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Hermite interpolation for the approximation

of ordinary differential equations

François Dubois
⋆

• Dynamical system.

Let n be an integer greater than the unity. We study an autonomous dy-
namical system in the finite dimensional space IRn

(1)
du

dt
= f

(

u(t)
)

, t > 0 ,

(2) u(0) = u0 ,

where IRn ∋ v 7−→ f(v) ∈ IRn is a sufficiently regular function. We
discretize the time with a time step h > 0 and we search an approximation
uh of u(h) with a one-step method, id est using only the knowledge of the
initial vector u0 and the entire function f(•).

• One step numerical schemes.

We integrate the equation (1) between 0 and h, we take into account the
initial condition (2), divide by h and make an elementary change of variables
inside the associated integral. It comes :

(3)
u(h) − u0

h
=

∫ 1

0

f
(

u(θ h)
)

dθ .

A good one-step method consists in approaching at best the right hand side
of the relation (3). The choice of a constant interpolation conducts to the

explicit Euler scheme when
∫ 1

0
f
(

u(θ h)
)

dθ ≃ f(u(0)) and to the implicit

Euler scheme if we choose
∫ 1

0
f
(

u(θ h)
)

dθ ≃ f(u(h)). We refer e.g. to the
book of Crouzeix and Mignot [CM84] for an introduction to the numerical
analysis of ordinary differential equations. Nevertheless, a classical approach
consists in making an affine interpolation ϕ1(•) of the function ϕ(•) defined
by
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(4) [0, 1] ∋ θ 7−→ ϕ(θ) ≡ f
(

u(θ h)
)

∈ IRn .

Note that the function ϕ1(•) is parameterized by f(u0) which is known and
by f(u(h)) which is unknown and that we write f(uh) after having done the
approximation :

(5) ϕ1(θ) ≡ (1 − θ) f(u0) + θ f(uh) .

We obtain in that manner after integrating the function ϕ1(•) on the interval
[0, 1] the so-called Crank-Nicolson scheme :

(6)
uh − u0

h
=

1

2

(

f(uh) + f(u0)
)

.

• Third order Hermite interpolation.

We follow this interpolation idea with the following remark. If the state u0

is known, then du
dt

(0) = f(u0) is known, but the second derivative d2u
dt2

(0) =
df(u0) • f(u0) is also known. In a similar way, if the final state u(h) is known,
we have the same property for the first derivative du

dt
(h) = f(u(h)) and

for the second derivative d2u
dt2

(h) = df(u(h)) • f(u(h)). In that way, we have
inside our hands four numerical values that characterize ϕ(•) introduced
at the relation (4) at the two ends of the interval [0, 1] : ϕ(0) = f(u0),
ϕ′(0) = h df(u0)•f(u0), ϕ(1) = f(u(h)), ϕ′(1) = h df(u(h))•f(u(h)). We
use these four values and the classical Hermite basis for polynomials of degree
at least three (see e. g. Hildebrand [Hil87]) to approximate the function
ϕ(•) introduced at relation (4) by a polynomial function ϕ2(•) :

(7) ϕ(θ) ≃ ϕ2(θ) ≡

{

(1 + 2θ) (θ − 1)2 ϕ(0) + θ (θ − 1)2 ϕ′(0)+
+ θ2 (3 − 2θ)ϕ(1) + θ2 (θ − 1)ϕ′(1) .

We intregrate the relation (7) over the interval [0, 1], we replace the exact
value u(h) by an approximate one uh and obtain in this way an approximate
method for the ordinary differential equation (1). It an be written :

(8)
uh − u0

h
=

1

2

(

f(uh) + f(u0)
)

−
h

12

[

df(uh)•f(uh)− df(u0)•f(u0)
]

.

• Proposition 1. Fourth order scheme.

Let u(•) be the solution of the dynamical system (1)(2) and in particular let
u(h) be the solution of this system at time h. We define the truncation error
Th associated with the scheme (8) by the relation

(9) Th ≡











u(h) − u0

h
−

1

2

(

f(u(h)) + f(u0)
)

+
h

12

[

df(u(h))•f(u(h)) − df(u0)•f(u0)
]

.


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Then we have

(10) | Th | ≤
1

720
sup

0≤t≤h

|| u(5)(t) || h4 .

• A two-steps scheme based on Crank-Nicolson.

