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FLIPPING GEOMETRIC TRIANGULATIONS ON

HYPERBOLIC SURFACES∗

Vincent Despré,† Jean-Marc Schlenker,‡ and Monique Teillaud §

December 27, 2024

Abstract

We consider geometric triangulations of surfaces, i.e., triangulations whose edges can
be realized by disjoint geodesic segments. We prove that the flip graph of geometric
triangulations with fixed vertices of a flat torus or a closed hyperbolic surface is connected.
We prove that any Delaunay triangulation is geometric, and give upper bounds on the
number of edge flips that are necessary to transform any geometric triangulation on such
a surface into a Delaunay triangulation.

Keywords: Hyperbolic surface, Topology, Delaunay triangulation, Algorithm, Flip graph

1 Introduction

We investigate triangulations of two categories of surfaces: flat tori, i.e., orientable surfaces
of genus 1 with a locally Euclidean metric, and hyperbolic surfaces, i.e., surfaces of genus at
least 2 with a locally hyperbolic metric (these surfaces will be introduced more formally in
Section 2.1). We do not consider the sphere, which can be equipped with a spherical metric
but for which there is no uniqueness of geodesic segments between two points in a homotopy
class.

Triangulations of surfaces can be considered in a purely topological manner: a triangu-
lation of a surface is an isotopy class of graphs whose vertices, edges and faces partition the
surface and whose faces have three (non-necessarily distinct) vertices. However, when the sur-
face is equipped with a Euclidean or hyperbolic structure, it is possible to consider geometric
triangulations, i.e., triangulations whose edges can be realized as geodesic segments that can
only intersect at common endpoints (Definition 2.1). Note that a geometric triangulation can
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§Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France monique.teillaud@inria.fr https:

//members.loria.fr/Monique.Teillaud/

1

https://SoS.loria.fr/
https://homepages.loria.fr/VDespre/Abysm/
https://members.loria.fr/VDespre/
https://members.loria.fr/VDespre/
http://math.uni.lu/schlenker/
http://math.uni.lu/schlenker/
https://members.loria.fr/Monique.Teillaud/
https://members.loria.fr/Monique.Teillaud/


still have loops and multiple edges, but no contractible loop and no contractible cycle formed
of two edges. We will prove that any Delaunay triangulation (Definition 2.2) of the considered
surfaces is geometric (Proposition 3.3).

The flip graph of triangulations of the Euclidean plane is known to be connected; moreover
the number of edge flips that are needed to transform any given triangulation with n vertices
in the plane into the Delaunay triangulation behaves as Θ(n2) [18]. We are interested in
generalizations of this result to surfaces. Flips in triangulations of surfaces will be defined
precisely later (Definition 2.4), for now we can just think of them as similar to edge flips
in triangulations of the Euclidean plane. Geodesics only locally minimize the length, so the
edges of a geometric triangulation are generally not shortest paths. We will prove that the
number of geometric triangulations on a set of points can be infinite, whereas the flip graph
of “shortest path” triangulations is small but not connected in most situations [8].

Definition 1.1. Let (M2, h) be either a torus (T2, h) equipped with a Euclidean structure h
or a closed oriented surface (S, h) equipped with a hyperbolic structure h. Let V ⊂ M2 be a
set of n points. The geometric flip graph FM2,h,V of (M2, h, V ) is the graph whose vertices
are the geometric triangulations of (M2, h) with vertex set V and where two vertices are
connected by an edge if and only if the corresponding triangulations are related by a flip.

Our results are mainly interesting in the hyperbolic setting, which is richer than the flat
setting. However, to help the readers’ intuition, we also present them for flat tori, where they
are slightly simpler to prove and might even be considered as folklore.

The main results of this paper are:

• The geometric flip graph of (M2, h, V ) is connected (Theorems 4.4 and 4.6).

• The Delaunay triangulation can be reached from any geometric triangulation by a path
in the geometric flip graph FM2,h,V whose length is bounded by n2 times a quantity
measuring the quality of the input triangulation (Theorem 5.4).

The connectivity of the geometric flip graph was actually already known in the case of flat
surfaces [25], however no algorithmic result was given.

An immediate consequence of our results is the extension of the algorithm based on
flips [20], which is standard in the Euclidean plane, to the case of a flat or hyperbolic surface,
when an initial triangulation only having one vertex is given: For each new point, the triangle
containing it is split into three triangles, then the Delaunay property is restored by propa-
gating flips. This approach can handle triangulations of a surface with loops and multiarcs,
which is not the case for the approach based on Bowyer’s incremental algorithm [6, 5].

Our results also provide a tool to tackle other questions. For instance, they were recently
used as a step to compute a Dirichlet domain for a hyperbolic surface [10].

2 Background and notation

2.1 Surfaces

In this section, we first recall a few notions, then we illustrate them for the two classes of
surfaces (flat tori and hyperbolic surfaces) that we are interested in.
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LetM2 be a closed oriented surface, i.e., a compact connected oriented 2-manifold without
boundary. There is a unique simply connected surface M̃2, called the universal cover of M2,
equipped with a projection ρ : M̃2 → M2 that is a local diffeomorphism. There is a natural
action on M̃2 of the fundamental group π1(M2) of M2 so that for all p ∈ M2, ρ

−1(p) is an
orbit under the action of π1(M2). We will denote as p̃ a lift of p, i.e., one of the elements of the

orbit ρ−1(p). A fundamental domain in M̃2 for the action of π1(M2) on M̃2 is a connected

subset Ω of M̃2 that intersects each orbit in exactly one point, or, equivalently, such that the
restriction of ρ to Ω is a bijection from Ω to M2 [22]. The genus g of M2 is its number of
handles. In this paper, we consider surfaces with constant curvature (0 or −1). The value
of the curvature is given by the Gauss-Bonnet Theorem and thus only depends on the genus:
an orientable surface of genus 0 only admits spherical structures (not considered here); a flat
torus is a surface of genus 1 and admits Euclidean structures; an orientable surface of genus
2 and above admits only hyperbolic structures (see below).

