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ABSTRACT

Adaptive support can help learners in Open-Ended Learning Envi-
ronments (OELEs), where the free-form nature of the interaction
can be confusing to students. In this paper, we design and evalu-
ate an Intelligent Pedagogical Agent (IPA) for an OELE designed to
foster Computational Thinking (CT). Specifically, we design help
interventions for an in-the-wild scenario where students interact
with the OELE in an unmonitored, self-directed manner. We build
a student model by extracting meaningful student behaviors on
real-world interaction data obtained during interaction in online
classrooms and including expert insights. We show that these stu-
dent models perform better than a baseline and have the potential
for adaptive support in self-directed interaction with the OELE. We
design an IPA with the help of teachers, leveraging the student
behaviors extracted from data. Lastly, we get insights into the value
of these help interventions by empirically evaluating the IPA in a
formal user study.

CCS CONCEPTS

« Human-centered computing — User models; User studies;
Field studies.
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1 INTRODUCTION

OELEs are interactive systems designed to allow students to engage
in learning with minimal constraints [13]. Previous work has shown
the value of OELEs in fostering students’ learning (eg. [12, 13]) by
engaging learners through their perspectives [14] and promoting
reflection. Success in OELEs, however, is dependent on the learner’s
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voluntary cognitive engagement [29]. For some learners, the ex-
ploratory nature of OELEs can often be confusing and it can be
difficult to quantify progress, leading learners to detrimental inter-
action with the environment such as incorrectly interpreting visual
cues or making imprecise inferences from the learning content
[11, 23]. Research has shown that adaptive support can alleviate
these detriments in OELEs, by monitoring and responding to the
learners’ difficulties in real-time, e.g., [2, 16, 25, 26, 31].

In this paper, we build and evaluate an intelligent pedagogical
agent (IPA) for adaptive support in a specific OELE designed to
foster computational thinking (CT) skills, Unity-CT, developed by
UME Academy. CT is defined as the ability to express problems
and their solutions computationally, for which there have been
advocated efforts [1, 9, 34] by K-12 educators to focus on, akin to
reading, writing, and arithmetic. Unity-CT was originally designed
for in-person interaction with UME Academy’s teachers. From 2020-
2022 onward, Unity-CT moved online, but still involved interaction
with teachers. Since 2023, UME Academy offers self-directed online
lessons where students interact with Unity-CT without the presence
of a teacher. Here, we build adaptive support, for the first time for
fully unmonitored interaction in Unity-CT without the presence of
researchers or teachers from UME Academy. Adaptive support can
help provide personalized assistance to struggling students and is
even more important for students interacting with OELEs in-the-
wild. Specifically, we use in-the-wild to refer to fully unmonitored,
self-directed interaction with an OELE.

To build the student model driving our IPA, we apply the existing
data-driven Framework for User Modelling and Adaptation (FUMA)
[15] to Unity-CT’s interaction data. FUMA has shown success in
user modeling for open-ended learning activities like Massive Open
Online Courses [22] (MOOCs), and interactive learning simulations,
[8, 16] and even in Unity-CT [20]. Lallé et al. [20] previously lever-
aged FUMA to build interpretable data-driven student models in
Unity-CT for adaptive support using real-world data collected in
2019 during in-person lessons with Unity-CT. Unfortunately, since
in-person lessons were halted in 2020 due to the SARS-CoV-2 pan-
demic, and the timeline of student interaction was altered when
Unity-CT moved online, we do not know to what extent their stu-
dent model is still applicable to the current lessons in Unity-CT.
Here, we leverage FUMA similarly, but build our student model
from scratch using data from online interaction with Unity-CT. In
this process, we refine the data-driven student model from FUMA
with expert insights from teachers at UME Academy, allowing us
to build a final data-informed student model for adaptive support.
We delineate here between data-driven (let data speak for itself)
and data-informed (let us figure out what data tell us) [33] in the
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sense that the data-driven models rely on data alone whereas data-
informed models build on the purely data-driven student model by
considering it along with other factors (e.g., teachers’ insights).

In previous work [21, 35, 36], we have already designed an IPA
for Unity-CT, but for two very specific, teacher-informed errors.
These studies had positive results in terms of usability but no impact
on learning performance. Here, we develop an IPA by consider-
ing for adaptation data-driven behaviors that are more nuanced as
compared to predefined behaviors, and could better help struggling
students. Thus, we leverage the data-informed student model to
deliver real-time adaptive help interventions to students. Finally,
we evaluate the impact that our IPA has on student learning perfor-
mance by conducting a real-world user study in online self-directed
lessons in Unity-CT. To do this, we conduct a formal evaluation
between groups of students who receive adaptive help interven-
tions and those who do not. Our results show that the IPA improves
student learning performance. Moreover, we analyze the impact
that specific help interventions had on learning performance.

