
HAL Id: hal-04857297
https://hal.science/hal-04857297v1

Submitted on 28 Dec 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - ShareAlike 4.0 International
License

Facts and issues of neural networks for numerical
simulation

Imad Kissami, Christophe Cérin, Fayssal Benkhaldoun, Fahd Kalloubi

To cite this version:
Imad Kissami, Christophe Cérin, Fayssal Benkhaldoun, Fahd Kalloubi. Facts and issues of neural
networks for numerical simulation. Mostapha Zbakh, Mohammed Essaaidi, Claude Tadonki, Abdellah
Touha and Dhabaleswar K. Panda. Artificial Intelligence and High-Performance Computing in the
Cloud - Research and Application Challenges., Lecture Notes in Networks and Systems, In press.
�hal-04857297�

https://hal.science/hal-04857297v1
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
https://hal.archives-ouvertes.fr


Facts and issues of neural networks for
numerical simulation

Imad Kissami1, Christophe Cérin2, Fayssal Benkhaldoun3, and Fahd
Kalloubi1,4

1 Mohammed VI Polytechnic University, Morocco,
{imad.kissami,fahd.kalloubi}@um6p.ma

2 University Sorbonne Paris Nord & INRIA Datamove team, France,
christophe.cerin@univ-paris13.fr

3 University Sorbonne Paris Nord, France,
fayssal.benkhaldoun@univ-paris13.fr

4 Université Chouaib Doukkali, LTI Laboratory, Morocco

Abstract. Deep learning and artificial intelligence (AI) have transformed
computer science, becoming the main method for addressing various
problems, from partial differential equations to molecular discovery. Tra-
ditional numerical simulation techniques use finite differences to solve
equations, but are computationally costly, often taking hours to days on
powerful machines. Simulations need to be restarted for shape changes,
making the process inefficient. Artificial neural networks now enable ac-
curate simulations quickly and inexpensively. This paper reviews recent
developments in neural networks, their advantages, disadvantages, and
unresolved issues, often demonstrated through partial differential equa-
tions.

1 Introduction

With AI’s rise, governments tasked public institutions to lead the development
of AI tools for research, energy, and security. In France5 and the United States6,
communities highlighted AI’s potential for science in numerous reports. The
US report defines surrogate models as ”simpler yet faithful” representations of
complex systems, trained on outputs from other models. It advises launching
pilot programs for developing surrogate models of plasma turbulence and Earth’s
oceans.

Deep learning for solving PDEs [61, 22, 40, 41] is central in scientific machine
learning, using the universal approximation and expressivity of neural networks.
Neural networks can approximate any high-dimensional function with enough
training data, but they overlook the problem’s physical characteristics. Their
accuracy relies heavily on specifying problem geometry and initial and boundary
conditions. Without this, solutions may lack uniqueness and physical correctness.

5 https://www.cnrs.fr/fr/le-centre-artificial-intelligence-science-science-artificial-
intelligence-aissai

6 https://www.anl.gov/sites/www/files/2023-06/AI4SESReport-2023-v6.pdf



2 I. Kissami et al.

Neural networks for PDEs use governing equations during training. They
are crafted to meet training data and these equations, allowing even sparse and
incomplete data to guide their development. These networks can find optimal
solutions based on physical constraints, even with limited knowledge of bound-
ary conditions. With some understanding of the problem’s physical traits and
minimal data, they achieve high-fidelity solutions.

Neural networks for PDEs address diverse computational science problems
and offer groundbreaking mesh-free solvers. They provide alternatives to tradi-
tional methods like CFD, Electromagnetics, and Quantum Mechanics, or data-
driven model inversion techniques. Once trained, they can predict values on grids
of varying resolutions without retraining. They utilize automatic differentiation
(AD) for superior derivative computation compared to numerical or symbolic
methods.

Neural networks for solving PDE are considered a breakthrough in scientific
machine learning but face challenges such as unclear convergence, scalability is-
sues in complex domains, and suboptimal neural architectures. Approaches such
as Physics-Informed Neural Networks (PINNs) [65, 31], Neural Operators (NO),
Transformer Networks (TN), and Newton-Informed Neural Operators (NINO)
help overcome these challenges, enhancing efficiency and expanding applicability
across various scientific problems.

Advanced methods are not applicable to all problems. Scientific issues require
customized approaches based on their unique characteristics. These enhance-
ments are based on neural networks for PDEs, but must be sufficiently assessed
for each situation.

This paper aims to explore the scientific and technical issues of using neural
networks for PDE-based numerical simulations. Section 2 provides introductory
material: a brief history of numerical simulation and neural networks, a com-
parison of conventional and data-driven methods, and an overview of relevant
neural networks such as Physics Informed Neural Networks, along with exam-
ples of PDEs like the Advection, Burgers’, Shallow Water, and Navier-Stokes
Equations.

Section 3 introduces Neural Network architectures for solving PDEs, high-
lighting challenges such as costly training compared to resolution. Models lack
reproducibility due to retraining for different domains or initial conditions. An
improved understanding of theoretical convergence is needed for scalability and
robustness.

Section 4 addresses performance evaluation, questioning whether to combine
machine learning and HPC metrics or treat them separately. We also discuss
frugal methods and a System view of the ecosystem. Section 5 presents web-
based programming use cases to demonstrate concept practicality, while Section
6 concludes the paper.