From now on, M2 will denote either a flat torus or a closed hyperbolic surface.

Flat tori.

We denote by T2 the topological torus, that is, the product T2 = S1 × S1 of two copies
of the circle. Flat tori are obtained by taking the quotient of the Euclidean plane by an
Abelian group generated by two independent translations. There are in fact many different
Euclidean structures on T2; if one considers Euclidean structures up to homothety – which
is sufficient for our purposes here – a Euclidean structure is uniquely determined by a vector
u in the upper half-plane R × R>0: to such a vector u is associated the Euclidean structure
(T2, hu) ∼ R2/(Ze1 + Zu) , where e1 = (1, 0) and u = (ux, uy) ∈ R2 is linearly independent
from e1. The orbit of a point of the plane is a lattice. The area Ah of the surface is |uy|. The
plane R2, equipped with the Euclidean metric, is then isometric to the universal cover of the
corresponding quotient surface.

The space of flat structures on a torus, considered up to diffeomorphism isotopic to the
identity and up to scaling, can in fact be identified to upper half-plane and thus to the
hyperbolic space, see e.g. [19, Chapter 1].

Orientable hyperbolic surfaces.

We now consider a closed oriented surface S (a compact oriented surface without boundary)
of genus g ≥ 2. Such a surface does not admit any Euclidean structure, but it admits many
hyperbolic structures, corresponding to metrics of constant curvature −1, locally modeled
on the hyperbolic plane H2. Given a hyperbolic structure h on S, the surface (S, h) is iso-
metric to the quotient H2/G, where G is a (non-Abelian) discrete subgroup of the isometry
group PSL(2,R) of H2 isomorphic to the fundamental group π1(S). The universal cover S̃ is
isometric to the hyperbolic plane H2.

The space of hyperbolic metrics on S, considered up to diffeomorphisms isotopic to the
identity, is the Teichmüller space of S, denote by TS . It is a manifold of dimension 6g − 6,
diffeomorphic to a ball, see e.g. [19]. An easy way to visualize this space is to think of pants
decompositions, a crucial notion that will use throughout this paper. Indeed, on a pair of
pants, i.e., a sphere with three geodesic holes, there is a unique hyperbolic metric that induces
prescribed length for the boundaries. Then, a surface of genus g can be decomposed into 2g−2
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Figure 1: A pants decomposition of a surface of genus 3 with 6 curves and 4 pairs of pants.

pairs of pants for a total of 3g − 3 cutting curves (see Figure 2.1). Giving two parameters
by curve (its length and the way to glue the two hyperbolic pairs of pants together as a
twist parameter) fix a unique hyperbolic metric. This set of 6g − 6 parameters are called the
Fenchel-Nielsen coordinates and gives an explicit parameterization of the Teichmüller space.

2.2 The Poincaré disk model of the hyperbolic plane

In the Poincaré disk model, the hyperbolic plane is represented as the open unit disk D2 of C.
The geodesic lines consist of circular arcs contained in the disk D2 and that are orthogonal

to its boundary (Figure 2 (left)). The model is conformal, i.e., the Euclidean angles measured
in the plane are equal to the hyperbolic angles.

We will not need the exact expression of the hyperbolic metric here. However, the notion
of a hyperbolic circle is relevant to us. Three non-collinear points in the hyperbolic plane H2

determine a circle, which is the restriction to the Poincaré disk of a Euclidean circle or line.
If C is a Euclidean circle or line and ϕ : D2 → D2 is an isometry of the hyperbolic plane, then
ϕ(C ∩ D2) is still the intersection with D2 of a Euclidean circle or a line.

A key difference with the Euclidean case is that the “circle” defined by 3 non-collinear
points in H2 is generally not compact (i.e., it is not included in the Poincaré disk). The
compact circles are sets of points at constant (hyperbolic) distance from a point. Non-compact
circles are either hypercycles, i.e., connected components of the set of points at constant
(hyperbolic) distance from a hyperbolic line, or horocycles (Figure 2 (right)) [17].1

Therefore, the relatively elementary tools that can be used for flat tori must be refined for
hyperbolic surfaces. Still, some basic properties of circles still hold for non-compact circles.
A non-compact circle splits the hyperbolic plane into two connected regions; when it is not a
geodesic, we will call a disk the region of the Poincaré disk that is convex, in the hyperbolic
sense (Figure 3). When a non-compact circle is determined by the three vertices of a triangle,
it bounds a disk, and this disk contains the whole triangle.

Triangulations of hyperbolic spaces have been studied [3] and implemented in cgal in
2D [4]. Note that that previous work was not considering non-compact circles as circles.

1A synthetic presentation can be found at http://en.wikipedia.org/wiki/Hypercycle_(geometry)
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Figure 2: The Poincaré disk. Left: Geodesic lines (black) and compact circles (red) centered
at point ω. Right: A horocycle (green). A hypercycle (blue), whose points have constant
distance from the black geodesic line.

D D

Figure 3: Shaded: Two (convex) non-compact disks.

2.3 Triangulations on surfaces

Let (M2, h) be either a torus (T2, h) equipped with a Euclidean structure h or a closed surface
(S, h) equipped with a hyperbolic structure h.

For a given finite set of points V ⊂ M2, we will consider any two topological triangulations
T and T ′ of M2 with vertex set V as equivalent if for any two vertices u and v in V , the
edges of T with vertices u and v are in one-to-one correspondence with the edges of T ′ with
the same vertices u and v through homotopies with fixed points.

