-
ence between Kubernetes Resource Metrics (KRM) and Prometheus
Custom Metrics (PCM) and how they affect HPA’s performance.
Lastly, the authors provide deeper insight and lessons on how to
optimize the performance of HPA for researchers, developers, and
system administrators who work with Kubernetes in the future.

In [14], the authors propose an auto-scaling scheme that dynam-
ically adjusts the number of application instances to determine a
balance between resource usage and application performance. The
key components of the proposed solution include a scheme to mon-
itor the load status of physical hosts, an algorithm that determines
the appropriate number of application instances, and an interface
to Kubernetes to perform the adjustment. Experiments have been
conducted to investigate the performance of the proposed scheme,
and the results confirm its effectiveness in reducing the response
time of the application.

In [15], the authors propose the Traffic-aware Horizontal Pod
Autoscaler (THPA), which operates on top of Kubernetes to enable
real-time traffic-aware resource autoscaling for IoT applications in
an edge computing environment. The proposed THPA performs
upscaling and downscaling actions based on network traffic in-
formation from nodes to improve the quality of IoT services in
the edge computing infrastructure. Experimental results show that
Kubernetes with THPA improves the average response time and
throughput of IoT applications by approximately 150% compared
to Kubernetes with the horizontal pod autoscaler. This indicates
that it is important to provide proper resource scaling according
to the network traffic distribution to maximize IoT applications’
performance in an edge computing environment.

In [16], the authors propose a Proactive Pod Autoscaler (PPA) for
edge computing applications on Kubernetes. The proposed PPA can
forecast workloads in advancewithmultiple user-defined/customized
metrics and scale edge computing applications up and down ac-
cordingly. The PPA is optimized and evaluated on an example CPU-
intensive edge computing application. As a result, the proposed
PPA outperforms the default pod autoscaler of Kubernetes on both
efficiency of resource utilization and application performance.

In [17], the authors propose an Intelligent Horizontal Proactive
Autoscaling (IHPA) mechanism that leverages resource usage met-
rics of processing edge nodes such as CPU, RAM, and Bandwidth
in order to provide timely scale-up and scale-down decisions. The
proposed IHPA is based on a double tower Deep Learning (DL)
architecture. In order to find a close to optimal DL architecture and
guarantee the generality of the proposed approach, the authors
also propose the innovative hybrid Bayesian Evolution Strategy
method.

Karpenter is an open source node provisioning project5 built for
Kubernetes. Karpenter improves the efficiency and cost of running
workloads on Kubernetes clusters by provisioning nodes that meet
the requirements of the pods. Among the requirements, Karpenter
deals with prices, which is not the case in our proposal.

2.3 Positioning
In contrast to these related and above-mentioned works, our au-
toscaler mechanism is designed to dynamically control Kubernetes

5https://karpenter.sh/

computing nodes. It can be seen as a reactive pilot that dynami-
cally controls the state of the Kubernetes cluster based on several
factors and only keeps the resources that are used to reduce waste
of resources and energy consumption.

Our proposed autoscalermechanism features the following points:
• One of the few studies that focus on reactive autoscaling

for Kubernetes computing nodes;
• Our autoscaler allows us to reduce the waste of resources

and energy consumption in the Kubernetes cluster by auto-
matically stopping nodes that are not in use;

• The autoscaler algorithm is based on several factors to de-
cide when to scale up or down nodes;

• The decision of whether to scale up or down Kubernetes
nodes is based on a multi-criteria decision-making (MCDM)
algorithm to select the most pertinent Kubernetes node for
each step (scale up or down).

• Our autoscaling mechanism can be easily deployed on a
Kubernetes cluster using a Helmpackage [18].

3 THE AUTOSCALER PRINCIPLE
The native Kubernetes framework continuously utilizes all com-
puting resources when containers are scheduled on-premise. This
mechanism leads to increased resource wastage and higher energy
consumption, as in some cases, resources are activated even when
no Kubernetes object (container) is currently running. To address
this issue, we propose a new autoscaling mechanism that adapts
the number of active nodes by communicating with the Kubernetes
API to assess the overall node load and check the presence of pend-
ing pods (nodes that are stopped and waiting to be activated if the
Kubernetes cluster load increases).

For performance optimization, our autoscaling mechanism can
be deployed using a Helm [18] package on top of Kubernetes. Helm
is a Kubernetes package manager that enables the discovery, shar-
ing, and utilization of software designed for Kubernetes.