Specifically, our work provides two novel contributions to re-
search in adaptive support in OELEs. First, to the best of our knowl-
edge, there is only limited work for IPAs in OELEs that foster CT
skills [2, 21, 36], where adaptive support was provided based on
obvious errors and behaviors that are solely pre-defined by experts
with extensive domain knowledge but this process is laborious, and
may not capture subtle student behaviors that may go unnoticed
to experts. In our work, we design and evaluate data-informed
adaptive support based on student behaviors extracted from real-
world data combined with expert insights from teachers. Second,
most research to develop IPAs in OELEs in other domains examine
data-informed support [16, 25] but these were not for in-the-wild
interaction. In most research in adaptive support for OELEs, while
interaction may be self-directed, it is usually monitored by teachers
or researchers in laboratory or classroom settings [2, 3, 16, 25]. This
is reasonably done to limit the number of extraneous factors that
often occur in the real-world for model development. However, it
is important to evaluate IPAs in fully unmonitored environments
in order for robust adaptive support. To the best of our knowledge,
we are the first to build and evaluate an IPA for in-the-wild inter-
action with OELEs. In this regard, we provide additional empirical
evidence to research in OELEs to foster CT skills that adaptive
scaffolding can improve student learning performance.

The rest of the paper is organized as follows. In section 2 we
discuss related work. In section 3, we describe Unity-CT and the
datasets used in this paper. In section 4, we describe FUMA and how
we process data from Unity-CT. In section 5, we leverage FUMA to
build a student model for adpative support in Unity-CT. In section 6,
we discuss the design and implementation of the IPA. In section 7,
we evaluate the IPA through a formal user study. Finally, we present
our conclusions and future work in section 8.

2 RELATED WORK

IPAs have been previously shown to have great potential for improv-
ing an OELE’s ability to provide adaptive support to students [24],
albeit to the best of our knowledge, only three studies have eval-
uated IPAs in CT OELEs [2, 36]. Namely, Basu et al. [2] designed
an IPA in the CTSiM OELE to provide adaptive support to middle
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school students in interactive simulations for model building ac-
tivities (e.g., modeling a car’s speed based on its mass and engine
force). The adaptive hints delivered by the IPA, which are based on
desired students’ behaviors and solutions in the simulation, were
found to have a positive effect on their learning performance. An
important difference with our work is that the behaviors for the
adaptations are pre-defined upfront by experts, which is not possi-
ble in free-form Game Design (GD) as in Unity-CT where students
design games as they like, due to the extremely large solutions
and behaviors space. Thus, we contribute to [2] by showing that
data-driven adaptive support delivered by an IPA can be valuable to
teach CT in another activity, free-form GD, which is arguably more
engaging to a very young audience than model building, albeit
much more unconstrained. In [21, 36], they designed an IPA for
Unity-CT, which provided adaptive hints on two specific erroneous
behaviors predefined upfront by teachers. The IPA hints were found
to significantly reduce error rates, but only for one of the two target
behaviors, and with no impact on the students’ grades at the end
of the lesson. Here, we modify this IPA by leveraging a data-driven
approach to consider for adaptation more and richer suboptimal
behaviors than the ones predefined by the teachers, which suc-
cessfully improved students’ grades in the end. This provides new
insights into the applicability and value of data-driven IPA hints in
CT OELEs.

Other works have studied the value of data-informed support
in OELEs for learning domains others than free-form GD and CT,
with positive results in terms of learning outcomes and/or engage-
ment. In particular, Munshi et al. [25] designed a conversational
IPA that provides adaptive feedback while middle school students
create causal maps about science topics in Betty’s Brain. The adap-
tation is driven by suboptimal behavioral patterns both mined from
data and predefined by experts. The adaptation mechanism, how-
ever, requires to continuously assess the correctness of ongoing
students’ causal maps by comparing them to experts’ ones, which
would not be possible with Unity-CT due to the virtually unlimited
space of correct solutions and no clear way to assess correctness
until the student is done. Kardan & Conati [16] designed adaptive
support driven by suboptimal behaviors discovered from data in
a simulation to learn about constraint satisfaction algorithms. Un-
like Unity-CT, they targeted university students, whereas we focus
on elementary and middle school students in a different learning
domain (free-form GD to foster CT). Importantly, the aforemen-
tioned works were evaluated in controlled user studies, either in
laboratories [16] or in-classroom [2, 21, 25, 36], whereas we focus
on self-directed, unmonitored usages entirely in the wild, as stated
in the introduction. Thus, our work also provides novel insights on
the feasibility and value of an IPA used in such in-the-wild context.