Recall that given two distinct points v, w ∈ M2, any homotopy class of paths on M2 with
endpoints v and w contains a unique geodesic segment [14, Chapter 1]. So, any triangulation
is equivalent to a unique geodesic triangulation, i.e., a triangulation whose edges are geodesic
segments. Note that the edges of a geodesic triangulation can intersect in their interiors.

We can now recall the following simple notion of geometric triangulation.

Definition 2.1. A triangulation T on M2 is said to be geometric for h if the edges of its
equivalent geodesic triangulation do not intersect except at common endpoints.

If T is a triangulation of M2, its inverse image ρ−1(T ) is the (infinite) triangulation of

M̃2 whose vertices, edges and faces are the lifted images by ρ−1 of those of T .
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Definition 2.2. We say that a triangulation T of M2 is a Delaunay triangulation if for each
face f̃ of ρ−1(T ), the open disk in M̃2 that is bounded by the circle passing through the three
vertices of f̃ is empty, i.e., it contains no vertex of ρ−1(T ).

It follows that if T is a geodesic Delaunay triangulation of M2 with vertex set V , then
ρ−1(T ) is the Delaunay triangulation in M̃2 of ρ−1(V ). So, for a non-degenerate set of points
on M2 (i.e., a set whose lift does not contain four cocyclic points), since the Delaunay trian-

gulation of their lifts in M̃2 is unique, there is also a unique geodesic Delaunay triangulation
on M2. However its edges may a priori intersect.

For a degenerate set V of points, at least two adjacent triangles in the possible Delaunay
triangulations of ρ−1(V ) in M̃2 have cocircular vertices. Any triangulation of the subset C of
ρ−1(V ) consisting of c cocircular points is a Delaunay triangulation. Any of these triangula-
tions can be transformed in any other by O(c) flips [18]. From now on, we can thus assume
that the set of points V on the surfaces that we consider is always non-degenerate.

We will see in Section 3 that any Delaunay triangulation of M2 is in fact geometric.

Remark 2.3. For a hyperbolic surface, the closure of every empty disk in the universal cover
H2 is compact.

Proof. Let us define the diameter ∆(T ) of a geodesic triangulation T as the smallest diameter

of a fundamental domain that is the union of lifts of the triangles of T in M̃2. The diameter
∆(T ) is not smaller than the diameter of (S, h). It is unclear how to compute ∆(T ) algorith-
mically and the problem looks difficult. However bounds are easy to obtain: ∆(T ) is at least

equal to the maximum of the diameters of the triangles of ρ−1(T ) in M̃2 and is at most the
sum of the diameters of these triangles.

Any non-compact disk contains at least one disk of any diameter, so, at least one disk of
diameter ∆(T ), thus it contains a fundamental domain (actually, infinitely many fundamental
domains) and its interior cannot be empty.

Let us now give a natural definition for flips in triangulations of surfaces. It is based on
the usual notion of flips in the Euclidean plane.

Definition 2.4. Let T be a geometric triangulation of M2. Let (v1, v2, v3) and (v2, v1, v4)
be two adjacent triangles in T , sharing the edge e = (v1, v2). Let us lift the quadrilateral

(v1, v2, v3, v4) to a quadrilateral (ṽ1, ṽ2, ṽ3, ṽ4) in M̃2 so that (ṽ1, ṽ2, ṽ3) and (ṽ2, ṽ1, ṽ4) form
two adjacent triangles of ρ−1(T ) sharing the edge ẽ = (ṽ1, ṽ2).

Flipping e in T consists of replacing the diagonal ẽ in the quadrilateral (ṽ1, ṽ2, ṽ3, ṽ4)

(which lies in M̃2, i.e., R2 or H2) by the geodesic segment (ṽ3, ṽ4), then projecting the two
new triangles (ṽ3, ṽ4, ṽ2) and (ṽ4, ṽ3, ṽ1) to M2 by ρ.

We say that the flip of T along e is Delaunay if the triangulation is locally Delaunay in
the quadrilateral after the flip, i.e., the disk inscribing (ṽ3, ṽ4, ṽ2) does not contain ṽ1 (and
the disk inscribing (ṽ4, ṽ3, ṽ1) does not contain ṽ2).

An edge e is said to be Delaunay flippable if the flip along e is Delaunay.

Note that even though T is geometric in this definition, the triangulation after a flip is
not necessarily geometric. We will prove later (Lemma 4.1) that a Delaunay flip transforms
a geometric triangulation into a geometric triangulation.
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Triangulations and polyhedral surfaces.

The complex plane can be identified with the plane (z = 1) in R3, while the Poincaré model
of the hyperbolic plane can be identified with the unit disk in that plane. We can now use the
stereographic projection σ : S2 \ {s0} → R2 to send the unit sphere S2 to this plane (z = 1),
where s0 = (0, 0,−1) is the south pole. In this projection, each point p ̸= s0 on the sphere is
sent to the unique intersection with the plane (z = 1) of the line going through s0 and p. The
inverse image of the plane (z = 1) is S2 \ {s0}, while the inverse image of the disk containing
the Poincaré model of the hyperbolic plane is a disk, which is the set of points of S2 above a
horizontal plane.

Let T ⋆ be a triangulation of the Euclidean or the hyperbolic plane – for instance, T ⋆

could be the inverse image ρ−1(T ) of a triangulation T of a surface (M2, h), in which case T ⋆

has infinitely many vertices. We associate to T ⋆ a polyhedral surface Σ in R3, constructed
as follows. The construction is similar to the classic duality originally presented with a
paraboloid in the case of (finite) triangulations in a Euclidean space [13]. It can also be seen
as a simpler version, sufficient for our purpose, of the construction presented for triangulations
in hyperbolic spaces using the space of spheres [3].

• The vertices of Σ are the inverse images on S2 by σ of the vertices of T ⋆.