In our autoscaling mechanism, we use the PROMETHEE multi-
criteria decision algorithm in each scale-up/down step to select
the most pertinent node, considering several criteria related to the
number of CPUs, memory size, storage size, and energy consump-
tion.

In the following, we present the principle of the PROMETHEE
algorithm. Then, we outline the algorithm of our autoscaler mecha-
nism and how we scale up/down nodes.

3.1 PROMETHEE algorithm
PROMETHEE is a multi-criteria decision algorithm that enables the
establishment of an out-ranking among various alternatives [19].
It operates on a pairwise comparison of potential decisions (com-
puting nodes). In our case, each computing node is represented
by five criteria: the number of allocated CPUs, the size of allo-
cated memory, the size of allocated storage, energy consumption,
and the number of running Kubernetes objects. Following this,
PROMETHEE selects the most pertinent node by considering the
maximization/minimization of each criterion depending on the type
of autoscaling up or down.

The PROMETHEE algorithm requires a preference function that
characterizes the difference for a criterion between the evaluations

https://karpenter.sh/

Menouer et al.

obtained by two possible nodes in a preference degree ranging from
0 to 1. In summary, PROMETHEE is composed of four steps [20],
and is used as follows:

(1) Calculate, for each pair of nodes (𝑁𝑜𝑑𝑒𝑎 and 𝑁𝑜𝑑𝑒𝑏), and
each criterion, the value of the preference degree. Let𝑔 𝑗 (𝑁𝑜𝑑𝑒𝑎)
be the value of criterion j for𝑁𝑜𝑑𝑒𝑎 .We denote𝑑 𝑗 (𝑁𝑜𝑑𝑒𝑎, 𝑁𝑜𝑑𝑒𝑏):

𝑑 𝑗 (𝑁𝑜𝑑𝑒𝑎, 𝑁𝑜𝑑𝑒𝑏) = 𝑔 𝑗 (𝑁𝑜𝑑𝑒𝑎) − 𝑔 𝑗 (𝑁𝑜𝑑𝑒𝑏)

𝑑 𝑗 (𝑁𝑜𝑑𝑒𝑎, 𝑁𝑜𝑑𝑒𝑏) represents the difference in the value of
criterion j between 𝑁𝑜𝑑𝑒𝑎 and 𝑁𝑜𝑑𝑒𝑏 . 𝑃 𝑗 (𝑁𝑜𝑑𝑒𝑎, 𝑁𝑜𝑑𝑒𝑏)
represents the value of the preference degree of criterion
j for 𝑁𝑜𝑑𝑒𝑎 and 𝑁𝑜𝑑𝑒𝑏 . In this work, we use the standard
preference functions, defined as follows:

𝑃 𝑗 (𝑁𝑜𝑑𝑒𝑎, 𝑁𝑜𝑑𝑒𝑏) =

{
0 𝑖 𝑓 𝑑 𝑗 ≤ 0

1 𝑖 𝑓 𝑑 𝑗 > 0

(2) It computes a global preference index for each pair of nodes
(𝑁𝑜𝑑𝑒𝑎 and 𝑁𝑜𝑑𝑒𝑏). Let 𝐶 be the set of criteria considered
and𝑊𝑗 be the weight associated with criterion j. In our
case,𝑊𝑗 is equal to 1. The global preference index for a pair
of nodes (𝑁𝑜𝑑𝑒𝑎 and 𝑁𝑜𝑑𝑒𝑏) is calculated as follows:

𝜋 (𝑁𝑜𝑑𝑒𝑎, 𝑁𝑜𝑑𝑒𝑏) =
∑︁
𝑗∈𝐶

𝑊𝑗 × 𝑃 𝑗 (𝑁𝑜𝑑𝑒𝑎, 𝑁𝑜𝑑𝑒𝑏)

(3) It computes, for each node, the positive outranking flow
𝜙+(𝑁𝑜𝑑𝑒𝑎) and the negative outranking flow 𝜙−(𝑁𝑜𝑑𝑒𝑎).
Let 𝐴 be the set of nodes with a size of 𝑛. The positive and
negative outranking flow of nodes are computed using the
following formulas:

𝜙+(𝑁𝑜𝑑𝑒𝑎) =
1

𝑛 − 1
∑︁
𝑥∈𝐴

𝜋 (𝑁𝑜𝑑𝑒𝑎, 𝑥)

and

𝜙−(𝑁𝑜𝑑𝑒𝑎) =
1

𝑛 − 1
∑︁
𝑥∈𝐴

𝜋 (𝑥, 𝑁𝑜𝑑𝑒𝑎)

(4) It uses the outranking flows to establish a complete rank-
ing between nodes. The ranking is based on the net out-
ranking flows 𝜙(𝑁𝑜𝑑𝑒𝑎), which are calculated as follows:
𝜙(𝑁𝑜𝑑𝑒𝑎) = 𝜙+(𝑁𝑜𝑑𝑒𝑎)−𝜙− (𝑁𝑜𝑑𝑒𝑎). In our work, the first
request returned by PROMETHEE is the request that has
the highest net outranking value.