Neural networks for numerical simulation 3

2 Vocabulary and fundamentals

2.1 A brief history of numerical simulation and neural networks

Neural Networks Neural networks have a long history, beginning with early at-
tempts to understand how the brain functions and behaves. In 300 BC, Aristotle
established the notion of Associationism [8], marking the beginning of humans’
efforts to understand the brain. In the 19th century, Alexander Bain introduced
Neural Groupings as early neural network models, eventually influencing the
Hebbian Learning Rule [64]. Donald Hebb is regarded as the father of neural
networks after inventing the Hebbian Learning Rule in 1949, which laid the
groundwork for current neural networks. McCulloch and Pitts introduced the
MCP Model in 1943 [45], regarded as the progenitor of artificial neural mod-
els. In 1958, Frank Rosenblatt introduced the first perceptron [54], resembling
modern perceptions. Over the years, neural networks have evolved significantly,
leading to the emergence of deep learning models such as Convolutional Neu-
ral Networks (CNNs) [38], [21], Deep Belief Networks (DBNs) [26] [28], and
Recurrent Neural Networks (RNNs) [47] [46]. These models have revolution-
ized various fields, including computer vision, natural language processing, and
speech recognition. In recent years, many enhancements were proposed to im-
prove neural networks convergence, accuracy, and training speed, such as Batch
Normalization [30], Dropout [58], GELU [25], Transformer [62], etc.

Numerical simulation Numerical simulation [59] originated from the 18th-
century mathematicians Euler and Lagrange, who advanced differential equa-
tions and calculus [19] [37]. In the twentieth century, John von Neumann’s work
with computers introduced algorithms for solving partial differential equations in
hydrodynamics and aerodynamics. The finite element method (FEM) emerged,
breaking down the structures into smaller elements [18], while the finite differ-
ence method (FDM) approximated the derivatives on a grid [53]. The 1970s
saw growth in fluid dynamics (CFD) and the introduction of the finite-volume
method (FVM) [1], focusing on conserving fluxes for CFD applications [4] [43].
Simulation software made these tools more accessible to all industries [2].

2.2 Conventional methods versus data-driven methods

Conventional methods The computational modeling of a physical process
involves two key stages: (1) developing a mathematical model, and (2) computer
simulation. First, a mathematical model is created using the governing equations
for various phenomena. For instance, the Navier-Stokes equations [12] describe
fluid dynamics, elasticity equations [27] cover solid deformation under forces,
and Maxwell’s equations [29] explain electromagnetism. Due to their complexity,
these equations often require simplifications for analytical or numerical solutions,
such as using the Laplace equation for potential flow when the viscosity of the
fluid is negligible.



4 I. Kissami et al.

After creating a mathematical model with initial boundaries and conditions,
attention is turned to the solution model using numerical methods 2.1. Time-
stepping techniques [33] [11] progress the solution in intervals, while convergence
and stability [57] ensure precision. Solvers, error analysis, and parallel computing
enhance computational efficiency [17] [7], crucial for large-scale simulations.

Data-Driven methods Data-driven PDE solutions are a significant advance
from traditional methods, incorporating advanced ML algorithms to enhance
and accelerate simulations [63] [36] [34]. These models excel at processing large
data sets, identifying subtle patterns, and underlying physics that is ignored by
numerical methods. A key ML achievement is the detection and correction of
discretization errors in PDE simulations, the improvement of accuracy, and the
reduction of computational load.

This method improves error correction and accurately predicts complex fluid
dynamics, such as turbulence [69] and varying aerodynamic motions [36]. In-
tegrating machine learning into PDE has led to neural network methods, such
as deep learning [9] and [50], to better represent fluid flow. This advancement
integrates data directly into simulations, bridging theory and reality, enabling
real-time adaptation, and significantly improving PDE model predictions.

Data-driven methods excel at handling complex geometries and flow condi-
tions challenging traditional PDE-solving techniques. ML models interpret fluid
dynamics effectively, avoiding the simplifications or high costs of physics-based
models. Integrating these data-driven models with PDE approaches improves
computational fluid dynamics, resulting in faster, more cost-effective, and more
accurate simulations. This has significant implications for engineering and en-
vironmental research, promising simulations that align closely with real-world
dynamics.

2.3 Reminders on relevant neural networks for solving PDE

Introduction Neural networks have successfully solved PDEs in fields like biol-
ogy and physics. Function learning techniques, including Physics-Informed Neu-
ral Networks (PINNs), aim to approximate PDE solutions by learning the solu-
tion function. Despite their success with ill-posed problems, optimizing neural
architecture remains challenging. Methods like operator learning address PINN
limitations. Figure 1 categorizes the existing neural network architectures for
PDE solving, which will be analyzed subsequently.

Physics Informed Neural Networks Physics-Informed Neural Networks
(PINNs) [55, 52, 68, 44, 32] effectively solve PDE problems by integrating physi-
cal laws into learning [44], [32], [52]. The PINN process involves formulating the
PDE, solving equations, and interpreting results, with physical laws encoded in
the network.

This process involves the architecture and activation functions of the neural
network. The network must be sophisticated and deep enough to solve the prob-
lem and capture fluid motion effects. After training with the provided data, the



Neural networks for numerical simulation 5

Fig. 1. A classification diagram of Neural Network architectures for solving PDE

results should be interpreted to understand the fluid dynamics simulation and
ensure its correctness.

PINNs are ideal for solving PDEs due to their ability to mimic physical laws,
making them more accurate than other numerical methods. They are especially
useful when flow information is scarce or costly, as they use such data with neu-
ral network predictions and fluid motion laws to maintain physical consistency.
Consequently, PINNs enhance the accuracy and efficiency of PDE solutions and
are an effective tool as data-driven, physics-informed neural networks evolve.

PINNs, unlike traditional numerical methods such as FEM, can solve prob-
lems by substituting or augmenting traditional requirements with empirical data.
PINNs problems are typically formulated as follows [55]:

ut +N [u] = 0, t ∈ [0, T ],x ∈ Ω,

u(0,x) = g(x), x ∈ Ω,

B[u] = 0, t ∈ [0, T ],x ∈ ∂Ω,

(1)

where u(t,x) ∈ Rdu is the solution to the PDE, t denotes time, x is a vector of
spatial coordinates in the domain Ω, and N [·] is a linear or nonlinear differential
operator. The function g describes the initial condition (IC) of the PDE, and B[·]
is a boundary operator corresponding to Dirichlet, Neumann, Robin, or periodic
boundary conditions.