• The edges of Σ are line segments in R3 corresponding to the edges of T ⋆ and the faces
of Σ are triangles in R3 corresponding to the faces of T ⋆.

Note that Σ is not necessarily convex. We can make the following well-known remarks. Let
t1 and t2 be two triangles of T ⋆ sharing an edge e, and let tΣ1 and tΣ2 be the corresponding
faces of the polyhedral surface Σ, sharing the edge eΣ. Then Σ is concave at eΣ if and only
if e is Delaunay flippable. Flipping e in the triangulation T ⋆ in the plane corresponds to
replacing the two faces tΣ1 and tΣ2 of Σ by the two other faces of the tetrahedron formed by
their vertices. That tetrahedron lies between Σ and S2. We obtain a new edge eΣ

′
at which

the new polyhedral surface Σ′ is convex, and which is strictly closer to S2 than Σ. By an
abuse of language, we will say that Σ′ contains Σ, which we will denote as Σ ⊂ Σ′.

As a consequence, Σ is convex if and only if T ⋆ is Delaunay.
There is a direct corollary of this statement: Given a (non-degenerate, see above) discrete

set V of points in R2 or H2, there is a unique Delaunay triangulation with this set of vertices.
However we are going to see in the next two sections that there can be infinitely many

geometric (non-Delaunay) triangulations on a surface, with the same given finite vertex set.

Polyhedral surfaces and geometric triangulations

A first, geometric way to understand geometric and non-geometric triangulations is through
the polyhedral surfaces associated to a triangulation, as seen in the previous section.

It is helpful in this respect to change slightly the construction of the previous section,
by scaling the disk containing the Poincaré model, so that it becomes a disk of radius 2.
The inverse image of this disk by the stereographic projection is then precisely the upper
hemisphere in S2. Since the stereographic projection sends lines and circles to circles in
S2, the hyperbolic geodesics are sent to circles in S2. Since hyperbolic geodesics correspond
to circles (and lines) orthogonal to the boundary, and since the stereographic projection
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preserves angles, the hyperbolic geodesics correspond precisely to the half-circles orthogonal
to the equator in the upper hemisphere.

As a consequence, those hyperbolic geodesics are represented exactly by the intersections
with the upper hemisphere of the vertical planes. This means that the vertical projection
of the upper hemisphere to the horizontal plane (z = 0) projects the Poincaré model to the
Klein model, where hyperbolic geodesics correspond to intersections of lines with the disk.

A triangulation is geometric if and only if, once each edge is realized as a geodesic segment,
those edges are not intersecting in their interiors. The following remark follows directly.

Remark 2.5. Let T ∗ be a triangulation of the hyperbolic plane, and let Σ be the polyhedral
surface corresponding to T ∗ constructed in the previous section. Then T ∗ is geometric if and
only if Σ is a graph above the unit disk, that if, if and only if the vertical projection of Σ to
the horizontal plane is injective.

3 Geometric triangulations of surfaces

We now consider Dehn twists, which are usually considered as acting on the space of metrics
on a surface [7], but are defined here equivalently, for simplicity, as acting on triangulations
of a closed oriented surface (M2, h) equipped with a fixed Euclidean or hyperbolic structure
(figures in this section illustrate the flat case, but the results are proved for both flat and
hyperbolic cases). Let T be a triangulation of (M2, h), with vertex set V , and let c be
an oriented homotopically non-trivial simple closed curve on M2 \ V . We define a new
triangulation τc(T ) of M2 by performing a Dehn twist along c: whenever an edge e of T
intersects c at a point p, we orient e so that the unit vectors of the tangent plane along e
and c form a positively oriented basis (see Figure 4 (left)), and then replace e by the oriented
path following e until p, then following c until it comes back to p, then following e until its
endpoint (see Figure 4 (right)). This defines a map τc from the space of triangulations of T2

with vertex set V to itself. Note that, even if T is a geometric triangulation, τc(T ) is not
necessarily geometric. If we denote by −c the curve c with the opposite orientation, then one
easily checks that τ−c = τ−1

c .

ce
p

Figure 4: Transformation of an edge e by the Dehn twist along c on a flat torus T2. Here the
black parallelepiped is a fundamental domain, and the gray one, used for the construction of
the image of e by τc, is another fundamental domain, image through an element of the group
Γ of isometries.

Lemma 3.1. There exists a geometric triangulation T of (M2, h) and a simple closed curve
c ⊂ M2 such that for all k ∈ Z, τkc (T ) is geometric.

Proof. Let us focus on the hyperbolic case (the construction is easier in the flat case). Consider
a pants decomposition of M2 and denote as C the set of its boundary curves, which are simple
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closed geodesics. Let us choose c in C and ε > 0. We denote by c−, c+ the two hypercycles
at distance ε from c on both sides of c. The value of ε must be sufficiently small so that the
region between c− and c+ is an annulus drawn on M2 that does not intersect any curve in
C \ {c}. Each curve in C \ {c} is split into two geodesic segments by putting two points on it;
let us add those two segments as edges of T . Let us put two points on c− (resp. c+) and add
as edges of T the two geodesic segments between them, whose union forms a curve homotopic
to c. Each pair of pants not bounded by c, as well as the two “shortened pants” bounded by
c− and c+ (i.e., the pants obtained from the initial pants by removing the annulus between
c− and c+), can be decomposed into two hexagons, which can easily been triangulated with
geodesic edges. All these edges are left unchanged by τc (or τ−c) as they do not intersect c.
The annulus between c− and c+ can be triangulated with four edges each intersecting c exactly
once. We realize the image by τc of each of these four edges as a geodesic segment – there is
a unique choice in the homotopy class of the path described above (Figure 5). The annulus
is convex, as the projection onto M2 of the intersection of two (convex) disks (Figure 3), so,
the geodesic segment is completely contained in it. Let e, e′ be two edges of T . If neither

c
c+ c−

e

Figure 5: Image of e by a Dehn twist (middle), realized as a geodesic edge (right).

e nor e′ intersect c, then they are not changed by τc, so they remain disjoint. If either e or
e′ intersects c, but not both, then their images by τc (or τ−c) remain disjoint, as they lie in
different regions separated by c− and c+. If e and e′ intersect c, then again their images by
τc (or τ−c) remain disjoint, as their endpoints appear in the same order on c− and c+ and
two geodesic lines cannot intersect more than once (Figure 6). As a consequence, τc(T ) and

c

Figure 6: The Dehn twist of two edges along c for two edges intersecting c.