One of the advantages of the PROMETHEE method is its reason-
able time complexity, which is 𝑂(𝑞.𝑛. log(𝑛)), where 𝑞 represents
the number of criteria and n the number of alternatives [21]. This
complexity is reasonable for practical use cases with several criteria
much below 100.

3.2 Algorithm of our autoscaler mechanism
The algorithm 1 illustrates the principle of our auto-scalingmech-

anism. Initially, the Kubernetes cluster has one active node. Then,
every minute, the autoscaling algorithm checks three conditions:

• The load of all active nodes in terms of CPU, memory, and
storage exceeds the load that triggers the scale-up;

• There is at least one pending Pod, which means that the
pod is waiting to be executed;

Algorithm 1 Autoscaler algorithm
Require: 𝐿𝑐𝑝𝑢 , the load of all active nodes in terms of CPUs in all

the Kubernetes cluster
Require: 𝐿𝑚𝑒𝑚𝑜𝑟𝑦 , the load of all active nodes in terms of memory

in all the Kubernetes cluster
Require: 𝐿𝑠𝑡𝑜𝑟𝑎𝑔𝑒 , the load of all active nodes in terms of storage

in all the Kubernetes cluster
Require: 𝑃𝑒𝑛𝑑𝑖𝑛𝑔𝑝𝑜𝑑𝑠 , the number of pending Pods in all the Ku-

bernetes cluster
Require: 𝑃𝑒𝑛𝑑𝑖𝑛𝑔𝑛𝑜𝑑𝑒𝑠 , the number of pending nodes in all the
Kubernetes cluster (nodes that are stopped and waiting to be
activated - unused nodes)

Require: 𝐴𝑐𝑡𝑖𝑣𝑒𝑛𝑜𝑑𝑒𝑠 , the number of active nodes in all the Ku-
bernetes cluster (used nodes)

Require: 𝑀𝑎𝑠𝑡𝑒𝑟𝑛𝑜𝑑𝑒 , the master node of the Kubernetes cluster
which is activated all the time

Require: 𝐿𝑜𝑎𝑑𝑢𝑝 , the load that triggers the scale-up
Require: 𝐿𝑜𝑎𝑑𝑑𝑜𝑤𝑛 , the load that triggers the scale down
Require: 𝑃𝑒𝑛𝑑𝑖𝑛𝑔𝑝𝑜𝑑 , The minimum pending time of pod that can

trigger the scale-up
while 1 minute do
if 𝑃𝑒𝑛𝑑𝑖𝑛𝑔𝑝𝑜𝑑𝑠 > 0 && (𝐿𝑐𝑝𝑢 >= 𝐿𝑜𝑎𝑑𝑢𝑝 or 𝐿𝑚𝑒𝑚𝑜𝑟𝑦 >=
𝐿𝑜𝑎𝑑𝑢𝑝 or 𝐿𝑠𝑡𝑜𝑟𝑎𝑔𝑒 >= 𝐿𝑜𝑎𝑑𝑢𝑝) && 𝑃𝑒𝑛𝑑𝑖𝑛𝑔𝑛𝑜𝑑𝑒𝑠 > 0 then

𝑁𝑜𝑑𝑒𝑥 = Apply the PROMETHEE multi-criteria algorithm
to select the most pertinent node that maximizes the allo-
cated number of CPUs, memory size, and storage size and
also minimizes energy consumption.
add 𝑁𝑜𝑑𝑒𝑥 as active node (Scale-up)

else
if At least one pending Pod waiting for more than
𝑃𝑒𝑛𝑑𝑖𝑛𝑔𝑝𝑜𝑑 && 𝑃𝑒𝑛𝑑𝑖𝑛𝑔𝑛𝑜𝑑𝑒𝑠 > 0 then