In PINNs, the solution u(t, x) of the PDE is represented by a neural network
uθ(t, x) with parameters θ. This model can then be trained by minimizing a loss
with three components:

L(θ) = λiLi(θ) + λbLb(θ) + λfLf (θ). (2)

The first two terms consist of a supervised loss that guarantees that the func-
tion learned by the neural network satisfies the initial and boundary conditions

of the problem. That is, given randomly sampled points
{
xi
i

}Ni

i=1
from Ω and{

tib, x
i
b

}Nb

i=1
from [0, T ]× ∂Ω, we have:



6 I. Kissami et al.

Li(θ) =
1

Ni

Ni∑
i=1

∥∥uθ

(
0,xi

i

)
− g

(
xi
i

)∥∥2
2
, Lb(θ) =

1

Nb

Nb∑
i=1

∥∥B [uθ]
(
tib,x

i
b

)∥∥2
2
.

(3)

The third term is the objective informed by physics, ensuring that the learned
function uθ(t, x) satisfies the PDE by minimizing:

Lf (θ) =
1

Nf

Nf∑
i=1

∥∥∥∥∂uθ

∂t
(t, x) +N [uθ] (t,x)

∥∥∥∥2
2

(4)

where the derivatives of uθ are calculated by automatic differentiation. This

penalty is enforced on a set
{
tif , x

i
f

}Nf

i=1
of randomly sampled points from the do-

main. Furthermore, these losses are weighted by hyper-parameters {λi, λb, λf},
leading to more flexibility during training. Figure 2 shows a general PINN frame-
work to solve this problem.

PINNs variant: FI-PINNs (failure-informed PINNs) [20] enhance prediction in
challenging regions by targeting under-predicted areas using adaptive sampling.
HPINNs (Hard-Constrained Physics-Informed Neural Networks) [42] address
tightly constrained inverse design problems by integrating hard constraints into
the PINN framework via methods like the penalty method or the augmented
Lagrangian.

gPINNs [66] improve accuracy and training efficiency by incorporating PDE
gradient information into the loss function, especially for steep gradients. Bilevel
PINNs [23] address PDE-constrained optimization using a bilevel optimization
framework, with an inner loop for PDE constraints using PINNs and an outer
loop for optimizing objectives, often using techniques like Broyden’s hypergra-
dients. FPINNs [51] solve problems defined by fractional differential equations,
suitable for modeling complex anomalous diffusion in materials science and geo-
physics.

XPINNs (eXtended Physics-Informed Neural Networks) [31] address multi-
domain problems by dividing the computational domain into subdomains, each
trained with its own neural network, enhancing parallelism and efficiency with
complex geometries and variable boundaries. Bayesian PINNs [65] apply Bayesian
inference for uncertainty quantification, providing point estimates and uncer-
tainty estimations crucial for geological simulations and predictive maintenance.

Deep Ritz method: The Deep Ritz method [67], designed to solve variational
problems from PDE, is non-linear, adaptive, and suited to high dimensions,
working well with stochastic gradient descent. Challenges include local minima,
saddle points, and difficulties with essential boundary conditions. To address
saddle-point issues, [61] introduces a deep double Ritz method using two neural
networks to approximate functions in a nested minimization strategy.



Neural networks for numerical simulation 7

Neural Operators: Neural operators enhance neural networks by learning map-
pings in function spaces, making them suitable for modeling spatio-temporal
processes and PDEs. The Fourier Neural Operator (FNO) [39] uses the Fourier
space for the integral kernel, achieving accuracy and efficiency, especially in
fluid dynamics. Wavelet Neural Operators (WNOs) [60] use wavelet transforma-
tions to handle nonlinear PDEs, complex geometry, and boundary constraints.
Graph Neural Operators (GNOs) [40], like the Multipole Graph Neural Operator
(MGNO) [41], use graph neural networks for spatial relationships, efficiently han-
dling long-range interactions with a hierarchical graph structure inspired by the
fast multipole method. MGNOs excel in problems like Darcy flow and Burgers’
equation, providing high accuracy and efficiency.

Physics-Informed Transformer Networks: Physics-Informed Transformer Net-
works (PITs) [16] blend transformer designs with physics-based learning. They
employ attention processes to capture dependencies in input space, making them
ideal for irregular grids and large-scale problems. PITs leverage data and physics-
based constraints for robust solutions to time-varying PDE and complex issues,
enhancing generalization and efficient dynamic system modeling.

Newton Informed Neural Operator: Classical neural network methods such as
PINN, Deep Ritz, and DeepONet struggle with non-linear PDEs having multiple
solutions due to their ill-posed nature. The Newton-informed neural operator
[22] integrates classical Newton methods, reducing the need for supervised data
points compared to other neural network approaches.

2.4 Examples of Partial Differential Equations

PDEs are equations with functions and their partial derivatives across multiple
variables, essential for modeling physical phenomena like fluid flow, heat transfer,
and wave propagation. Here are key PDE examples in science and engineering:

Navier-Stokes Equations The Navier-Stokes equations govern fluid motion, en-
capsulating momentum and mass conservation, crucial in fluid dynamics. For
incompressible flow, these equations are:

∂u

∂t
+ (u · ∇)u = −∇p+ ν∇2u+ f (5)

∇ · u = 0 (6)

where u is the velocity field, p is the pressure field, ν is the kinematic viscosity,
and f represents external forces.

Burgers’ Equation Burgers’ equation is a fundamental partial differential equa-
tion from fluid mechanics. It is used to model various types of wave phenomena
and is given by:



8 I. Kissami et al.

Fig. 2. A general framework to solve the forward problem of nonlinear PDE [68]

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
(7)

where u is the velocity field and ν is the viscosity.