τ−c(T ) are geometric. They are not equivalent as each edge e crossing c is replaced by an
edge that does not lie in the same homotopy class as e. The same result follows by induction
for τkc (T ) for any k ∈ Z.

Corollary 3.2. For any closed oriented surface (M2, h), there exists a finite set of points
V ⊂ M2 such that the graph of geometric triangulations with vertex set V is infinite.

Proposition 3.3. Any Delaunay triangulation of a closed oriented surface (M2, h) is geo-
metric.
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Proof. Let V be a finite set of points on M2, and let T be a Delaunay triangulation of (M2, h)
with vertex set V . Realize every edge of T as the unique geodesic segment in its homotopy
class, so that T is geodesic. We argue by contradiction and suppose that T is not geometric,
so that there are two edges e1 and e2 that intersect in their interiors. We then lift e1 and e2
to edges ẽ1 and ẽ2 of ρ−1(T ) whose interiors still intersect.

We can find two distincts faces f̃1 and f̃2 of ρ−1(T ) such that ẽ1 is an edge of f̃1 and ẽ2 is

an edge of f̃2. Let C̃1 and C̃2 be the circles inscribing f̃1 and f̃2, respectively. Since ρ−1(T )

is Delaunay, C̃1 and C̃2 bound empty disks D̃1 and D̃2, i.e., open disks not containing any
point of ρ−1(V ). Recall that, as mentioned in Section 2.3, the closures of empty disks are

compact even in the hyperbolic case, and that ẽ1 ⊂ D̃1 and ẽ2 ⊂ D̃2 (edges are considered as

open). The two circles C̃1 and C̃2 intersect twice as the intersection point of ẽ1 and ẽ2 lies in

D̃1 ∩ D̃2. Let L̃ be the geodesic line through the intersection points. The endpoints of ẽ1 are
on C̃1 \ D̃2 and those of ẽ2 are on C̃2 \ D̃1, so the two pairs of endpoints are on opposite sides
of L̃. As a consequence, ẽ1 and ẽ2 are on opposite sides of L̃, so they cannot intersect. This
leads to a contradiction.

4 The flip algorithm

Let us consider a closed oriented surface (M2, h). The flip algorithm consists of performing
Delaunay flips in any order, starting from a given input geometric triangulation of M2, until
there is no more Delaunay flippable edge.

The following statement is a key starting point for proving the correctness of the algorithm.

Lemma 4.1. Let T be a geometric triangulation of (M2, h), and let T ′ be obtained from T
by a Delaunay flip. Then T ′ is still geometric.

Proof. Let e be a Delaunay flippable edge and ẽ a lift in M̃2. Denote the vertices of ẽ by ṽ
and ṽ′. Let t̃1 and t̃2 be the triangles of ρ−1(T ) incident to ẽ. To prove that T ′ is geometric,
it is sufficient to prove that t̃1 ∪ t̃2 is a strictly convex quadrilateral.

Let C̃1 (resp. C̃2) be the circle through the three vertices of t̃1 (resp. t̃2). Note that C̃1 and

C̃2 may be non-compact. Let D̃1 and D̃2 be the corresponding disks (as defined in Section 2.2

in the case of non-compact circles). The disk D̃1 (resp. D̃2) is convex (in the Euclidean plane
if M2 is a flat torus, or in the sense of hyperbolic geometry if M2 is a hyperbolic surface)
and contains t̃1 (resp. t̃2). The fact that e is Delaunay flippable then implies that t̃1 and t̃2
are contained in D̃1 ∩ D̃2 (see Figure 7). As a consequence, the sum of angles of t̃1 and t̃2 at

ṽ is smaller than the interior angle at ṽ of D̃1 ∩ D̃2, which is at most π, and similarly at ṽ′.
As a consequence, the quadrilateral t̃1 ∪ t̃2 is strictly convex at ṽ and ṽ′. Since it is strictly
convex at its other two vertices (as each of these vertices is a vertex of a triangle), it is strictly
convex, and the statement follows.

The following lemma is central in the proof of the termination of the algorithm (Theo-
rem 4.6) for hyperbolic surfaces and in its analysis for both flat tori and hyperbolic surfaces
(Section 5).

Lemma 4.2. Let T be a geometric triangulation of (M2, h). Then, the flip algorithm starting
from T will never insert an edge longer than 2Λ(T ), where Λ(T ) denotes the length of the
longest edge(s) in T .
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ẽ

D̃1

D̃2

t̃1 t̃2

ṽ

ṽ′

Figure 7: The quadrilateral is convex (edges are represented schematicaly as straight line
segments).

Note that the length of an edge can be measured on any of its lifts in the universal covering
space M̃2.

Proof. Let Tk be the triangulation obtained from T = T0 after k flips and let Σk be the
corresponding polyhedral surface of R3 as defined in Section 2.3. Since we perform only
Delaunay flips, Σ0 ⊂ . . . ⊂ Σk ⊂ Σk+1.