𝑁𝑜𝑑𝑒𝑥 = Apply the PROMETHEE multi-criteria algo-
rithm to select the most pertinent node that maximizes
the allocated number of CPUs, memory size, and storage
size and also minimizes energy consumption.
add 𝑁𝑜𝑑𝑒𝑥 as active node (Scale-up)

else
if 𝑃𝑒𝑛𝑑𝑖𝑛𝑔𝑝𝑜𝑑𝑠 == 0 && 𝐿𝑐𝑝𝑢 <= 𝐿𝑜𝑎𝑑𝑑𝑜𝑤𝑛 &&
𝐿𝑚𝑒𝑚𝑜𝑟𝑦 <= 𝐿𝑜𝑎𝑑𝑑𝑜𝑤𝑛 && 𝐿𝑠𝑡𝑜𝑟𝑎𝑔𝑒 <= 𝐿𝑜𝑎𝑑𝑑𝑜𝑤𝑛 &&
𝐴𝑐𝑡𝑖𝑣𝑒𝑛𝑜𝑑𝑒𝑠 > 1 then

𝑁𝑜𝑑𝑒𝑥 = Apply the PROMETHEE multi-criteria algo-
rithm to select the most pertinent node that minimizes
the allocated number of CPUs, memory size, storage
size, and number of Kubernetes objects and also maxi-
mizes energy consumption.
Migrate all Kubernetes objects running in 𝑁𝑜𝑑𝑒𝑥 to
the other active nodes
Stop 𝑁𝑜𝑑𝑒𝑥 (Scale down)

end if
end if

end if
end while

• There is at least one pending node, which means the node
is stopped waiting to be activated.

Reactive Autoscaling of Kubernetes Nodes

If these conditions are met, the autoscaling algorithm applies the
PROMETHEE multicriteria algorithm to select from all pending
nodes the most pertinent node to scale up. If all three conditions
are not met, the autoscaling algorithm checks if there is at least one
pending node and at least one pending Pod waiting for more than
the minimumwaiting time of the Pod. If this condition is met, a new
node is selected from the pending nodes using the PROMETHEE
algorithm to scale up.

To scale down, the algorithm checks if the load of active nodes in
terms of CPU, memory, and storage is less than the load that triggers
scaling down. If this condition is met, the autoscaler applies the
PROMETHEE algorithm to select from the active nodes the most
pertinent node to scale down. Then, it migrates all Kubernetes
objects running on the selected node to other active nodes of the
Kubernetes cluster and stops the selected node.

Let us assume that:
• 𝐶𝑃𝑈𝑢𝑠𝑒𝑑 (and similarly𝑀𝑒𝑚𝑜𝑟𝑦𝑢𝑠𝑒𝑑 and 𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝑢𝑠𝑒𝑑) rep-

resents all the CPUs (memory space and storage space,
respectively) used in the Kubernetes cluster.

• 𝐶𝑃𝑈𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 (and similarly𝑀𝑒𝑚𝑜𝑟𝑦𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 and 𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑)
represents all the CPUs (memory space and storage space,
respectively) allocated in the Kubernetes cluster.

To calculate the load of a CPU, memory, and storage, we propose
using the following formulas:

• 𝐿𝑜𝑎𝑑𝑐𝑝𝑢 =
𝐶𝑃𝑈𝑢𝑠𝑒𝑑 × 100
𝐶𝑃𝑈𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑

.

• 𝐿𝑜𝑎𝑑𝑚𝑒𝑚𝑜𝑟𝑦 =
𝑀𝑒𝑚𝑜𝑟𝑦𝑢𝑠𝑒𝑑 × 100
𝑀𝑒𝑚𝑜𝑟𝑦𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑

.

• 𝐿𝑜𝑎𝑑𝑠𝑡𝑜𝑟𝑎𝑔𝑒 =
𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝑢𝑠𝑒𝑑 × 100
𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑

.

All CPUs used (as well as memory and storage) in the Kuber-
netes cluster represent the sum of the CPU (memory and storage,
respectively) used on each node of the Kubernetes cluster. However,
all CPUs allocated (as well as memory and storage) in the Kuber-
netes cluster represent the sum of the CPU (memory and storage,
respectively) allocated on each node of the Kubernetes cluster.

3.3 How to scale up/down nodes
To scale up or down nodes as outlined in Algorithm 1, we use the
PROMETHEE multi-criteria algorithm to select the most pertinent
nodes. PROMETHEE algorithm is well suited for this task because
it allows to consider multiple criteria simultaneously and to weigh
them according to specific needs. In our case, we consider all crite-
ria to have the same weight. However, it is possible to favor one
criterion over another by modifying the weight of each criterion.