Laplace’s Equation Laplace’s equation, a second-order partial differential equa-
tion, describes scalar fields like electric potential and fluid velocity potential in
fields such as fluid dynamics and electromagnetism. It is given by:

∇2ϕ = 0 (8)

where ϕ is the scalar potential function. In Cartesian coordinates, for a function
ϕ(x, y, z), the equation expands to:

∂2ϕ

∂x2
+

∂2ϕ

∂y2
+

∂2ϕ

∂z2
= 0 (9)

Inverse Problems Involving Nonlinear PDE Inverse problems aim to find un-
known parameters or inputs of a PDE from observed outputs. In fluid dynam-
ics, this involves identifying the source term f in the Navier-Stokes equations
from velocity and pressure observations. These are typically framed as optimiza-
tion problems to minimize the discrepancy between observed data and model
predictions, under PDE constraints.



Neural networks for numerical simulation 9

3 Challenges associated with Neural Networks for solving
PDE

3.1 Limitations of Neural Networks for solving PDE

Neural networks excel at challenging PDE tasks but have notable limitations,
among them:

– Divergence behavior: Neural networks require consideration of their conver-
gence behavior, which can be challenging due to potential entrapment in local
minima during optimization. The weights in these networks, the unknowns
in solving PDE, are derived using a less robust iterative solver compared to
traditional numerical methods.

– Scalability: Neural networks are challenging to study in high-dimensional
or complex domain spaces. As problem complexity increases, computational
and memory demands grow, making it costly to simulate real-world problems
requiring precise spatial solutions.

– Optimal Neural Network Architecture: Designing a neural network is crucial
before exploring a task. Performance improves with the right number of
neurons per layer and correct activation functions. Developing an optimal
architecture is time-consuming and computationally intensive.

– Data-Gathering Issues: The performance of the neural network depends on
the quality and volume of the data. Collecting sufficient and high-quality
data is challenging and crucial for accurately describing a problem.

– Neural networks often need retraining whenever they face a new problem, a
transformed problem, or a modified domain.

– Relying solely on physical laws in neural network training does not guaran-
tee a perfect application. The physical correctness of a network’s solution
depends on the approximation accuracy. Proper problem solving requires
precisely defined geometry, initial and boundary conditions.

3.2 Understanding of the convergence of neural networks

Neural network convergence occurs when the values of the training loss function
consistently decrease, assuming that minimization is the goal.

Studying the convergence of neural networks in solving partial differential
equations (PDEs) is crucial. Convergence means the neural network increasingly
approximates the true PDE solution during training. Understanding this is vital
for neural network-based methods.

Convergence in Physics-Informed Neural Networks (PINNs) The con-
vergence of PINNs depends on the architecture of the neural network, the quality
and quantity of data, and the optimization algorithms. The model minimizes a
loss function by combining data with physical insights, often through addition
or averaging, including terms for boundary conditions and governing equations.



10 I. Kissami et al.

– Optimization Landscape: The optimization landscape of PINNs is complex,
with multiple local minima that can trap the optimization process. Adap-
tive learning rates, advanced gradient descent methods, and regularization
techniques help navigate this landscape and encourage convergence towards
a global or near-global minimum.

– Loss Function Composition: The composition of the loss function is crucial.
PINNs employ a composite loss that includes data-driven and physics-based
terms. The balance between these terms, controlled by hyperparameters,
affects convergence. Improper weighting can lead to slow convergence and
suboptimal solutions.

– Gradient pathologies, such as vanishing or exploding gradients, can hin-
der the convergence of PINNs. Using advanced activation functions such as
ReLU, SELU, and batch normalization can help alleviate these issues and
enhance training stability.

Convergence in Neural Operators Fourier and Wavelet Neural Operators
learn mappings across function spaces, presenting convergence challenges. They
require precise design and training to capture complex functional relationships
accurately.

– Spectral methods like Fourier and Wavelet Neural Operators enhance con-
vergence by efficiently capturing dominant solution modes. They require ex-
tensive training to perform well across various problem domains and scales.

– Transfer Learning: Convergence improves by pre-training neural operator
models on related tasks and then retraining with specific datasets, speeding
up convergence and enhancing generalization.

Convergence in Transformer Networks Transformer networks in numerical
simulations use attention mechanisms to manage input space dependencies, with
their complexity and input scale impacting convergence.

– Attention Mechanisms: Long-range dependencies in the data are effectively
modeled through the self-attention mechanisms of transformer networks,
which may lead to a more robust convergence. However, this is not without
challenges, as it could be expensive to compute and require large datasets
for training.

– Scalability and Efficiency: Scalability in transformer networks is a double-
edged sword. They’re effective for large problems, but convergence in high-
dimensional spaces requires efficient methods like gradient clipping and dis-
tributed training.

Convergence in Newton Informed Neural Operators Newton Informed
Neural Operators combine Newton methods with neural networks to improve
convergence for nonlinear PDEs with multiple solutions.



Neural networks for numerical simulation 11

– Hybrid Optimization: Integrating Newton’s method provides a robust frame-
work for managing solutions with better convergence rates, requiring fewer
supervised data points and leveraging strengths from classical numerical
methods and neural networks.

– Iterative Refinement: Newton-informed techniques iteratively enhance ap-
proximations for accurate solutions, effectively handling complex solution
landscapes.

The convergence of neural network simulations is based on network architec-
ture, loss function design, optimization algorithms, and domain characteristics
of the problem. Key approaches like neural operators, PINNs, Transformer Net-
works, and Newton Informed N-operators require further study to optimize con-
vergence. Addressing these challenges will make artificial neural networks more
reliable and relevant for complex scientific and engineering computations.

4 Discussion

4.1 Performance metrics

The evaluation of numerical simulation programs focuses on the execution time
of a set problem size. Performance is tested by varying the number of cores (e.g.
2, 4, 8, etc.) and measuring execution time for a fixed data size. This helps assess
how execution time changes with different core counts, noting that doubling cores
does not necessarily halve the time.

