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Abstract

Biophysically detailed neural models are a powerful technique to study neural dynamics in

health and disease with a growing number of established and openly available models. A

major challenge in the use of such models is that parameter inference is an inherently diffi-

cult and unsolved problem. Identifying unique parameter distributions that can account for

observed neural dynamics, and differences across experimental conditions, is essential to

their meaningful use. Recently, simulation based inference (SBI) has been proposed as an

approach to perform Bayesian inference to estimate parameters in detailed neural models.

SBI overcomes the challenge of not having access to a likelihood function, which has

severely limited inference methods in such models, by leveraging advances in deep learning

to perform density estimation. While the substantial methodological advancements offered

by SBI are promising, their use in large scale biophysically detailed models is challenging

and methods for doing so have not been established, particularly when inferring parameters

that can account for time series waveforms. We provide guidelines and considerations on

how SBI can be applied to estimate time series waveforms in biophysically detailed neural

models starting with a simplified example and extending to specific applications to common

MEG/EEG waveforms using the the large scale neural modeling framework of the Human

Neocortical Neurosolver. Specifically, we describe how to estimate and compare results

from example oscillatory and event related potential simulations. We also describe how

diagnostics can be used to assess the quality and uniqueness of the posterior estimates.

The methods described provide a principled foundation to guide future applications of SBI in

a wide variety of applications that use detailed models to study neural dynamics.

Author summary

A central problem in computational neural modeling is estimating model parameters that

can account for observed activity patterns. While several techniques exist to perform

parameter inference in special classes of abstract neural models, there are comparatively
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few approaches for large scale biophysically detailed neural models. In this work, we

describe challenges and solutions in applying a deep learning based statistical framework

to estimate parameters in a biophysically detailed large scale neural model, and emphasize

the particular difficulties in estimating parameters for time series data. Our example uses

a multi-scale model designed to connect human MEG/EEG recordings to the underlying

cell and circuit level generators. Our approach allows for crucial insight into how cell-level

properties interact to produce measured neural activity, and provides guidelines for diag-

nosing the quality of the estimate and uniqueness of predictions for different MEG/EEG

biomarkers.

Introduction

Biophysically detailed neural modeling is a fundamental and established framework to study

fast time scale neural dynamics [1, 2]. While challenging to construct, advances in computa-

tional resources have enabled the proliferation of detailed models from principled models of

single neurons [3] to large scale biophysically detailed neural networks [4] that enable multi-

scale interpretation from cell spiking to local field potentials to macroscale magneto- and

electroencephalographic (MEG/EEG) signals [4–7]. Numerous detailed models are now

openly distributed to encourage their use and expansion [4, 5, 7–13]. A common goal of

detailed neural modeling is to infer biophysical parameters in individual cells and/or network

connections that can account for observed changes in neural activity over time. Given the

large-scale nature of any detailed model, parameter inference is an inherently challenging and

unsolved problem. The difficulty of parameter inference is closely tied to the level of biophysi-

cal detail in the model, as the number of parameters increases with more realistic models. In

practice, parameters can not all be estimated simultaneously, but rather model elements are

estimated in a serial fashion (e.g. cell dynamics followed network connectivity) and fixed.

Then, a limited set of parameters are chosen as the target for estimation. This limited set is

chosen based on a prior hypothesis that a certain set of unknown parameters can be estimated

based on data features. Even with this limited set, the parameter estimation process is complex.

The problem is confounded by the fact that there may be many parameter configurations that

produce an equally good representation of the data [14]. In this study, we focus on the latter

problem of identifying parameter indeterminacies in a limited set of parameters, as to date

there is no means to estimate large numbers of parameters at once. The goal is not to present a

method to mitigate indeterminacies, but develop a framework that can fully represent them.

Identifying unique biophysically constrained parameter sets that can account for observed

neural dynamics, and differences across experimental conditions, is essential to the meaningful

use of large scale biophysically detailed models for neuroscience research. For example, if you

want to use a biophysically detailed model to infer circuit level mechanisms generating an

EEG waveform that is a biomarker of a healthy compared to neuropathological condition, you

need a way not only to estimate the parameter distributions that can generate the waveforms

but also to assess if the distributions are distinguishable.