We will prove the result by contradiction. Let us assume that Tk has an edge e of length
larger than 2Λ(T ). Let v be the midpoint of e and t be the triangle in T = T0 that contains
v (if v lies on an edge of T , any incident triangle can be chosen as t). Let us lift e, v, and t in
a consistent way, so that ṽ is the midpoint of ẽ and lies in t̃. Denote the endpoints of ẽ as ṽ1
and ṽ2. The triangle t̃ is strictly included in the disk D̃ of radius Λ(T ) and centered at ṽ, by
definition of Λ(T ) (see Figure 8 (left)).

Let PD denote the plane in R3 containing the circle on S2 that is the boundary of σ−1(D)
(recall that σ denotes the stereographic projection, see Section 2.3), and let p denote the
point σ−1(ṽ) on S2. As p ∈ σ−1(t) ⊂ σ−1(D̃), the projection pΣ0 of p onto Σ0 lies above PD

(Figure 8 (right)).
Now, denote the edge σ−1(ẽ) on S2 as (p1, p2). The points p1 and p2 lie outside σ−1(D)

since ẽ is longer than 2Λ(T ). So, the corresponding edge eΣ = [p1, p2] of Σk lies below the
plane PD, thus the projection pΣk ∈ [p1, p2] of p onto Σk lies below PD.

From what we have shown, pΣk is a point of Σk that lies strictly between the pole s0 and
the point pΣ0 of Σ0, which contradicts the inclusion Σ0 ⊂ Σk.

We will now show that, for any order, the flip algorithm terminates and returns the
Delaunay triangulation of the surface. The proof given for the hyperbolic case would also
work for the flat case. However we propose a more elementary proof for the flat case.

Flat tori

The case of flat tori is easy, and might be considered as folklore. However, as we have not
found a reference, we give the details here for completeness.

We define the weight of a triangle t of a geometric triangulation T of T2 as the number
of vertices of ρ−1(T ) that lie in the open circumdisk of a lift of t. The weight w(T ) of T is

11
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R2
D ṽ1 ṽ2
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D̃ ṽ

pΣk
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pΣ0
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D

ṽ

ṽ2

ṽ1

D̃

t̃

ẽ

PD

Figure 8: Illustration for the proof of Lemma 4.2 (for a hyperbolic surface). Left: notation in
H2. Right: contradiction seen in a cutting plane in R3.

defined as the sum of the weights of its triangles.

Lemma 4.3. The weight w(T ) of a triangulation T of a flat torus (T2, h) is finite. Let T ′ be
the triangulation obtained from a geometric triangulation T after performing a Delaunay flip.
Then w(T ′) ≤ w(T )− 2.

Proof. The closed circumdisk of any triangle in R2 is compact, so, it can only contain a finite
number of vertices of ρ−1(T ). The sum w(T ) of these numbers over triangles of T is clearly
finite as the number of triangles of T is finite. Let us now focus on a quadrilateral in R2 that
is a lift of the quadrilateral on T2 whose diagonal e is flipped. Let D̃1 and D̃2 denote the

two open circumdisks in R2 before the flip and D̃′
1 and D̃′

2 denote the two open circumdisks

after the flip, then D̃′
1 ∪ D̃′

2 ⊂ D̃1 ∪ D̃2 and D̃′
1 ∩ D̃′

2 ⊂ D̃1 ∩ D̃2 (see Figure 9). Moreover, by

definition of a Delaunay flip, the union D̃′
1 ∪ D̃′

2 contains at least two fewer vertices of ρ−1(T )

than D̃1 ∪ D̃2, which are the two vertices of the quadrilateral that are not vertices of ẽ. This
concludes the proof.

The result follows trivially:

Theorem 4.4. Let T be a geometric triangulation of a flat torus with finite vertex set V .
The flip algorithm terminates and outputs the Delaunay triangulation of V .

Corollary 4.5. The geometric flip graph FT2,h,V is connected.

Hyperbolic surfaces

To show that the flip algorithm terminates in the hyperbolic case, we cannot mimic the proof
presented for the flat tori since the circumcircle of a hyperbolic triangle can be non-compact

12



ẽ

D̃1

D̃2

D̃′
1

D̃′
2

Figure 9: Circumdisks D̃1 and D̃2 before flipping ẽ and D̃1 and D̃′
2 after the Delaunay flip.

(see Section 2.2) and thus can have an infinite weight. Note also that the proof cannot use a
property on the angles of the Delaunay triangulation similar to what holds in the Euclidean
case: in H2, the locus of points seeing a segment with a given angle is not a circular arc, and
thus the Delaunay triangulation of a set of points in H2 does not maximize the smallest angle
of triangles (Figure 10) The proof relies on Lemma 4.2.

D

Figure 10: The Delaunay triangulation contains the blue edge, which subdivides the smallest
angle.

Theorem 4.6. Let T be a geometric triangulation of a closed hyperbolic surface with finite
vertex set V . The flip algorithm terminates and outputs the Delaunay triangulation of V .

Proof. We use the same notation as in the proof Lemma 4.2. Once an edge of Tk is flipped, it
can never reappear in the triangulation, as the corresponding segment in R3 becomes interior
to the polyhedral surface Σk+1 (see Section 2.3) and further surfaces Σk′ , k

′ ≥ k + 1. In
addition, all the introduced edges have length smaller than 2Λ(T ) by Lemma 4.2. Moreover,
there is only a finite number of edges with vertices in V that are shorter than 2Λ(T ) on
S, as a circle given by a center and a bounded radius is compact. So, the flip algorithm
terminates. The output does not have any Delaunay flippable edge, so, it is the Delaunay
triangulation.