To scale up, we propose to select among the pending nodes the
node that maximizes the allocated number of CPUs, memory size,
and storage size, and also minimizes energy consumption. The goal
is to select the node that:

• Has a large amount of resources in terms of CPUs, memory,
and storage to satisfy the maximum number of Pods that
will be submitted by users;

• Consumes the least energy.
To scale down, we propose to select from the active nodes the

node that minimizes the allocated number of CPUs, memory size,

and storage size and also maximizes energy consumption. The goal
is to select the node that:

• Has a small amount of resources in terms of CPUs, memory,
and storage to avoid migrating a large number of Pods and
overloading the other nodes excessively.

• Consumes the most energy to reduce the global energy
consumption of the Kubernetes cluster.

For scaling up, the idea is to add a node to the Kubernetes cluster
with a significant allocation of resources in terms of CPUs, memory,
and storage space to accommodate a maximum number of Pods.
Simultaneously, we aim to add a node that consumes minimal
energy.

For scaling down, the idea is to remove a node from the Ku-
bernetes cluster with a smaller allocation of resources in terms of
CPUs, memory, storage space, and number of Kubernetes objects
ensuring that the cluster retains ample computing resources to exe-
cute new Pods. Additionally, we remove the node that consumes
the most energy to reduce the overall energy consumption of the
entire Kubernetes cluster.

This technique of scaling up/down helps to ensure that the Kuber-
netes cluster has the optimal amount of resources to meet demand,
while also minimizing energy consumption.

4 EXAMPLE OF USING OUR AUTOSCALING
MECHANISME

In this example, we illustrate how our autoscaling algorithm works
in practice by considering only the CPU criterion, for the sake of
simplicity.

Let us suppose that we have:
• 2 nodes, each equipped with 8 CPUs. The two nodes are

identical and have the same characteristics.
• 2 Pods, each with one container that consumes 6 CPUs, and

they run for 120 seconds.
– The first Pod is launched at T0, and the second one is

launched at T0+60 seconds.
Let us suppose also that the variables of our autoscaling algo-

rithm are set as follows:
• 𝐿𝑜𝑎𝑑𝑢𝑝=70%;
• 𝐿𝑜𝑎𝑑𝑑𝑜𝑤𝑛=40%;
• 𝑃𝑒𝑛𝑑𝑖𝑛𝑔𝑝𝑜𝑑=2 minutes.

In the beginning, our autoscaler keeps at least one node active
(𝑛𝑜𝑑𝑒1) which represents the master node of the Kubernetes clus-
ter, and the second node (𝑛𝑜𝑑𝑒2) is considered as a pending node
(node stopped and waiting to be activated). At time T0, 𝑃𝑜𝑑1 is
submitted. In this case, 𝑃𝑜𝑑1 is assigned to 𝑛𝑜𝑑𝑒1 and the load of
on 𝑛𝑜𝑑𝑒1= 6∗100

8 =75%
At T0+60 seconds, 𝑃𝑜𝑑2 is scheduled for execution. In this sit-

uation, the pod cannot run because 𝑛𝑜𝑑𝑒1 has only two available
CPUs, while 𝑃𝑜𝑑2 requires 6 CPUs. At the same time (T0+60), our
autoscaling algorithm detects that there is at least one pending Pod
(𝑃𝑜𝑑2), the CPU load of 𝑛𝑜𝑑𝑒1 is 75% (bigger than the 𝐿𝑜𝑎𝑑𝑢𝑝 set to
70%), and there is at last one pending node (𝑛𝑜𝑑𝑒2). In this case, at
T0+60 seconds, our autoscaling mechanism decides to add 𝑛𝑜𝑑𝑒2 to
the Kubernetes cluster to execute 𝑃𝑜𝑑2 as presented in Algorithm 1.
At T0+120, 𝑃𝑜𝑑1 stops. In this case, the load will be equal to 37.5%

Menouer et al.

Figure 1: Example of how our autoscaler mechanism works
to execute two Pods on two nodes

(6∗10016), where 6 represents the CPU consumption of 𝑃𝑜𝑑2, and 16
represents the total amount of CPU available in 𝑛𝑜𝑑𝑒1 and 𝑛𝑜𝑑𝑒2
(8+8). In this situation, the autoscaling mechanism detects that the
load of 37.5% is less than 𝐿𝑜𝑎𝑑𝑑𝑜𝑤𝑛 , which is set to 40%, and there
are no pending Pods. Consequently, the autoscaler scales down and
removes 𝑛𝑜𝑑𝑒2 from the Kubernetes cluster.