3 UNITY-CT

Unity-CT (ume.games), developed by UME Academy, a Vancouver-
based educational company, empowers students to engage in inter-
active game construction while fostering the development of CT
skills. Students learn how to design a platformer game by interact-
ing with the open environment. Figure 1 provides a visual snapshot
of the environment embedded in the game engine, Unity.


ume.games
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Figure 1: Unity-CT Environment

Within the Unity-CT environment, students are immersed in a
scene view (fig. 1 - area 1). Here, students can interact with the
scene and game objects organized in a hierarchical structure (fig. 1
- area 2) using various manipulators (fig. 1 - area 3). Students can
interact with the scene using 4 actions - Pan, Zoom, Execute, and
Save. They can also interact with game objects using 4 manipulators
- Select, Move, Rotate, and Scale. Furthermore, students have the
ability to directly modify object properties through the inspector
panel (fig. 1 - area 4), affording them fine-grained control over their
game elements - although this is not explicitly taught during the
first lesson. All these actions can be done when the student is in Edit
Mode. Furthermore, students can test their creations by switching
to Play mode (see play button in fig. 1 - area 5). Students can switch
back and forth between Play/Edit mode by clicking on the play
button. In online classes conducted by UME Academy, teachers can
navigate through each student’s screen using a dedicated dashboard
and offer help to students who may need it. The online version of
Unity-CT had standardized the timeline for both the online classes
from 2020-2022 and the self-directed lessons from 2023 onward.
This timeline consists of a 15-minute tutorial® followed by up to an
hour of interaction with the environment.

UME Academy’s educational curriculum integrates CT design

practices in alignment with the well-established Brennan and Resnick’s

framework [4]. In this paper, we focus on the first lesson in the cur-
riculum which introduces the following challenge for students in
Unity-CT: "Create a ramp and bucket with different types of platform
objects. Add a ball that must hit at least once each type of platform
before landing in the bucket". See an example solution in fig. 1. This
challenge focuses on two high-level CT design practices. The first
one, Being Incremental and Iterative, is defined as the ability to
design algorithmic solutions in a step-by-step manner, which is
fostered by requiring students to discover new game objects, and
imagining how to use them to solve the challenge at hand. The
objects introduced in this challenge include the Ball, the Ground
Platform, and 4 special platforms - Ground_Spin, Ground_Moving,
Ground_Slide, and Ground_Bouncy. These special platforms either
spin around, move side to side, slide a ball or bounce a ball, respec-
tively. The second one, Testing and Debugging, is defined as the
ability to use trial-and-error to identify problems with the current
solution and resolve them. This is fostered in this challenge by the

IEither via a teacher in online classrooms, or an online video otherwise.
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Figure 2: FUMA Framework

need to repeatedly modify the ramp and the position of the ball
until it ends in the bucket.

4 FUMA FRAMEWORK

FUMA, fully described in [15], consists of two main parts - Behavior
Discovery and User Classification as shown in fig. 2. In Behavior Dis-
covery, users’ interaction data is pre-processed into feature vectors.
Next, a Genetic k-means clustering algorithm is applied on these
features to identify users with similar interaction behaviors. FUMA
automatically determines the optimal number of clusters based on
three measures of cluster quality - C-index [18], Calinski-Harabasz
index [5], and Silhouettes [28]. The resulting clusters are statisti-
cally compared to see if there are significant differences in learning
performance, thus identifying groups of students with varying de-
grees of learning from the interaction with the target OELE. Then,
behaviors in each cluster are mined using the Hotspot association
rule mining algorithm from WEKA [10]. Hotspot extracts behaviors
in the form of feature trees. These feature trees are composed of
nodes in the form X — ¢, where X is a feature-value pair and c is
the predicted class label for the data points where X applies.