A powerful approach to estimate parameters in neural models is Bayesian inference. There

is an extensive history of research applying Bayesian inference, and specifically the algorithm

of variational inference, to estimate parameters in reduced models of neural activity, for exam-

ple in the Dynamic Causal Modeling (DCM) [15] framework that relies on reduced “neural

mass models”. However, while compatible with reduced models that are mathematically trac-

table, the algorithm of variational inference is not compatible with detailed biophysical models
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due to their computational complexity, and specifically lack of access to a known likelihood

function (see Discussion). In recent years, simulation based inference (SBI) has been proposed

as an alternative Bayesian inference framework to estimate parameters in detailed neural mod-

els. SBI overcomes the challenge of not having access to a likelihood function by leveraging

advances in deep learning to perform density estimation [16–18]. An advantage of SBI is that

it only relies on a dataset of simulations from the model being investigated, rather than requir-

ing knowledge of a parameter likelihood function, which is typically not accessible in large-

scale biophysically detailed models. From this dataset, a neural density estimator (i.e, artificial

neural network specifically made to approximate probability distribution functions) is then

trained to learn a mapping of observed neural dynamics (e.g. time series waveforms) to corre-

sponding model parameter distributions. Another advantage is that SBI estimates a full distri-

bution over model parameters that may account for the data and provides information about

parameter interactions [14, 18]. This information is not possible with optimization techniques

that have historically been used in large-scale biophysical models such as COBYLA [5, 19] and

genetic algorithms [3, 20], which estimate only a single parameter configuration that best fits

the data. Fig 1 outlines the overall SBI workflow to estimate parameters and possible parameter

combinations that can reproduce recorded neural activity.

While the substantial methodological advancements offered by SBI are promising, and have

been applied to estimate parameters in small biophysically detailed neuron models [18, 21]

and in models with reduced representations of neural dynamics [22], there is currently little

guidance on how these methods should be used with large-scale biophysical models, with the

notable exception of [23] offering a thorough discussion of using SBI on simplified models

coupled in a large-scale brain network. Guidance is particularly lacking in the context of per-

forming inference on neural time series data, and in comparing estimates for data from differ-

ent experimental conditions. In this paper, we provide guidelines on how SBI can be applied

to estimate parameters underlying time series waveforms generated by biophysically detailed

neural models. We emphasize the importance of the first steps of (i) identifying the parameters

and ranges over which the inference process will be performed (i.e. prior distribution), which

necessarily depends on user-defined hypotheses, and (ii) of selecting informed summary statis-

tics of the waveform activity. We also describe how diagnostics can be used to assess the

uniqueness and quality of the posterior estimates and to assess the overlap of distributions

from estimation applied to two different waveforms. These evaluation steps are particularly

important to resolve the uniqueness of distributions for two or more waveforms.

We begin with a simplified example of a non-linear resistor-capacitor circuit, and then

extend the results to an example large-scale biophysically detailed modeling framework that

was developed by our group to study the multi-scale neural origin of human MEG/EEG sig-

nals, namely the Human Neocortical Neurosolver (HNN) [5]. The foundation of HNN is a

biophysically detailed model of a neocortical column, with layer specific synaptic activation

representing thalamocortical and cortico-cortical drive (Fig 2). HNN has been applied to study

the cell and circuit origin of commonly measured MEG/EEG signals, including low frequency

oscillations (e.g. Beta Events [24] and event related potentials (ERPs) [25, 26]), along with dif-

ferences across experimental conditions [25–29]. We demonstrate applications of SBI to esti-

mate parameter distributions that can account for variation in example Beta Events based on

empirical data and in simulated ERP waveforms with selected parameter priors (see Step 1 in

Fig 1) based on our previous studies [24–26]. We show that due to the model complexity some

parameters can be inferred uniquely while others are indeterminate. The methods described

and proof of concept examples provide a principled foundation to guide future applications of

SBI in a wide variety of applications that use detailed models to study neural dynamics.