In addition, scalability testing can also be combined with measurements of :

– response time;
– requests per second, transactions per second;
– performance related to the number of users on the system;
– CPU and RAM usage during tests;
– network utilization - number of data items sent and received.

In PDE modeling, mesh generation is a complex yet vital process in numerical
computation. It subdivides a 3D model into smaller flow domains for discretizing
and solving governing equations. Mesh quality is crucial for accurate and stable
simulation results.

Meshing is a simulation bottleneck; thus, ensuring high-quality meshes is
crucial for fast and accurate analysis. Understanding mesh quality assessment
criteria is essential, and PDE solvers assist engineers in evaluating mesh quality
and estimating errors.

In fluid system simulation, the challenge begins with system geometry. Mesh
discretization captures the unique flow features of each cell, but this is difficult
because of the complexity of the domain, the complexity of the model, and the
mesh type.

Regarding the good properties we may expect for a simulation result, we refer
to [49]. This tutorial explains, for instance, the notions of errors and uncertainty.



12 I. Kissami et al.

In machine learning, loss functions measure model performance and are dif-
ferentiable, aiding training via optimization methods like Gradient Descent. In
contrast, performance metrics evaluate model performance during training and
testing and need not be differentiable. Regression problems require metrics that
calculate the distance between predictions and ground truth.

To evaluate regression models, we use metrics such as mean absolute error
(MAE), mean squared error (MSE), root mean squared error (RMSE), and R-
squared R2. Classification models are evaluated using Accuracy, Confusion Ma-
trix, Precision and Recall, F1-score, and AU-ROC. Definitions of these metrics
are available online.

The diverse performance metrics complicate the comparison of the results
from classical PDE simulations and PINNs. Clarifying this issue remains an
open question. The main concern is determining which technique provides better
quality results and understanding the associated risks.

4.2 Frugal methods and algorithms

Sustainability is increasingly crucial due to the climate crisis, which includes
energy efficiency, resource preservation, and flexible energy use in computing.
The paper [13] examines AI’s role in this crisis, urging a paradigm shift to
foster a resilient society. Enhancing AI algorithm design is feasible for better
memory efficiency. For example, in [14], Tri Dao developed a framework for
efficient attention mechanisms in transformers.

To build on the previous section, we should consider whether there are per-
formance metrics and tools to assess the environmental impact of techniques.
Researchers must ensure that their algorithms and library components are effi-
cient.

Python libraries like CodeCarbon7, CarbonTracker8, and ImpactTracker[3]
help measure environmental indicators. CodeCarbon tracks and analyzes carbon
emissions from compute engines. CarbonTracker predicts energy use and car-
bon footprint in deep learning model training. ImpactTracker promotes energy-
efficient reinforcement learning through a leaderboard.

4.3 A system view of the ecosystem

The algorithms and tools are part of a larger neural network ecosystem for nu-
merical simulations, which forms an organized framework and computing plat-
form. In [15], authors collected papers on advances in High Performance Com-
puting for AI, focusing on load-balancing schedulers for CPU–GPU systems,
hardware accelerators, and rapid neural network training on GPU clusters for
high-accuracy recognition.

In [48], the authors proposed a new direct-time Graph Neural Networks
(GNN) architecture for irregular meshes, featuring increasing graph sizes with

7 https://github.com/mlco2/codecarbon
8 https://github.com/lfwa/carbontracker



Neural networks for numerical simulation 13

spline convolutions. In [56], Melissa was introduced as a system for large-scale
ensemble runs with thousands of simulations across varying inputs, which aids
in sensitivity analysis, surrogate training, reinforcement learning, and data as-
similation while handling large data volumes without storage. Melissa is a file-
avoiding, fault-tolerant, and elastic framework for such ensemble runs on super-
computers.

INRIA France initiated significant projects in 2019. The ”HPC - AI - Big-
Data Convergence Days (Conv’2019)”9 enabled the exploration of synergies be-
tween AI, Big Data, and HPC. It set the stage for 2024 discussions. A recent
event in 2024, ”GAP: Grenoble Artificial Intelligence for Physical Sciences”10,
included noteworthy presentations such as ”Inferring effective state variables and
Dynamics from Data”, ”Simulation-based Inference for the Physical Sciences”,
”An Overview of Operator Learning”, and ”Efficient Training of Deep Learning
Models” by Julia Gusak, focusing on ”Neural Ordinary Differential Equations
(Neural ODEs)”.

INRIA introduced DeepPhysX11, a platform to bridge digital technology and
AI algorithms such as neural networks.

5 Use cases and available resources on the Web

This section demonstrates web programming use cases to show the practical
application of the concepts discussed.

5.1 Solving the problem with Neural Networks

1. Physics-Informed Neural Networks (PINNs):
– PINNs12: Offers Tensorflow and Pytorch examples and tutorials on using

PINNs for examples for solving the Burgers’ and Helmholtz equations.
The companion tutorial of the original PINN paper [52] is also available
online13.

2. Neural operators:
– FNO: 14: Implements neural operators that learn mappings between

function spaces, useful for high-dimensional PDE and spatiotemporal
processes. Includes examples of solving the Darcy equation.

– WNO: 15: Uses wavelet transformations and neural networks to solve
highly nonlinear PDE, handling complex geometries and boundary con-
ditions. It includes examples for 1-D Burger’s equation, 2-D Allen-Cahn
equation, 2-D Darcy equation, and 2-D Navier-Stokes equation.

9 https://project.inria.fr/conv2019/
10 https://discord.gg/PNUhG88SNC
11 https://www.inria.fr/en/combining-numerical-simulation-artificial-intelligence
12 https://github.com/omniscientoctopus/Physics-Informed-Neural-Networks
13 https://maziarraissi.github.io/PINNs/
14 https://github.com/neuraloperator/neuraloperator
15 https://github.com/simon596/Wavelet-Neural-Operator



14 I. Kissami et al.

3. Physics-Informed Transformer Networks (PITNs):
– PITNs 16: Combine transformer architectures with physics-informed learn-

ing to solve PDE, including examples for 1D reaction, 1D wave, convec-
tion, and Navier-Stokes equations.