The scheme (8) is implicit and the operator IRn ∋ v 7−→ df(v)•f(v) ∈ IRn

can be complicated to manipulate algebraically. We propose to replace the
nonlinear scheme (8) by a multistep procedure based on the Crank-Nicolson
scheme (6). We first consider a predicted value u1

h evaluated with the Crank-
Nicolson scheme :

(11)
u1

h − u0

h
=

1

2

(

f(u1
h) + f(u0)

)

.

Then we substitute this value u1
h in the second term of the right hand side

of relation (8). We obtain in this way the following equation to deduce u2
h

from the initial value u0 and the predicted value u1
h :

(12)
u2

h − u0

h
=

1

2

(

f(u2
h) + f(u0)

)

−
h

12

[

df(u1
h)•f(u1

h)−df(u0)•f(u0)
]

.

We remark that the resolution of both nonlinear equations (11) and (12) just
needs to solve an equation of unknown w the form

(13) w −
h

2
f(w) = g ,

with the dynamics function f(•) in the operator to inverse at the left hand
side of relation (13).

• Proposition 2. Fourth order for two-step scheme.

Let u(h) be the solution of the dynamical system (1)(2) at time h. Let u2
h

be computed according to the predictor-corrector scheme (11) (12). Then u2
h

and u(h) have the same Taylor expansion up to the order 4.

• Hermite interpolation of higher order.

We can generalize the previous schemes (8) and (11) (12) at an arbitrary
order. We first observe that, according to the Faà di Bruno formula (see
e.g. Hairer et al [HNW87]), we can express the jo derivative of the solution
u(•) of the dynamical system (1) with the function f(•) and its successive
derivatives :

(14)
dj u

dtj
(t) ≡ Φj

(

f, df, · · · , dj−1f ; u(t)
)

.

We have for example for the two first derivatives Φ1

(

f ; u
)

≡ f(u) and

Φ2

(

f, df ; u
)

≡ df(u)•f(u). Then for a given integer k and 0 ≤ θ ≤ 1, we


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interpolate the function ϕ(θ) = du
dt

(θ h) introduced at the relation (4) with
the Hermite interpolation polynomial ϕk(•) of degree lower or equal than
(2k−1) based on the degrees of freedom u′(0), h u′′(0), · · · , hk−1 u(k)(0) and
u′(h), h u′′(h), · · · , hk−1 u(k)(h). Then we integrate the polynomial ϕk(•) on
the interval [0, 1]. We obtain by doing this a variant of the Euler-Mac Laurin
summation formula

(15)















∫ 1

0

ϕ(θ) dθ ≃

∫ 1

0

ϕk(θ) dθ =
1

2

(

ϕ(0) + ϕ(1)
)

−
1

12

(

ϕ′(1) − ϕ′(0)
)

− · · · −
B2 k

(2k)!

(

ϕ(k−1)(1) − ϕ(k−1)(0)
)

,

where B2k are the Bernoulli numbers (see e.g. [Hil87]). We have due to the
relation (14)

(16) ϕ(j)(θ) = hj−1 dj u

dtj
(θ h) = hj−1 Φj

(

f, df, · · · , dj−1f ; u(θ t)
)

.

When we replace the previous expression inside the relation (15), the associ-
ated numerical scheme takes the form :

(17)































uh − u0

h
=

1

2

(

f(uh) + f(u0)
)

−
h

12

[

df(uh)•f(uh) − df(u0)•f(u0)
]

−
k

∑

j=3

B2 j

(2j)!
hj−1

(

Φj

(

f, df, · · · , dj−1f ; uh

)

−Φj

(

f, df, · · · , dj−1f ; u0

)

)

.

• Proposition 3. Numerical scheme of order 2k.

Let u(•) be the solution of the dynamical system (1)(2) and in particular let
u(h) be the solution of this system at time h. We define the truncation error
Th associated with the scheme (17) by the relation

(18)































Th ≡
u(h) − u0

h
−

1

2

(

f(u(h)) + f(u0)
)

+
k

∑

j=2

B2 j

(2j)!
hj−1

(

Φj

(

f, df, · · · , dj−1f ; u(h)
)

−Φj

(

f, df, · · · , dj−1f ; u0

)

)

.

Then we have

(19) | Th | ≤ C sup
0≤t≤h

|| u(2k+1)(t) || h2k .

for some constant C > 0.


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