PLOS COMPUTATIONAL BIOLOGY Applying simulation based inference to biophysically detailed neural models

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011108 February 26, 2024 3 / 29

https://doi.org/10.1371/journal.pcbi.1011108


Materials and methods

Below we provide a summary of the primary techniques used in this work. Specific aspects are

emphasized to provide better context on the significance/motivation of analyses performed.

We invite readers to refer to the citations for a more thorough treatment of each subject. In

particular, the software publication detailing HNN [5], and a study demonstrating the use of

Fig 1. Graphical abstract. Summary of SBI workflow used to infer model parameters that can account for recorded neural dynamics. 1) A prior

distribution of assumed relevant model parameters and ranges is constructed. 2) A dataset of simulated neural activity patterns is generated with

parameters sampled from the prior distribution. 3) User defined summary statistics are chosen to describe waveform features of interest. 4) A

specialized deep learning architecture is trained to learn the mapping from neural activity constrained by summary statistics to underlying model

parameters. 5) Specific neural activity patterns of interest are fed into the trained neural network, which subsequently outputs a distribution over the

potential underlying model parameters. 6) Parameter estimates for different waveforms can be compared through diagnostics like parameter recovery

(if the ground truth is known), or posterior predictive checks.

https://doi.org/10.1371/journal.pcbi.1011108.g001
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SBI on classical neural models [18]. We also detail an RC circuit example, which is a building

block of HNN-type models, and which offers a SBI setup with time series inputs and the pres-

ence of indeterminacies.

Resistor-capacitor circuit simulations

Resistor-capacitor (RC) circuit simulations were performed using the odeint ordinary dif-

ferential equation (ODE) solver of the SciPy Python package. A more thorough description

of how RC circuit simulations were performed can be found in the results section RC circuit:

A simple example to describe indeterminacies that can occur with time series inference.

Human Neocortical Neurosolver

Biophysical modeling of cortical activity underlying MEG/EEG signals was performed using

the Human Neocortical Neurosolver (HNN) [5]. The standard HNN model used in this study

and described in [26] is composed of 100 pyramidal neurons and 33 inhibitory neurons in

both layers 2/3 (L2) and 5 (L5) for a total of 266 neurons and represents a localized small patch

of neocortex (Fig 2). To accurately reproduce macroscale electrical signals, HNN utilizes

multi-compartment pyramidal neuron models [30], and synchronous intracellular current

flow of aligned L2 and L5 pyramidal neuron dendrites is assumed to be the generator of the

primary electrical current sources underlying recorded extracranial MEG/EEG signals, due to

their length and parallel alignment [31]. Inhibitory basket cells are modeled as single compart-

ment point neurons given their negligible impact in producing the recorded electrical cur-

rents, but are none-the-less crucial to the local network dynamics (see [5] for further

background). Pyramidal cells in the model connect to other cells with both AMPA and

NMDA synapses, while basket cells produce GABAA and GABAB synaptic connections.

In addition to the local circuitry, HNN models extrinsic inputs to the column via layer spe-

cific synaptic excitatory drives generated by predefined patterns of action potentials presumed

to come from exogenous brain areas (i.e., thalamus and other cortical regions). In general

these are referred to as proximal and distal drives, reflecting the effective location of the synap-

ses on the pyramidal neuron proximal and distal dendrites. The proximal drive reflects so

called feedforward inputs from lemniscal thalamus, and the distal drive reflecting inputs from

either non-lemniscal thalamus [32, 33], or “feedback” connections from other cortical regions.

These proximal and distal drives induce excitatory post-synaptic currents that drive current

Fig 2. HNN model schematic. A: Local network connections of the HNN model include: 1) excitatory AMPA and NMDA synaptic connections (black

circles) originating from pyramidal neurons (blue), and 2) inhibitory GABAA and GABAB synaptic connections (black lines) originating from

inhibitory interneurons (yellow). B: Proximal exogenous input connection pattern. C: Distal exogenous input connection pattern, see text for further

description. D: 3D rendering of full neocortical column model. Figure adapted from Neymotin et al. 2016 [5].

https://doi.org/10.1371/journal.pcbi.1011108.g002
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flow up and down the aligned pyramidal cell dendrites (see red and green arrows in Fig 2) that

can generate positive and negative deflections in the primary electric current dipole of source

localized MEG/EEG signals. Intracellular current flow due to these extrinsic inputs, as well as

induced local spiking dynamics, combine to produce the recorded MEG/EEG signal.