5.2 Solving the problem with conventional methods

1. Finite Element Method (FEM)
– FEniCS17 [5]: An open-source computing platform for solving PDE using

FEM.
– FreeFEM++ 18 [24]: open-source PDE solver that uses FEM for numer-

ics. Provides a high-level programming language for the description of
PDE.

2. Finite Difference Method (FDM)
– FiPy19: A Python library for solving PDE using finite-volume and finite-

difference methods.
3. Finite Volume Method (FVM)

– OpenFOAM20 [10]: An open-source C++ toolbox for the development
of customized numerical solvers, and pre-/post-processing utilities for
solving continuum mechanics problems, including CFD.

– Manapy 21 [35]: A Python library for solving PDE using finite-volume
methods using JIT compilation. Includes 2D and 3D examples using
hybrid meshes.

4. Multigrid Methods
– PyAMG22 [6]: A Python library for Algebraic Multigrid (AMG) solvers.

6 Conclusion

This paper provides a comprehensive review of recent neural network advance-
ments in solving partial differential equations (PDE), focusing on methods like
Physics-Informed Neural Networks (PINNs), Neural Operators, Transformers,
and Newton Informed Neural Operators.

Physics-Informed Neural Networks (PINNs) have been developed to incor-
porate physical laws into neural network training, thus enhancing their abil-
ity to accurately solve partial differential equations (PDEs). PINNs have also
evolved into various derivatives, such as Failure-Informed, Hard-Constrained,
and Gradient-Enhanced PINNs, each addressing specific challenges to improve
performance in different contexts.

16 https://github.com/AdityaLab/pinnsformer
17 https://github.com/FEniCS
18 https://github.com/FreeFem
19 https://github.com/usnistgov/fipy
20 https://github.com/OpenFOAM
21 https://github.com/imadki/manapy
22 https://github.com/pyamg/pyamg



Neural networks for numerical simulation 15

Neural operators are neural networks that map between function spaces,
making Fourier and Wavelet Neural Operators effective for modeling spatio-
temporal processes and solving complex PDEs. They are highly accurate and
computationally efficient, particularly for high-dimensional fluid dynamics and
problems.

Physics-Informed Transformers: Originally designed for natural language,
Transformer Networks are now adapted through Physics-Informed Transformers
for numerical simulations, leveraging attention mechanisms to capture depen-
dencies across input spaces, ideal for irregular grids and large-scale problems.

The Newton Informed Neural Operator blends classical Newton methods
with neural networks, introducing a novel approach. It not only differentiates
between multiple solutions, but also uses less supervised data than current neural
network techniques.

Despite progress, challenges remain, notably convergence and stability in
high-dimensional spaces. More work is needed to scale methods to large prob-
lems and design efficient networks. The quality and quantity of training data
significantly affect the performance of the model.

Future research should explore improved training algorithms, advanced hard-
ware, and hybrid approaches that combine neural networks with numerical meth-
ods. Customizing neural network architectures for specific science problems is
crucial for efficiency.

References

1. Aboussi, W., Ziggaf, M., Kissami, I., Boubekeur, M.: A highly efficient finite volume
method with a diffusion control parameter for hyperbolic problems. Mathematics
and Computers in Simulation (2023)

2. Anderson, J.D., Wendt, J.: Computational fluid dynamics, vol. 206. Springer (1995)

3. Anthony, L.F.W., Kanding, B., Selvan, R.: Carbontracker: Tracking and
predicting the carbon footprint of training deep learning models (2020).
https://doi.org/10.48550/ARXIV.2007.03051, https://arxiv.org/abs/2007.03051

4. Baliga, B., Patankar, S.: A new finite-element formulation for convection-diffusion
problems. Numerical Heat Transfer 3(4), 393–409 (1980)

5. Baratta, I.A., Dean, J.P., Dokken, J.S., Habera, M., Hale, J.S., Richard-
son, C.N., Rognes, M.E., Scroggs, M.W., Sime, N., Wells, G.N.: DOLFINx:
the next generation FEniCS problem solving environment. preprint (2023).
https://doi.org/10.5281/zenodo.10447666

6. Bell, N., Olson, L.N., Schroder, J.: Pyamg: Algebraic multigrid solvers in python.
Journal of Open Source Software 7(72), 4142 (2022)

7. Benkhaldoun, F., Cérin, C., Kissami, I., Saad, W.: Challenges of translating hpc
codes to workflows for heterogeneous and dynamic environments. In: 2017 Inter-
national Conference on High Performance Computing & Simulation (HPCS). pp.
858–863. IEEE (2017)

8. Burnham, W.H.: Memory, historically and experimentally considered. i. an histori-
cal sketch of the older conceptions of memory. The American Journal of Psychology
2(1), 39–90 (1888)



16 I. Kissami et al.

9. Calzolari, G., Liu, W.: Deep learning to replace, improve, or aid cfd analysis in
built environment applications: A review. Building and Environment 206, 108315
(2021)

10. Chen, G., Xiong, Q., Morris, P.J., Paterson, E.G., Sergeev, A., Wang, Y.: Open-
foam for computational fluid dynamics. Notices of the AMS 61(4), 354–363 (2014)

11. Chen, J., Nakao, J., Qiu, J.M., Yang, Y.: A high-order eulerian-lagrangian runge-
kutta finite volume (el-rk-fv) method for scalar conservation laws. arXiv preprint
arXiv:2405.09835 (2024)