Corollary 4.7. The geometric flip graph FS,h,V is connected.
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5 Algorithm analysis

In this section, we first describe a data structure that supports the flip algorithm.
A 2-dimensional combinatorial map is a natural data structure for storing a graph cellularly

embedded on a surface. We refer to the literature for a formal definition [24, Section 3.3]. In
a few words, similarly to a halfedge data structure, a combinatorial map stores the graph of
edges. The dart (or flag) gives access to incidence relations in the graph (Figure 11) through
three permutations β0, β1,, and β2 of the set of darts. Permutations β0 and β1 are inverse of

β1

β2

Figure 11: A dart (bold) in a combinatorial map.

each other; the permutation β2 is an involution. A face is given by a cycle of darts related
by powers of β1 (or β0). Faces are glued along their boundaries: two paired darts are related
through β2.

Each triangulation that we handle is geometric. The underlying combinatorial triangu-
lation is stored as a combinatorial map, while the geometry is given by cross-ratios on each
edge.

Recall the definition of a cross-ratio in H2 [1]: for four pairwise-distinct points z1, z2,
z3, z4 ∈ H2, it is the complex number

[z1, z2, z3, z4] =
(z4 − z2)(z3 − z1)

(z4 − z1)(z3 − z2)
.

Cross-ratios encode the condition for a Delaunay flip: If z1, z2, z3, z4 are oriented counter-
clockwise, then Im [z1, z2, z3, z4] > 0 if and only if z4 lies inside the open disk circumscribing
the triangle (z1, z2, z3) (here Im [z] denotes the imaginary part of a complex).

Given an edge e of a triangulation of M2 we consider a lift ẽ = (ũ1, ũ3) of e in D2. Denote
as ũ2 and ũ4 the remaining vertices of the two faces incident to ẽ in the lifted triangulation,
where vertices are numbered counterclockwise. The cross-ratio of e is defined as the cross-ratio
of ũ1, ũ2, ũ3, and ũ4 in D2; it is independent of the choice of the lift of e, as the cross-ratio
is invariant under orientation preserving isometries of D2. An edge e of a triangulation is
Delaunay-flippable if and only if the imaginary part of its cross-ratio is positive.

When an edge is flipped in a triangulation, updating the combinatorial map that represents
it is straightforward. Updating the cross-ratios of the five involved edges of the quadrilateral
is also easy; details can be found in [9].

With this data structure, a flip can be performed in constant time.

For a triangulation on n vertices in the Euclidean plane, counting the weights of trian-
gulations leads to the optimal O(n2) bound. However the same argument does not yield a
bound even for the flat torus, since points must be counted in the universal cover.

Our previous complexity analysis for the flat torus [11] was recently improved:
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Theorem 5.1 ([12]). For any triangulation T with n vertices of a torus (T2, h), there is a
sequence of flips of length Ch · Λ(T ) · n2 connecting T to a Delaunay triangulation of (T2, h),
where Ch only depends on h.

The rest of this section is devoted to estimating the number of edges not longer than 2Λ(T )
between two fixed points v1 and v2 on a hyperbolic surface (S, h). Counting the number of
points in a disk of fixed radius would give an exponential bound because the area of a circle
in H2 is exponential in its radius [21]. Note that we only consider geodesic edges, so we
only need to count homotopy classes of simple paths. The behavior of the number Nl of
simple closed curves smaller than a fixed length l is well understood: Nl/l

6g−6 converges to
a positive constant depending “continuously” on the structure h [23]. However, we need a
result for geodesic segments instead of geodesic closed curves, and Mirzakhani’s proof is too
deep and relies on too sophisticated structures to easily be generalized. So, we will only prove
an upper bound on the number of segments. Such an upper bound could be derived from
the theory of measured laminations of Thurston, which is also quite intricate. Fortunately, a
more comprehensible proof, specific to simple closed geodesic curves on hyperbolic structures,
can be found in [16, 4.III, p.61-67] [15]. While recalling the main steps of the proof, we show
how to extend it to geodesic segments.

Let Γ = {γi, i = 1, . . . , 3g − 3} be a set of 3g − 3 simple disjoint closed geodesics on (S, h)
not containing v1 and v2 that forms a pants decomposition on S, where each γi belongs to
two different pairs of pants. A set {γi, i = 1, . . . , 3g − 3} of disjoint closed annuli is defined
on S, where each γi is a tubular neighborhood of γi containing none of v1, v2. This yields a
decomposition of S into 3g − 3 annuli γi (i = 1, . . . , 3g − 3) and 2g − 2 pairs of “short pants”
Pj (j = 1, . . . , 2g − 2). For i = 1, . . . , 3g − 3, let us denote as ∂γi any one of the two curves
bounding the annulus γi (this is an abuse of notation but should not introduce any confusion).
In each pair of pants Pj , j = 1, . . . , 2g − 2, for each of its boundary components ∂γ, an arc
Jγ
j is drawn in Pj between any two points on the boundary of γ, such that it separates the

other two boundary components of Pj and it has minimal length.
Two curves γ′ and γ′′ are associated to each γ ∈ Γ in the following way (Figure 12). The

annulus γ is glued with the two pairs of pants Pi and Pj between which it is lying, which
yields a sphere with four boundary components: ∂γi,1 and ∂γi,2 bounding Pi and ∂γj,1 and
∂γj,2 bounding Pj . A curve γ′ is then defined: it coincides with Jγ

i in Pi and Jγ
j in Pj , it

separates ∂γi,1 and ∂γj,1 from ∂γi,2 and ∂γj,2, and it has exactly 2 crossings with γ. The
curve γ′′ is defined in the same way, separating ∂γi,1 and ∂γj,2 from ∂γi,2 and ∂γj,1.