During User Classification, the clusters and corresponding asso-
ciation rules learned during Behavior Discovery are used to build a
classifier. As new users interact with the OELE, they are classified in
real-time into one of the identified clusters, based on a membership
score that summarizes how well the user’s behavior matches the as-
sociation rules of a cluster. Thus, in addition to classifying students
in one of the clusters, this phase returns the specific association
rules describing the user’s behaviors that caused the classification.
These rules are then used to design real-time interventions that en-
courage behaviors conducive to learning and discourage those that
are suboptimal for learning. Here, we point out that since FUMA is
entirely data-driven, the behaviors mined in the rule-mining pro-
cess may not always be interpretable or directly related to specific
aspects of learning (eg. CT skills). Thus, it is crucial that we evaluate
the interpretability and quality of the association rules in order to
leverage them for adaptive interventions.

To formally evaluate the performances of the user classifier,
FUMA is trained and tested using internal nested k-fold cross-
validation (CV). Namely, the Behavior Discovery phase is run on
the training data at the inner loop of the nested CV, to fine-tune
the FUMA hyper-parameters (e.g., minimum support of the rules)
and learn the clusters and rules. The trained classifiers are then
tested on the test set at the outer loop of nested CV, in the User
Classification phase. If the performances of the user classifier are
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Table 1: Action features used for training FUMA models

Features on all
action-object
pairs together

« Total Number, Frequency of Actions

« Average, SD of intervals in-between actions

Features on each
action-object pair

of this tuple « Average, SD of time intervals

last tuple occurrence

« Frequency, Count of tuple, Longest repetition

in-between next action « Time to first, Time to

Pausing

SD of pause duration

« Number, frequency of pauses « Average and

deemed sufficient, FUMA is trained one more time on the entire
data, to extract a final set of association rules that can be used to
drive the design of adaptive support. For brevity, we shall refer to
this as the student model obtained by FUMA on a dataset.

4.1 FUMA application to Unity-CT

We track student interaction logs in Unity-CT, and use this data
to build student models for adaptive support. To apply FUMA on
Unity-CT’s interaction data, we first transform action logs into
features in a similar manner to a previously successful application
of FUMA on Unity-CT [20]. We generated action features for each
action-object pair (as tuples) available in Unity-CT, as described in
table 1. The features in table 1-(a) indicate summative statistics over
all pairs, and indicate overall student engagement, while the fea-
tures in table 1-(b) are generated for each pair, indicating behaviors
specific to individual actions and target objects. We scale time-based
features for all students by dividing these features by their interac-
tion lengths to obtain comparable measurements despite variations
in total interaction length.

To evaluate the student model built by FUMA, we generate
twenty data windows corresponding to incremental percentages
(5%, 10%, 15%... up to 100%) of student data. This allows us to verify
how early during the interaction, the student model can perform
accurate classification. This is important for our goal of providing
adaptive support in real-time to students who exhibit ineffective
behaviors. We evaluate student models through 10-fold nested cross-
validation (CV) and evaluate its accuracy in assigning students to
their final label, i.e., their cluster at the end of the interaction.

Finally, in order to analyze the differences in student learning
in the clusters, we grade student solutions based on 4 binary crite-
ria defined by the teachers who taught this lesson - whether the
solution has a ramp, whether the solution has a bucket, whether
the ball hits all special platforms, and whether the ball ends up in
the bucket. These criteria are evaluated with either 1 or 0 if they
complete it or not. Finally, the 4 criteria are averaged and students
get a solution score of 0, 0.25, 0.5, 0.75 or 1. While these solution
scores do not measure CT directly, they capture student learning
performance as these criteria are necessary to complete the lesson
and it provides a measurement of student progress in the lesson.
Solution scores in each cluster are statistically compared to identify
whether FUMA identifies clusters with a significant difference in
student learning performance.
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5 STUDENT MODELING FOR THE IPA

In this section, we describe the process of building a student model
for adaptive support in Unity-CT. We first describe the potential
datasets for our student model model. Then we apply FUMA to
each of these datasets to assess whether any of these data-driven
student models are accurate, and if they comprise of association
rules that are interpretable and feasible for providing adaptive
support in practice. Finally, we extend the data-driven student
model derived by FUMA and leverage teachers’ insights to build a
final data-informed student model.

5.1 Datasets

All students in each of the datasets described below were recruited
by UME Academy as part of their regular educational activities.
These students were from grades 4-6 living in North America. The
classes were held by UME Academy as extracurricular activities, as
they normally do, with no involvement from researchers to ensure
high ecological validity. Within each dataset, we discarded data
from students who interacted less than 10 minutes with Unity-CT,
based on recommendations from UME Academy’s teachers who
stated that students require at least 10 minutes to complete the
challenge.