12. Constantin, P., Foiaş, C.: Navier-stokes equations. University of Chicago press
(1988)

13. Couillet, R., Trystram, D., Ménissier, T.: The submerged part
of the ai-ceberg [perspectives]. IEEE Signal Process. Mag.
39(5), 10–17 (2022). https://doi.org/10.1109/MSP.2022.3182938,
https://doi.org/10.1109/MSP.2022.3182938

14. Dao, T.: Flashattention-2: Faster attention with better parallelism and work par-
titioning (2023)

15. Dias de Assuncao, M., Rocha Rodrigues, E., Raffin, B.: Preface –
special issue advances on high performance computing for artifi-
cial intelligence. Journal of Parallel and Distributed Computing 156,
131 (2021). https://doi.org/https://doi.org/10.1016/j.jpdc.2021.06.002,
https://www.sciencedirect.com/science/article/pii/S0743731521001313

16. Dos Santos, F., Akhound-Sadegh, T., Ravanbakhsh, S.: Physics-informed trans-
former networks. In: The Symbiosis of Deep Learning and Differential Equations
III (2023)

17. Elmisaoui, S., Kissami, I., Ghidaglia, J.M.: High-performance computing to ac-
celerate large-scale computational fluid dynamics simulations: A comprehensive
study. In: International Conference on Advanced Intelligent Systems for Sustain-
able Development. pp. 352–360. Springer (2023)

18. ENKIEWICZ, O.C.Z.: Introductory lectures on the finite element method. ME-
CHANICS OF SOLIDS (1972)

19. Euler, L.: Introductio in analysin infinitorum, volume 2 (1748)
20. Gao, Z., Yan, L., Zhou, T.: Failure-informed adaptive sampling for pinns. SIAM

Journal on Scientific Computing 45(4), A1971–A1994 (2023)
21. Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai, B., Liu, T., Wang,

X., Wang, G., Cai, J., et al.: Recent advances in convolutional neural networks.
Pattern recognition 77, 354–377 (2018)

22. Hao, W., Liu, X., Yang, Y.: Newton informed neural operator for computing mul-
tiple solutions of nonlinear partials differential equations (2024)

23. Hao, Z., Ying, C., Su, H., Zhu, J., Song, J., Cheng, Z.: Bi-level physics-informed
neural networks for pde constrained optimization using broyden’s hypergradients.
arXiv preprint arXiv:2209.07075 (2022)

24. Hecht, F., Pironneau, O., Le Hyaric, A., Ohtsuka, K.: Freefem++ manual. Labo-
ratoire Jacques Louis Lions (2005)

25. Hendrycks, D., Gimpel, K.: Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415 (2016)

26. Hinton, G.E.: Deep belief networks. Scholarpedia 4(5), 5947 (2009)
27. Hong, H.K., Chen, J.T.: Derivations of integral equations of elasticity. Journal of

Engineering Mechanics 114(6), 1028–1044 (1988)
28. Hua, Y., Guo, J., Zhao, H.: Deep belief networks and deep learning. In: Proceedings

of 2015 International Conference on Intelligent Computing and Internet of Things.
pp. 1–4. IEEE (2015)



Neural networks for numerical simulation 17

29. Huray, P.G.: Maxwell’s equations. John Wiley & Sons (2009)
30. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by

reducing internal covariate shift. In: Proceedings of the 32nd International Confer-
ence on International Conference on Machine Learning - Volume 37. p. 448–456.
ICML’15, JMLR.org (2015)

31. Jagtap, A.D., Karniadakis, G.E.: Extended physics-informed neural networks
(xpinns): A generalized space-time domain decomposition based deep learning
framework for nonlinear partial differential equations. Communications in Com-
putational Physics 28(5) (2020)

32. Jin, X., Cai, S., Li, H., Karniadakis, G.E.: Nsfnets (navier-stokes flow nets):
Physics-informed neural networks for the incompressible navier-stokes equations.
Journal of Computational Physics 426, 109951 (2021)

33. Kassam, A.K., Trefethen, L.N.: Fourth-order time-stepping for stiff pdes. SIAM
Journal on Scientific Computing 26(4), 1214–1233 (2005)

34. Kiener, A., Langer, S., Bekemeyer, P.: Data-driven correction of coarse grid cfd
simulations. Computers & Fluids p. 105971 (2023)

35. Kissami, I.: Manapy: An mpi-based python framework for solv-
ing poisson’s equation using finite volume on unstructured-grid.
In: AIP Conference Proceedings. vol. 3034. AIP Publishing (2024).
https://doi.org/https://doi.org/10.1063/5.0194750

36. Kou, J., Zhang, W.: Data-driven modeling for unsteady aerodynamics and aeroe-
lasticity. Progress in Aerospace Sciences 125, 100725 (2021)

37. Lagrange, J.L.: Théorie des fonctions analytiques (paris). Oeuvres de Lagrange IX
(1797)

38. Li, Z., Liu, F., Yang, W., Peng, S., Zhou, J.: A survey of convolutional neural net-
works: analysis, applications, and prospects. IEEE transactions on neural networks
and learning systems (2021)

39. Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhattacharya, K., Stuart, A.,
Anandkumar, A.: Fourier neural operator for parametric partial differential equa-
tions (2020). arXiv preprint arXiv:2010.08895 (2010)

40. Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhattacharya, K., Stuart, A.,
Anandkumar, A.: Neural operator: Graph kernel network for partial differential
equations. arXiv preprint arXiv:2003.03485 (2020)

41. Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Stuart, A., Bhattacharya, K.,
Anandkumar, A.: Multipole graph neural operator for parametric partial differen-
tial equations. Advances in Neural Information Processing Systems 33, 6755–6766
(2020)

42. Lu, L., Pestourie, R., Yao, W., Wang, Z., Verdugo, F., Johnson, S.G.: Physics-
informed neural networks with hard constraints for inverse design. SIAM Journal
on Scientific Computing 43(6), B1105–B1132 (2021)