For each Pi and mi,1,mi,2,mi,3 ∈ N, a model multiarc is fixed in Pi, having mi,1, mi,2, and
mi,3 intersections with the three boundaries ∂γi,1, ∂γi,2, and ∂γi,3 of Pi. The model is chosen
among all the possible multiarcs as the one that has a minimal number of intersections with the
three arcs J

γi,j
i (j = 1, 2, 3) of Pi; its endpoints lie on the curves γi,1, γi,2 and γi,3. The model

is unique, up to homeomorphisms of the pair of pants, and those homeomorphisms are rather
simple to understand since they can be decomposed into three Dehn twists around curves
homotopic to the three boundaries of the pair of pants. It means that any homotopy class
of multiarcs differs from the fixed corresponding model multiarc only by twisting along the
three boundaries. Since these twists are independent, we can construct the chosen homotopy
class as the fixed corresponding model on Pi\{γi,1, γi,2, γi,3} and some paths winding around
γi,1, γi,2 or γi,3 in the cylinders.

Let now f be a path between v1 and v2 on S. We decompose f into three parts: (v1, w1),
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γ′
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Figure 12: Two adjacent pairs of pants Pi and Pj .

fw = (w1, w2) and (w2, v2) where w1 and w2 are the first and the last points of f on an
annulus boundary. We “push” all the twists of fw into the annuli γ, γ ∈ Γ, and obtain a
normal form homotopic to f , whose definition adapts the definition given in the book [16] for
closed curves:

1. It is simple.

2. It has a minimal number mi of intersections with each γi, i = 1, . . . , 3g − 3.

3. In each Pj , j = 1, . . . , 2g − 2, it is homotopic with fixed endpoints to the model that
corresponds to the number of intersections with its boundaries. For Pj1 (resp. Pj2)
containing v1 (resp. v2), only the intersections different from w1 (resp. w2) are counted.

4. Between v1 and w1 (resp. w2 and v2), it has a minimal number of intersections with the
three arcs J

γj1,k
j1

(k = 1, 2, 3) in Pj1 containing v1 (resp. J
γj2,k
j2

in Pj2 containing v2).

5. It has a minimal number ti of intersections with γ′i inside γi, for any i = 1, . . . , 3g − 3.

6. It has a minimal number si of intersections with γ′′i inside γi, for any i = 1, . . . , 3g − 3.

The existence of a normal form is clear. The two forms of the path f are used to define
two notions of complexity: its geodesic form is used to define its length, which can be seen
as a geometric complexity, whereas its normal coordinates mi, si and ti can be seen as a
combinatorial complexity. In the case of simple multicurves, these coordinates are known as
Dehn-Thurston coordinates. Lemma 5.3 shows some equivalence between the two notions of
complexity. We first show that a fixed set of coordinates corresponds to a finite number of
possible non-homotopic paths.
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Lemma 5.2. For any set of coordinates mi, ti, si, i = 1, . . . , 3g − 3, there are at most
9(max3g−3

{i=1,...,3g−3}(mi))
2 non-homotopic normal forms.

Proof. Let f be a path, decomposed as above into (v1, w1), f
w = (w1, w2) and (w2, v2). In

each pair of pants not containing any endpoint v1 or v2, fixing the mi, si and ti leads to a
unique homotopy class of models [16, Lemma 5, p.63]. For the two (not necessarily different)
pairs of pants Pj1 and Pj2 containing v1 and v2, w1 and w2 are in fact fixing unique models
(see Figure 13). There are three possible annulus boundaries ∂γj,i, i = 1, 2, 3 for w1 in the

v1

w1 w1

w1

v1 v1

Figure 13: Three possible choices for w1. The two left choices correspond to the same model,
but the orderings on the upper boundary lead to non-homotopic paths. The right choice leads
to different models.

pair of pants Pj that contains v1 (resp. γj,i for w2), so, at most 3maxi(mi) possibilities for
each of them, and the result follows.

Lemma 5.3. Let f be a geodesic segment of length l, then there exists a constant ch such
that the coordinates mi, ti, and si, i = 1, . . . , 3g − 3 of the normal form of f are smaller than
ch · l.

Proof. For any simple closed geodesic δ on S, the geodesic form of f intersects δ in a minimal
number kδ of points, since they are both geodesics. If εδ is the width of a tubular neighborhood
of δ, then l ≥ εδ(kδ − 1) [2, Lemma 3.1]. Each coordinate mi, ti, and si of f corresponds to
the minimal number of intersections with a curve. The number mi corresponds to γi. The
number ti is actually not larger than the number of intersections of f with the geodesic curve
that is homotopic to γ′i (γ

′
i is generally not geodesic), and similarly si is not larger than the

number of intersections of f with the geodesic homotopic to γ′′i . These curves γi, γ
′
i, γ

′′
i only

depend on (S, h), so, we can take εh to be the largest of all the 9g− 9 widths εγi , εγ′
i
, εγ′′

i
and

we obtain l ≥ εh ·max(mi, ti, si) and thus max(mi, ti, si) ≤ 1/εh · l.

Theorem 5.4. For any hyperbolic structure h on S and any triangulation T of (S, h), there
is a sequence of flips of length at most Ch ·Λ(T )6g−4 ·n2 in the geometric flip graph connecting
T to a Delaunay triangulation of (S, h).

Proof. Let Nv1,v2 be the number of segments from v1 to v2 shorter than l = 2 ·Λ(T ). From the
previous lemma, we obtain that the 9g−9 coordinates mi, ti, and si of any such segment f are
smaller than ch ·2Λ(T ). It appears that, ∀i,m1 = ti+si, ti = mi+si or si = mi+ti [16, Lemma
6, p.64 & Fig.5, p.65]. So, if we fix mi and ti there are at most 3 possible si. Lemma 5.2
and 5.3 proves that there are 9(ch · 2Λ(T ))2 potential segments for each coordinate set. We
obtain a bound for Nv1,v2 : Nv1,v2 ≤ 9(ch · 2Λ(T ))2 · 3(ch · 2Λ(T ))6g−6 and thus, there is a
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constant C ′
h such that Nv1,v2 ≤ C ′

h · Λ(T )6g−4. Since there are 1/2 · n2 possible sets {v1, v2},
we obtain the bound on the number of edges.
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