The results detail 3 examples of problems suited for parameter inference in HNN. In the

first two examples, the parameters to be estimated control either the timing or strength of

extrinsic inputs. In the first example which demonstrates HNN simulations mimicking an RC

circuit, the target of estimation is the parameter vector y0 2 R
3, where the first two parameters

control the strength of a single spike of excitatory proximal and distal input (in units of nS for

the synaptic conductance �g), and the third parameter Δt controls the timing between the two

inputs (in units of milliseconds (ms)). In the second example which demonstrates Beta Events,

the target of estimation is y0 2 R
2

where the parameters control the variance (ms2) of a Gauss-

ian distribution from which 10 spikes are drawn for the proximal and distal inputs. In the final

example which demonstrates event related potentials, the target of estimation is y0 2 R
4,

where the parameters control the synaptic strength (nS) of excitatory/inhibitory local connec-

tions onto the proximal/distal dendrites of L5 pyramidal neurons.

Posterior diagnostics

When working with a posterior approximation F, it is useful to characterize its behavior in dif-

ferent regions of the parameter space. For a given parameter configuration θ0 and simulated

output x0 * p(x j θ0), we quantify how concentrated F(θ j x0) is around θ0. We refer to this

quantity as the parameter recovery error (PRE) and define it as the Wasserstein distance

between the k-th marginal of F(θ j x0), and a Dirac delta centered at θ0[k]. This can be empiri-

cally estimated as per

PREkðF; y0Þ ¼
1

N

XN

i¼1

yi½k� � y0½k�Þ
2

ð1Þ
�

where we generate N samples {θ1, . . ., θN} *F(θ j x0) from our posterior approximation con-

ditioned at x0 * p(x j θ0), which is an observation from the simulator at ground truth θ0. Note

that θ0 is composed of k distinct values for each individual parameter, therefore there are k dis-

tinct PRE values. Additionally, each parameter θ0[k] is mapped from its range defined in the

prior distribution, to the range (0,1). Therefore, the maximum PRE is 1.0, indicating the worst

possible recovery, whereas a PRE of 0.0 indicates perfect recovery.

The previous diagnostic quantified how well F represents the relationship between x0 and

θ0 in terms of the parameter space. Alternatively, we can assess the relationship in the observa-

tion space. Specifically, given samples from our approximate posterior θi*F(θ j x0), we gen-

erate simulations xi* p(x j θi), and assess how close xi is to the conditioning observation x0.

This is known as a posterior predictive check (PPC) [34, 35] and is quantified in this manu-

script as the root mean squared error between x0 and the xi as per

PPCðxi; x0Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i¼1

kxi � x0k
2

s

: ð2Þ

We note that this is a simplified treatment of how to perform a PPC, as observation and

neural noise may significantly change the interpretation of model fit. A more robust assess-

ment of PPC in the context of systems neuroscience modeling can be found in [36] which

describes measures such as the Watanabe–Akaike information criterion (WAIC), as well as

alternative measures to PRE for assessing posterior fit such as posterior shrinkages.
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Lastly, in many applications it is useful to characterize how well two distributions can be

distinguished from one another. To this end we introduce the distribution overlap coefficient

(OVL) [37] which varies on a scale of [0, 1] such that 1 indicates complete overlap, and 0 indi-

cates no overlap. Given our approximate posterior F, we define OVL as:

OVLkðF; x0; x1Þ ¼

Z

min
�
Fðy½k� j x0Þ;Fðy½k� j x1Þ

�
dy ð3Þ

where x0 and x1 are two different observations whose posterior distributions we seek to com-

pare on the marginal distribution for the k-th parameter. To calculate the OVLk numerically

we used an evenly spaced grid of 50d for a prior distribution over d 2 Nþ parameters. OVLk

operates similarly to Kullback–Leibler divergence and related measures, with the primary

advantage being that it is bounded on the interval [0, 1] readily permitting identification of dis-

tributions with large and small amounts of distribution overlap.