Figure 1 shows the evolution of the number of active/pending
nodes used to execute the two Pods (𝑃𝑜𝑑1 and 𝑃𝑜𝑑2). It is worth
noting that in this example, for the sake of simplicity, we considered
only the CPU criterion for scaling up or down the node.

5 EVALUATIONS
In this section, we present some experiments to evaluate the perfor-
mance of our autoscaling mechanism. We used the Virtual WALL
testbed [22] for our experiments. Virtual WALL is an emulation
environment that can be used as bare metal hardware (operating
system running directly on the machine) or virtualized through
OpenVZ containers or XEN virtualization. In our experimental eval-
uation, we booked an infrastructure composed of nodes with the
following characteristics: Intel(R) Xeon(R) CPU E5645 (2.40GHz)
with 24 CPUs, 24GB of memory, and 16GB of storage.

To test our approach, we proposed running a workflow com-
posed of 4 Pods in Kubernetes clusters on two infrastructures
(𝑖𝑛𝑓 𝑟𝑎𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒1 is composed of 4 nodes and 𝑖𝑛𝑓 𝑟𝑎𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒2 is
composed of 5 nodes), with the following constraints:

• The frequency of Pods submission is 5 min, which means
there is a 5-minute wait between each two Pods submission.

• Each Pod consumes 17 CPUs.
• Our autoscaling algorithm has the following configuration:

– 𝐿𝑜𝑎𝑑𝑢𝑝=70%;
– 𝐿𝑜𝑎𝑑𝑑𝑜𝑤𝑛=40%;
– 𝑃𝑒𝑛𝑑𝑖𝑛𝑔𝑝𝑜𝑑=2 minutes.

Figure 2 shows the number of computing nodes used to execute
our 4 Pod workflow in 𝑖𝑛𝑓 𝑟𝑎𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒1 (which is composed of 4
computing nodes) and 𝑖𝑛𝑓 𝑟𝑎𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒2 (which is composed of 5
computing nodes) without the autoscaler mechanism.

Figure 2: The number of nodes used to execute our work-
flow of 4 Pods without using the autoscaling mechanism in
𝑖𝑛𝑓 𝑟𝑎𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒1 and 𝑖𝑛𝑓 𝑟𝑎𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒2

Figure 3: The number of nodes used to execute our workflow
of 4 Pods using the autoscaling mechanism in 𝑖𝑛𝑓 𝑟𝑎𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒1

Figure 4: The number of nodes used to execute our workflow
of 4 Pods using the autoscaling mechanism in 𝑖𝑛𝑓 𝑟𝑎𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒2

Reactive Autoscaling of Kubernetes Nodes

Figure 5: Varying the number of Pods running in
𝑖𝑛𝑓 𝑟𝑎𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒1 without using the autoscaler mechanism

Figure 3 shows the number of computing nodes used to execute
our workflow of 4 Pods in 𝑖𝑛𝑓 𝑟𝑎𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒1 with the autoscaler
mechanism.

Figure 4 shows the number of computing nodes used to exe-
cute our 4 pod workflow in 𝑖𝑛𝑓 𝑟𝑎𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒2 with the auto-scaler
mechanism.

In contrast, Figures 3 and 4 show that with the autoscaler mech-
anism, the number of computing nodes used increases when the
load increases (e.g., when a new Pod is submitted) and decreases
when the load decreases (e.g., when a pod stops). This mechanism
allows computing nodes to be used only when necessary, which
can save resources and energy consumption.

In Figure 4, we can see that our 4 Pod workflow is executed only
on 4 nodes. The fifth node is turned off because it is not needed.

Typoe Approaches Nodes utilization rate

of Pending Active

infrastructure nodes nodes

𝐼𝑛𝑓 𝑟𝑎𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒1 Without autoscaler 0 100%

With autoscaler 17,22% 82,77

𝐼𝑛𝑓 𝑟𝑎𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒2 Without autoscaler 0 100%

With autoscaler 33,37% 66,62%

Table 1: Comparison between nodes utilization rate in
𝑖𝑛𝑓 𝑟𝑎𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒1 and 𝑖𝑛𝑓 𝑟𝑎𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒2

Table 1 shows a comparison between node utilization rates
in 𝑖𝑛𝑓 𝑟𝑎𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒1 and 𝑖𝑛𝑓 𝑟𝑎𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒2 without and with our au-
toscaler mechanism. It is observable that with the autoscaler mech-
anism, the utilization rate of active nodes is significantly lower than
the utilization rate of active nodes, which is always 100%, when not
using the autoscaler mechanism.