Unmonitored Dataset: This dataset was obtained from in-the-
wild online sessions conducted in 2023. Recall that in-the-wild
refers to fully, unmonitored interaction where students interact
with Unity-CT online without a teacher. Students had the option
to view a pre-recorded tutorial video before their interaction with
the environment if they chose to do so?. Students were allowed to
interact freely with Unity-CT for up to 60 minutes and could end
the lesson at any point once they completed the challenge, which
led to variable interaction length. In total, this dataset consists of
282 students with an average interaction length of 29.40 minutes
(std.dev 13.69 min). We graded all 282 student solutions in this
dataset. The average grade for students was 0.45 (std.dev 0.39).

Monitored Dataset This dataset was obtained from online
classes conducted in 2021 and has been studied in previous work
[36]. Each class includes a teacher and up to 12 students. No re-
searcher attended the remote classrooms nor interacted with the
students or teachers in any way. Each class lasts 60 minutes and in-
cludes an initial tutorial of around 20-30 minutes led by the teacher
describing the basics of using the Unity editor and the steps in-
volved to achieve the goal for the initial lesson. The remaining time
consisted of the student’s interaction with Unity-CT to complete
the challenge. Teachers monitored students’ progress and provided
help to students if they needed it. Students could signal to the teach-
ers that they are done at any point, using as much time as they
needed for the lesson until the end of the 60-minute class. In total,
this dataset consists of 205 students with an average interaction
length with Unity-CT of 28.39 minutes (std.dev 6.23 minutes). The
average grade for students was 0.61 (std.dev 0.49).

5.2 FUMA Student Model

We apply FUMA to both datasets after processing the data into fea-
tures (table 1). FUMA found 2 clusters of students in each dataset.

2The video is on Youtube, so we cannot know for sure whether they fully watched it.
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Table 2: Comparison of FUMA applied to datasets

Cluster

Dataset N .
Sizes Performance on Clusters

Kruskal Wallis test of Learning Mean classification
accuracy

Interpretability
of rules

Comparison
against baseline

Unmonitored 282 114,168 p < 0.01,5% = 0.107
Monitored 205 60,145  p < 0.0001,7% = 0.124

85.65% (std.dev 3.32) p < 0.0001,d =11.20 Rules are too complex
83.80% (std.dev 4.54) p < 0.0001,d = 7.90

Rules are interpretable

Comparison of FUMA student models
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Figure 3: Accuracy of FUMA over 5% incremental data win-
dows trained and tested within the monitored dataset.

Within each dataset, to assess the differences in learning perfor-
mance between the two clusters, we use the Kruskal-Wallis test to
test differences in learning performance using the students’ solu-
tion scores and report p-values with eta-squared effect size [32].
We describe the test statistics in table 2. The Kruskal-Wallis test
showed significant differences in learning between the clusters in
both datasets with a medium-large effect size> in both datasets.
These clusters shall be referred to as the high-performing (HP) and
low-performing (LP) cluster for this analysis.

We plot in fig. 3 the total accuracy (i.e., correct_predictions /
all_predictions) for the student model built in each dataset over in-
cremental data windows against a stratified baseline, which makes
predictions based on the class probability distributions in the train-
ing set. We run t-test comparisons of total accuracy over-time
against the baseline and describe the average accuracy of the stu-
dent models in table 2. We see that both student models beat the
baseline significantly with a large effect size?. To see if we could use
these student models in practice, we look next at the association
rules extracted by FUMA in each of these student models.

Rules extracted from the Unmonitored dataset: There were
11 nodes in the HP feature-tree, but the LP feature-tree was inher-
ently complex, with over 458 nodes. The maximum depth of the tree
was 6, and the total number of leaf nodes was 214. This resulted in
163 distinct rules, which is much larger than previous applications
of association rule-mining for adaptive support (e.g., 15 LP rules in
ACSP [16], 12 LP rules in CCK [8], 8 LP rules in Betty’s Brain [17]).

Rules extracted from the Monitored Dataset: The rule-trees
were simple and we were able to extract 3 interpretable rules for the
HP cluster and 4 for the LP cluster. These rules were interpretable in
the sense that a researcher who was familiar with Unity-CT and its
curriculum extracted rules that they deemed more understandable

3Guidelines for 1? are 0.01 (small), 0.06 (medium),0.14 (large) as per [27]
4Guidelines for d are 0.2 (small), 0.5 (medium) and 0.8 (large) as per [6]

so as to avoid overwhelming teachers with too many complicated
rules when we present them for their validation.