MEG Beta Events

Beta Event examples represent empirical human MEG data source localized to SI taken from

the previous studies [24, 26, 38] and preprocessed as described in [24]. Subjects 7 and 5 from

[24] were chosen as exemplars for large (blue) and small (orange) Beta Events, and here are

referred to as subjects 1 and 2, respectively. The Beta Events used for inference were averaged

over all recorded events for each subject that were included in the dataset: 378 events for sub-

ject 1, and 376 events for subject 2. The full dataset of source localized MEG Beta Events used

in this study can be found in the Open Science Framework repository associated with this

manuscript: https://doi.org/10.17605/OSF.IO/VZ97X.

Prior distribution setup and sampling

Prior samples yi 2 R
d

were generated by using the PyTorch Uniform distribution on the inter-

val [0,1). The values in each dimension were then linearly mapped to the range of their corre-

sponding parameter values. For parameters specifying the maximum conductance �g
(nanosiemens, nS) of synaptic connections in HNN, the values were exponentiated in base 10

after being mapped to the appropriate range. This is to account for the saturating impact of

conductance on model outputs, and is employed in previous SBI work with biophysical models

[18].

Simulation and SBI training

Prior samples and simulations were all generated and stored in the form of NumPy binary

arrays before neural density estimator training. The SBI Python package was used for all neu-

ral density estimator training and posterior evaluation. A masked autoregressive flow architec-

ture was utilized for approximation of the posterior distribution. Posteriors for all examples

were trained using a dataset of 100,000 samples from the prior distribution. Gaussian white

noise was added to training observations xi [39]. The variance of the Gaussian noise added to

observations was 0.01 for RC circuit simulations, and 1e-5 for HNN simulations.

All analysis was performed on the Expanse supercomputing cluster managed by XSEDE

and the Neuroscience Gateway. HNN simulations were generated using the Dask distributed

scheduler configured for the SLURM workload manager. When distributed across 256 CPU

cores, the simulated dataset for each example generally took <8 hours to generate. The neural

density estimator took <20 minutes to converge when trained on the CPU of a single comput-

ing cluster node with 32 cores.
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Diagnostic heatmaps were constructed by defining a grid over the support of the prior with

a range of [0.05, 0.95]d, with a resolution of 10 samples in each dimension d.

Results

Approach to applying SBI in biophysically detailed models that simulate

time series data

Recently SBI has been established as an approach to estimate parameters in detailed biophysi-

cal models [18] that simulate time series data. This approach overcomes the challenges of

applying Bayesian inference in highly detailed non-linear models, namely estimation of com-

plex posterior distributions that exhibit parameter interactions, by leveraging recent advances

in likelihood-free inference and deep learning [17]. We begin by reviewing the SBI process

and providing the mathematical description of each of the steps outlined in Fig 1.

The primary goal of SBI in the context of our manuscript is to estimate parameters and pos-

sible parameter distributions that can account for an observed neural dynamic (e.g. time series

waveform). In mathematical terms, this goal is stated as follows. Given an observation x and

model with parameters θ, SBI seeks to create an approximation F(θ j x) of a posterior parame-

ter distribution p(θ j x) such that

Fðy j xÞ � pðy j xÞ / pðx j yÞ pðyÞ : ð4Þ

Bayes’ rule specifies a closed form for the desired posterior distribution p(θ j x) as being

proportional to the likelihood p(x j θ) multiplied with the prior p(θ) [40]. Unfortunately, in

detailed biophysical models the likelihood function p(x j θ), which encodes the relationship

between model parameters θ and outputs x, is often analytically intractable but can be approxi-

mated from a large number of simulations. The novelty of SBI is that it circumvents likelihood

evaluations altogether, and instead approximates the posterior distribution directly from a

simulated dataset of model outputs xi* p(x j θi) with parameter values sampled from a user

defined prior distribution θi* p(θ). There are numerous approaches in the literature to

achieve this goal, each with their own unique considerations, benefits, and challenges [41]. In

this study, we use a deep learning architecture known as a conditional neural density estimator

(F), which is a function that takes an observation x as input, and returns a probability density

function defined over the parameter space. More specifically, the conditional neural density

estimator utilizes normalizing flows following standard practices described in [17, 18]. The

detailed steps in applying SBI (Fig 1) are as follows.