Figure 5 represents the variation in the number of Pods run-
ning in 𝑖𝑛𝑓 𝑟𝑎𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒1 without using the autoscaler mechanism.
We observed the same scenario when: (i) Pods are running in
𝑖𝑛𝑓 𝑟𝑎𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒1 with the autoscaler mechanism, and (ii) Pods are

running in 𝑖𝑛𝑓 𝑟𝑎𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒2 with and without the autoscaler mech-
anism.

Type Approaches Comparison criteria

of Computing Energy

infrastructure time consumption

(s) (wh)

𝐼𝑛𝑓 𝑟𝑎𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒1 Without 4506,58 100,98

autoscaler

With 4737,63 95,3

autoscaler

𝐼𝑛𝑓 𝑟𝑎𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒2 Without 4504,52 126,025

autoscaler

With 4682,66 99,1

autoscaler

Table 2: Comparison between computing time and energy
consumption to execute our Podsworkflow in 𝑖𝑛𝑓 𝑟𝑎𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒1
and 𝑖𝑛𝑓 𝑟𝑎𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒2

Type Speedup/ratio

of Computing Energy

infrastructure time consumption

𝐼𝑛𝑓 𝑟𝑎𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒1 0,951% 1,059%

𝐼𝑛𝑓 𝑟𝑎𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒2 0,961% 1,271%

Table 3: Speedup obtained in terms of computing time and
energy consumption

Table 2 compares the computing time and energy consumed to ex-
ecute ourworkflow of Pods in 𝑖𝑛𝑓 𝑟𝑎𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒1 and 𝑖𝑛𝑓 𝑟𝑎𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒2,
without and with our autoscaler mechanism.

Table 3 shows the acceleration in terms of computing time and
the ratio of energy consumption obtainedwith the autoscaler versus
without the autoscaler mechanism. The speedup of computing time
is also the ratio between the computing time obtained without
using the autoscaler mechanism and the computing time obtained
using the autoscaler mechanism.

Concerning energy consumption, we note that the ratio is greater
than 1, which means that the use of the autoscaler mechanism
reduces energy consumption compared to native utilization without
the autoscaler. The energy ratio represents the ratio between the
energy consumed without using the autoscaler mechanism and the
energy consumed using the autoscaler mechanism.

However, we observe a speedup that varies between 0.951%
and 0.961% in terms of computation time. This means that the use
of the autoscaler has introduced a small overhead compared to
the computing time achieved without the autoscaler mechanism.

Menouer et al.

We quantified an overhead varying between 4% and 5% using our
autoscaler mechanism. This overhead can be explained as follows:
If a new Pod is executed and there are no active nodes available
to execute the submitted Pod, the autoscaler takes time to add a
new node to the Kubernetes cluster to execute the new submitted
Pod. This step adds additional cost to the overall execution time
of the Pod workflow. On the other hand, without the autoscaling
mechanism, each time a Pod is submitted, it can be executed directly
if there is a computing node available.

6 CONCLUSION
In this paper, we present a new Kubernetes autoscaler that dynami-
cally adapts the number of active nodes and keeps only the nodes
that are used. Our autoscaler is designed to be easily deployed on
top of Kubernetes, using the Helm package [18].

In terms of perspective, we propose to use Machine Learning
(ML) techniques in our autoscaler mechanism to automatically
adapt the number of active nodes. The idea is first to predict the
number of active nodes based on the different Pod submission
periods, and second to mix two mechanisms: reactive and proactive
autoscaling.

In our approach, we consider that each time a Pod is assigned to a
node, it will be executed without failures. From another perspective,
we suggest working on the problem of fault tolerance in case a node
fails in the computing infrastructure. In this situation, we plan to
use a smart replica approach of Pods.

ACKNOWLEDGEMENTS
This research was funded by Banque Publique d’Investissement
(Bpifrance), Appel à manifestation d’intérêt (AMI) « Stratégie d’ac-
célération Cloud », and specifically « Développement et renforce-
ment de la filière française et européenne du Cloud.

REFERENCES
[1] Wes Felter, Alexandre Ferreira, Ram Rajamony, and Juan Rubio. An updated

performance comparison of virtual machines and linux containers. In 2015 IEEE
international symposium on performance analysis of systems and software (ISPASS),
pages 171–172. IEEE, 2015.