Overall, while both student models were accurate, the exces-
sive number of LP rules make the student model trained on the
unmonitored dataset non-interpretable and infeasible for providing
adaptive support in practice. For the student model trained on the
monitored dataset, we were able to extract interpretable behaviors.
We will proceed with this student model and refine it through ex-
pert insights by presenting the association rules to UME Academy’s
teachers. Once this is done, in section 5.4, we test the final student
model on the unmonitored dataset to understand the implications
of using them for adaptive support in the real-world setting.

5.3 Final Association Rules

We presented the association rules to two UME Academy’s teachers
in a randomized order and a blind manner, concealing which FUMA
cluster they come from. We obtained their input on whether they
believe the behavior exhibited would be by an LP student or an HP
student, and comments on how adaptive interventions could be
provided if needed. Through this process, we narrowed down a set
of FUMA rules that align with the teachers, and subsequently, we
used feedback from teachers to design adaptive help interventions
in the form of an IPA (as elaborated in section 6). Table 3 presents
the interpretable behaviors mined by FUMA in the LP and HP
clusters and the responses of teachers to the respective behaviors.

From table 3, we find that there is an agreement in all the HP
rules (behaviors 1,2 and 3) found by FUMA indicating that HP
students get started on the ramp early in the challenge by ma-
nipulating special objects. Behavior 7 acts as a corollary to these
behaviors, in the sense that LP students do not manipulate special
platforms early in the challenge but rather wait till the middle of
the challenge. It is necessary to work with the special objects in
order to build a ramp, and not manipulating (move, select, rotate
or rescale) any special objects could indicate that the student is
struggling and needs assistance. This behavior is associated with
the CT skill, Being Incremental and Iterative, and requires assis-
tance to guide the student to the initial steps needed to complete
the lesson. Moreover, the teachers unanimously mentioned that
we should extend these behaviors and provide adaptive support to
students who fail to do any type of manipulation of a special ground
platform. The other high-level behavior that stands out is that LP
students press the Play Button Infrequently reflected in behaviors 4
and 5, subsequently testing and debugging their game inadequately.
This behavior relates to the CT skill, Testing and Debugging, and
for success with Unity-CT, students must test out their games often.
Teachers suggested that help interventions could be provided to
students who do not test their games often enough. The only rule
that was in disagreement with the teachers was the rule relating
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Table 3: Teacher Assessment of Behaviors identified by FUMA. T1 and T2 are the assessments of the behaviors by teacher 1 and
teacher 2. Behaviors that are in agreement with teachers are highlighted in bold.

Behavior Cluster T1 T2

1. Student moved a Ground_Moving platform for the first time early in the challenge HP HP HP

2. Student moved a Ground_Slide platform for the first time early in the challenge HP HP | HP

3. Student selected a Ground_Slide platform for the first time early in the challenge HP HP | HP

4. Student presses the Play button to enter Play mode Infrequently LP LP | LP

5. Student presses the Play button to enter Edit mode Infrequently LP LpP | LP

6. Student Duplicates balls for the first time during the middle of the challenge LP HP | HP

7. Student rotated a Ground_Moving platform for the first time during the middle of the challenge LP LP | LP

to duplicating balls. Teachers suggested that this behavior actually
reflects a HP student who is possibly testing various ways to make
balls land in the bucket.

By disregarding the rule that was in disagreement with the
teacher and incorportating the suggestion on expanding the first
high-level behavior, we refine our data-driven student model into
what we shall call the data-informed student model. The data-
informed student model looks at the two high-level behaviors -
not manipulating any special platform, and pressing the play but-
ton infrequently and deems the student as LP if either of these
behaviors occur, or HP otherwise.

5.4 Testing Data-informed Student Model on
the unmonitored dataset

We plot the comparison of the performance of the data-informed
student model against the student model trained on the unmoni-
tored dataset and a baseline in fig. 4.

Testing on Unmonitored dataset
100

—8— Data-informed student model

%01 stratified Baseline

80 4

70+
60 1
50 4

40 4

Percent Accuracy

304
204
10 4

T y T
20 40 60 80 100
Window

Figure 4: Evaluation of data-informed student model

The data-informed student model achieves an average accuracy
of 62.81 (std.dev 6.78) and a t-test comparison show that it signifi-
cantly outperforms both the baseline overall with a large effect size
(p < 0.0001,d = 2.28). Moreover, McNemar’s test [19] over each
incremental window show that the data-informed student model
significantly outperforms the baseline as early as the 20% data win-
dow with a large effect size (p < 0.05, w = 0.70)°. In practice, when

5Guidelines for Cohen’s w [6] are small if w = 0.1, medium if w = 0.3, large if w = 0.5
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Figure 5: Hints by the IPA

using this for real-time adaptive support, we could start providing
help interventions at this point, which is 5.7 minutes on average.