43. Maazioui, S., Kissami, I., Benkhaldoun, F., Ouazar, D.: Numerical study of vis-
coplastic flows using a multigrid initialization algorithm. Algorithms 16(1), 50
(2023)

44. Mao, Z., Jagtap, A.D., Karniadakis, G.E.: Physics-informed neural networks for
high-speed flows. Computer Methods in Applied Mechanics and Engineering 360,
112789 (2020)

45. McCulloch, W.S., Pitts, W.: A logical calculus of the ideas immanent in nervous
activity. The bulletin of mathematical biophysics 5, 115–133 (1943)

46. Medsker, L., Jain, L.C.: Recurrent neural networks: design and applications. CRC
press (1999)



18 I. Kissami et al.

47. Medsker, L.R., Jain, L.: Recurrent neural networks. Design and Applications 5(64-
67), 2 (2001)

48. Meyer, L.T., Pottier, L., Ribés, A., Raffin, B.: Deep surrogate for direct time fluid
dynamics. CoRR abs/2112.10296 (2021), https://arxiv.org/abs/2112.10296

49. NASA: Tutorial on cfd verification and validation,
https://www.grc.nasa.gov/www/wind/valid/tutorial/tutorial.html

50. Obiols-Sales, O., Vishnu, A., Malaya, N., Chandramowliswharan, A.: Cfdnet: A
deep learning-based accelerator for fluid simulations. In: Proceedings of the 34th
ACM international conference on supercomputing. pp. 1–12 (2020)

51. Pang, G., Lu, L., Karniadakis, G.E.: fpinns: Fractional physics-informed neural
networks. SIAM Journal on Scientific Computing 41(4), A2603–A2626 (2019)

52. Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks:
A deep learning framework for solving forward and inverse problems involving
nonlinear partial differential equations. Journal of Computational physics 378,
686–707 (2019)

53. Richardson, L.: The approximate solution of various boundary problems by surface
integration combined with freehand graphs. Proceedings of the Physical Society of
London 23(1), 75 (1910)

54. Rosenblatt, F.: The perceptron: a probabilistic model for information storage and
organization in the brain. Psychological review 65(6), 386 (1958)

55. Santos, F.D., Akhound-Sadegh, T., Ravanbakhsh, S.: Physics-informed transformer
networks. In: The Symbiosis of Deep Learning and Differential Equations III
(2023), https://openreview.net/forum?id=zu80h9YryU

56. Schouler, M., Caulk, R.A., Meyer, L.T., Terraz, T., Conrads, C., Friede-
mann, S., Agarwal, A., Baldonado, J.M., Pogodzinski, B., Sekula, A., Ribés,
A., Raffin, B.: Melissa: coordinating large-scale ensemble runs for deep learn-
ing and sensitivity analyses. J. Open Source Softw. 8(87), 5291 (2023).
https://doi.org/10.21105/JOSS.05291, https://doi.org/10.21105/joss.05291

57. Smith, G.D.: Numerical solution of partial differential equations: finite difference
methods. Oxford university press (1985)

58. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov,
R.: Dropout: A simple way to prevent neural networks from overfit-
ting. Journal of Machine Learning Research 15(56), 1929–1958 (2014),
http://jmlr.org/papers/v15/srivastava14a.html

59. Steinhauser, M.O.: Fundamentals of Numerical Simulation, pp. 185–225. Springer
International Publishing, Cham (2022). https://doi.org/10.1007/978-3-030-98954-
5 4, https://doi.org/10.1007/978-3-030-98954-5 4

60. Tripura, T., Chakraborty, S.: Wavelet neural operator: a neural operator for para-
metric partial differential equations. arXiv preprint arXiv:2205.02191 (2022)

61. Uriarte, C., Pardo, D., Muga, I., Muñoz-Matute, J.: A deep double
ritz method (d2rm) for solving partial differential equations using neu-
ral networks. Computer Methods in Applied Mechanics and Engineering
405, 115892 (2023). https://doi.org/https://doi.org/10.1016/j.cma.2023.115892,
https://www.sciencedirect.com/science/article/pii/S0045782523000154

62. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N.,
Kaiser, L., Polosukhin, I.: Attention is all you need. In: Proceedings of the 31st
International Conference on Neural Information Processing Systems. p. 6000–6010.
NIPS’17, Curran Associates Inc., Red Hook, NY, USA (2017)

63. Wang, J.X., Xiao, H.: Data-driven cfd modeling of turbulent flows through complex
structures. International Journal of Heat and Fluid Flow 62, 138–149 (2016)



Neural networks for numerical simulation 19

64. Wilkes, A.L., Wade, N.J.: Bain on neural networks. Brain and cognition 33(3),
295–305 (1997)

65. Yang, L., Meng, X., Karniadakis, G.E.: B-pinns: Bayesian physics-informed neu-
ral networks for forward and inverse pde problems with noisy data. Journal of
Computational Physics 425, 109913 (2021)

66. Yu, J., Lu, L., Meng, X., Karniadakis, G.E.: Gradient-enhanced physics-informed
neural networks for forward and inverse pde problems. Computer Methods in Ap-
plied Mechanics and Engineering 393, 114823 (2022)

67. Yu, W.E..B.: The deep ritz method: A deep learning-based numerical algorithm
for solving variational problems. Communications in Mathematics and Statistics
6, 1–12 (2018)

68. Yuan, L., Ni, Y.Q., Deng, X.Y., Hao, S.: A-pinn: Auxiliary physics in-
formed neural networks for forward and inverse problems of nonlinear
integro-differential equations. Journal of Computational Physics 462,
111260 (2022). https://doi.org/https://doi.org/10.1016/j.jcp.2022.111260,
https://www.sciencedirect.com/science/article/pii/S0021999122003229

69. Zhu, Y., Dinh, N.: A data-driven approach for turbulence modeling. arXiv preprint
arXiv:2005.00426 (2020)