[2] Víctor Medel, Rafael Tolosana-Calasanz, José Ángel Bañares, Unai Arronategui,
and Omer F Rana. Characterising resource management performance in kuber-
netes. Computers & Electrical Engineering, 68:286–297, 2018.

[3] Marco A.S. Netto, Carlos Cardonha, Renato L.F. Cunha, and Marcos D. Assun-
cao. Evaluating auto-scaling strategies for cloud computing environments. In
2014 IEEE 22nd International Symposium on Modelling, Analysis & Simulation of
Computer and Telecommunication Systems, pages 187–196, 2014.

[4] Swarm kit:
https://github.com/docker/swarmkit/.

[5] The apache software foundation. mesos, apache: http://mesos.apache.org/.
[6] Openshift https://www.openshift.com/, visited 27-02-2024.
[7] Kubernetes framework https://kubernetes.io/.
[8] Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, Anthony D

Joseph, Randy H Katz, Scott Shenker, and Ion Stoica. Mesos: A platform for
fine-grained resource sharing in the data center. In NSDI, pages 22–22, 2011.

[9] Alexandre Lossent, A Rodriguez Peon, and A Wagner. Paas for web applications
with openshift origin. In Journal of Physics: Conference Series, volume 898, page
082037. IOP Publishing, 2017.

[10] Fabiana Rossi. Auto-scaling policies to adapt the application deployment in
kubernetes. In ZEUS, pages 30–38, 2020.

[11] Luciano Baresi, Davide Yi Xian Hu, Giovanni Quattrocchi, and Luca Terracciano.
Kosmos: Vertical and horizontal resource autoscaling for kubernetes. In Inter-
national Conference on Service-Oriented Computing, pages 821–829. Springer,
2021.

[12] Gourav Rattihalli, Madhusudhan Govindaraju, Hui Lu, and Devesh Tiwari. Ex-
ploring potential for non-disruptive vertical auto scaling and resource estimation

in kubernetes. In 2019 IEEE 12th International Conference on Cloud Computing
(CLOUD), pages 33–40. IEEE, 2019.

[13] Thanh-Tung Nguyen, Yu-Jin Yeom, Taehong Kim, Dae-Heon Park, and Sehan
Kim. Horizontal pod autoscaling in kubernetes for elastic container orchestration.
Sensors, 20(16):4621, 2020.

[14] Wei-Sheng Zheng and Li-Hsing Yen. Auto-scaling in kubernetes-based fog
computing platform. In New Trends in Computer Technologies and Applications:
23rd International Computer Symposium, ICS 2018, Yunlin, Taiwan, December
20–22, 2018, Revised Selected Papers 23, pages 338–345. Springer, 2019.

[15] Linh-An Phan, Taehong Kim, et al. Traffic-aware horizontal pod autoscaler in
kubernetes-based edge computing infrastructure. IEEE Access, 10:18966–18977,
2022.

[16] Li Ju, Prashant Singh, and Salman Toor. Proactive autoscaling for edge computing
systems with kubernetes. In Proceedings of the 14th IEEE/ACM International
Conference on Utility and Cloud Computing Companion, pages 1–8, 2021.

[17] John Violos, Stylianos Tsanakas, Theodoros Theodoropoulos, Aris Leivadeas,
Konstantinos Tserpes, and Theodora Varvarigou. Intelligent horizontal autoscal-
ing in edge computing using a double tower neural network. Computer Networks,
217:109339, 2022.

[18] Helm package: https://helm.sh/- last access: 13/10/2023.
[19] S.C.Deshmukh. Preference ranking organization method of enrichment evalua-

tion (promethee). International Journal of Engineering Science Invention, 2:28–34,
2013.

[20] P. Taillandier and S. Stinckwich. Using the promethee multi-criteria decision
making method to define new exploration strategies for rescue robots. In Inter-
national Symposium on Safety, Security, and Rescue Robotics, 2011.

[21] Toon Calders and Dimitri Van Assche. PROMETHEE is not quadratic: An o(qn
log(n)) algorithm. CoRR, 2016.

[22] Virual wall tesbed:
https://doc.ilabt.imec.be/.

https://helm.sh/

	Abstract
	1 Introduction
	2 Related work and positioning
	2.1 Container management tools
	2.2 Autoscaling studies
	2.3 Positioning

	3 The Autoscaler principle
	3.1 PROMETHEE algorithm
	3.2 Algorithm of our autoscaler mechanism
	3.3 How to scale up/down nodes

	4 Example of using our autoscaling mechanisme
	5 Evaluations
	6 Conclusion
	References