6 DESIGN OF THE IPA

In this section, we will describe the design of adaptive help inter-
ventions for the two types of ineffective behaviors identified in
section 5.3. We phrase both help provisions carefully using recom-
mendations from the teachers by asking them what they would
say to students exhibiting these ineffective behavior. We follow the
design used in [36], and we structured the help content provided for
each of the two behaviors in the progression of speech bubbles flag-
ging the problem, and explaining how they can solve it as shown in
fig. 5. The Manipulate Special hint is provided when the student has
not manipulated any special objects yet, and the Play Infrequently
hint is provided when students infrequently hit the play button.
Infrequenty is defined as less than twice per minute, i.e., the interval
learned by FUMA in the LP rule-tree for the monitored dataset.
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We start detecting these ineffective behaviors and start providing
hints only after 5.7 minutes in to the interaction as we found that
the data-informed student model significantly outperformed the
baseline in section 5.4. Following the methodology used in [16, 21]
we provide a second hint to users if their behaviors do not change
and the hint is triggered again. After a hint is delivered, if a hint of
another type is triggered shortly after, we wait at least 14 actions
after the initial hint was delivered to provide the new hint. If the
same type of hint is triggered shortly after, we wait at least 28
actions after the initial hint to provide help in the form of a repeated
hint. These values were obtained by scaling the thresholds used
in the ACSP applet in [16] (10 and 20, respectively) proportionally
with respect the number of actions per minute in Unity-CT®. We
follow this mechanism because there was extensive pilot testing for
these thresholds [16]. Once two hints of the same type are delivered,
we do not provide any further hints of the same type (as in [21, 36])
to prevent help interventions from feeling intrusive.

7 EVALUATION OF THE IPA

In this section, we first describe the control and experimental groups
that we use to evaluate the IPA. Then, to analyze the effectiveness of
hints in Unity-CT, we look at the distribution of hints delivered by
the IPA in the experimental group. We then compare student learn-
ing performance between the control group and the experimental
group. Finally, we will look at the effect that rectifying student
behaviors according to specific hints has on student learning.

7.1 User Study

To evaluate the effectiveness of the IPA, we conducted a user study
in self-directed classes with Unity-CT in 2023 and 2024. We leverage
two different cohorts as part of UME Academy’s regular in-the-wild
educational activities for our user study, one as a control group
(without the IPA) and one as an experimental group (with the IPA),
so that we can formally compare the impact of the presence of the
IPA. The control group comprises the students in the unmonitored
dataset fully described in section 5.1, who interacted with Unity-CT
without the presence of an IPA in 2023. The experimental group
consists of students interacting with Unity-CT with the IPA toggled
on from January to March 2024. The IPA would provide the help
interventions we designed in section 6. Comparing these two groups
is deemed fair as the nature of the interaction with Unity-CT in
both cases was in the wild, i.e., self-directed and fully unmonitored.
Moreover, the lesson was advertised by UME Academy to similar
students in both groups (North American students in grades 4-6),
and the recruiting process and lesson content were kept exactly the
same. For this evaluation, we discard data from students with less
than 10 minutes of interaction data for consistency with what was
done in the other datasets, as reported in section 5.1. As a result,
we obtained 282 students in the control group and 84 students in
the experimental group.

7.2 Results on Hint Delivery
We look at the distribution of hints delivered in the experimental

group in fig. 6. Over 89% of students received at least one hint,

©ACSP users performed on average 14.1 actions per minute as evaluated from [16],
while students in Unity-CT performed 20 actions per minute.
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Figure 6: Number of hints received by the students.
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Figure 7: Distribution of specific hint types

indicates that behaviors derived in monitored online classrooms
are still relevant in the unmonitored, self-directed setting. This
result is promising as it showcases the ability of FUMA to leverage
data from a constrained setting in order to provide data-driven
adaptive support in self-directed lessons.

To further understand how specific hints were triggered, we plot
the histograms in fig. 7. Only 16.7% of users receive the "Manipulate
Special" hint. It is necessary that students move the special objects
in order to build the ramp for the challenge. Thus, it is expected as
most students who interact with the system would interact with
the special objects, and this hint is targeted towards struggling
students who do not touch the special objects. 76.9% of users receive
at least one "Play Frequently" hint. This is much more common as
it is a reminder to students to test their games out often. It looks
like students in the experimental group did not test their games
frequently enough. A reason for this could be that students skip
the tutorial and are thus not aware of frequently testing the game.

7.3 Results on Hint Effectiveness

Comparing Learning: To objectively evaluate the effect of student
ability to complete the challenge between the control group and
experimental group, student solutions were graded as described in
section 4.1. We perform statistical comparisons (see table 4) using
a ranked Welch test to account for unequal variances and sample
sizes [7, 37]. We find that the experimental group has statistically
significantly higher learning performance as compared to the con-
trol group with a medium effect size’. This suggests that the IPA
and the introduction of hints to students improved students’ ability

7Guidelines for d are 0.2 (small), 0.5 (medium) and 0.8 (large) as per [6]
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Table 4: Learning Performance Comparison (mean +- std.err)

Experimental Control Ranked Welch T-test

0.62 +- 0.045 0.45 +- 0.023 p <0.005,d = 0.43

to learn and complete the lesson in Unity-CT. As opposed to previ-
ous work [21, 36], our work showcases that a data-informed IPA
significantly improves student learning performance in Unity-CT.

Effect of specific hints on learning performance: To un-
derstand the effect that the two specific hints had on learning per-
formance, we looked at whether users rectify their behavior after
receiving hints. In fig. 8, we look at students who received hints and
their learning performance outcome, categorized by whether they
rectified their behavior. Here, we use a median-split to categorize
students into HP or LP based on their solution scores, following
the methodology in [16].
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Figure 8: Learning performance outcome (HP or LP) in rela-
tion with rectifying hints

Table 5: Correlation of students’ learning performance with
rectifying behaviors after receiving a hint.

. #students | Correlation p- 95%
Hint confidence
(max 84) | (Pearson r) | value .
interval
Manipulat
anipuiate 14 0.57 <0.05 | (0.049,0.84)
special
Play
73 0.14 >0.1 | (-0.12,0.32)
Infrequently
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First, we look at students who received the "Manipulate Special”
hint (see fig. 8a). Students who received this hint and did not rec-
tify their behavior after receiving this hint, ended up being all LP.
Moreover, over twice as many users who rectified their behavior
after receiving a hint end up being HP rather than LP. To formally
evaluate whether following these hints had an effect on learning
performance, we perform a statistical analysis of pearson’s correla-
tion coeflicient in table 5. We see that students who followed the
"Manipulate Special” hint and rectified their behavior had a statisti-
cally significant positive impact on learning performance with a
moderate® effect size. Now looking at students who received the
"Play Infrequently” hint (see fig. 8b), while the correlation analysis
yield a weak positive correlation, we still observe a trend that the
majority of users who rectified their behavior after receiving a hint
end up being HP rather than LP.

Overall, we see that students who receive and follow the help
interventions delivered by the IPA are more likely to have in-
creased learning performance. This showcases the value on the
data-informed student model and the behaviors extracted by FUMA.

8 CONCLUSIONS AND FUTURE WORK

In this paper, we built and evaluated an IPA for unmonitored in-
teraction with Unity-CT, an OELE that fosters CT skills in young
learners. Our work provides a proof-of-concept that it is possible
to build student models in a controlled setting and transfer them to
an unmonitored setting. We build the student model for our IPA
by leveraging data from monitored, online classes. We were able to
extract interpretable student behaviors and validated these behav-
iors with teachers at UME Academy. We refined this student model
through inputs from the teachers and evaluated the performance
of this data-informed student model in the unmonitored setting.
Given that the data-informed student model performed well, we
designed our IPA help interventions for in-the-wild interaction
with Unity-CT in collaboration with teachers. Lastly, we evaluated
our IPA through a formal user study. We find that students who
receive adaptive support in the form of help interventions delivered
through an IPA had significantly higher learning performance as
compared to students who do not receive any adaptive support.
This is important as it is crucial to provide support to struggling
students who may face difficulties due to the exploratory nature of
OELEs. Moreover, our findings provide us insights on the effect of
specific hints on student learning performance, which can be used
to refine and improve future help provision.

Future work entails extending the IPA in Unity-CT to other
lessons in UME Academy’s curriculum, and possibly other OELEs.
Future work also entails revising and further testing of our help
interventions. In particular, while the "Manipulate Special” hint
was effective, it was delivered to relatively few students, so revising
the trigger for this hint may improve the quality to be applicable to
more students. Further personalization of help interventions, such
as to user profiles or characteristics may improve the quality of
help provided and is part of future work.
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8Interpretation guidelines for correlation take from [30]
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