Step 1: Define prior distribution. SBI begins with the user choosing the parameters of

interest to be estimated, and the range and statistical distribution of values (e.g. uniform distri-

bution) those parameters can take. This constitutes the prior distribution p(θ) over model

parameters θ to be inferred. The importance of a well-constructed prior cannot be understated,

as it encodes the assumptions and hypotheses of the inference problem considered, and

strongly impacts any resulting predictions. Creating a good prior distribution requires domain

expertise to choose meaningful parameters, and a biologically realistic range of values. That is

not to say that the predictions are predetermined by the prior, as uncertainty can be encoded

using flat/uninformative priors where the probability mass is evenly spread over the desired

parameter range. Nevertheless this aspect is highly important for detailed neural models where

the inferred parameters represent a small subset of the total set of parameters.

Step 2: Generate training data. With the prior constructed, a simulated dataset of obser-

vations x1:N is generated by simulating a large number of N time series using model parameters

θ1:N drawn from the prior parameter distribution.
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Steps 3-4: Training neural network based on chosen summary statistics to describe the

time series waveform. With the simulated dataset, a specialized deep learning architecture

known as a conditional neural density estimator F is trained to approximate the posterior dis-

tribution p(θ|x) that can account for chosen summary statistics for any observation x. The out-

put is a distribution of parameters which can generate simulations close to the summary

statistics of the conditioning observation x0. The neural density estimator F can be trained

directly from the entire time series x, or from summary statistics s = S(x) which constitute a

lower dimensional vector of values. The choice of s should aim to obtain F(θ j s)� p(θ j s)� p
(θ j x), meaning that the posterior estimates are well enough approximated from s alone. A

more in depth description of the choice and role of summary statistics is given after describing

Steps 5-6.

Steps 5-6: Estimate and compare parameter distributions for distinct waveforms.

With a trained neural density estimator, users can finally feed in new waveforms and assess the

predicted parameter distributions underlying their generation. Diagnostics that assess the

quality of the distribution can then be performed (see Materials and methods for details on the

calculation of each diagnostic). If the ground truth parameters underlying the waveform of

interest are known, users can calculate the dispersion of the posterior around this ground

truth using parameter recovery error (PRE). This is known as face validity when using simu-

lated data to check if the ground truth parameters can be recovered [42, 43]. If the ground

truth is unknown, users can use posterior predictive checks (PPC) to assess if the parameter

distribution consistently produces waveforms close to the conditioning observation. Finally,

uniqueness of posterior estimates for two different waveforms can be assessed by directly com-

paring the overlap coefficient of the distributions (OVL).

The important role of summary statistics in parameter inference. Using the inference

framework described above, in this study we emphasize the role of summary statistics and how

their selection directly impacts predicted parameter distributions. Inference on models with

full time series outputs is challenging because the observations are high dimensional. This

challenge comes in the form of interpretability and model misspecification due the simulator

not capturing finer characteristics of the real data generating process [44].

Summary statistics can either be hand-crafted, leveraging domain expertise and hypotheses

regarding the data, or they can be automatically extracted. A summary statistic s = S(x) is suffi-

cient if all the relevant information for mapping the full observation to its underlying parame-

ters is retained. More specifically, sufficiency is satisfied if p(θ j s) = p(θ j x) [22, 41]. In

practice, truly sufficient summary statistics are rare, but they can still provide a close approxi-

mation to inferences achieved when using the full observations x. A major advantage of hand-

crafted features is that they can be readily interpretable, and come associated with hypotheses

on their physiologic significance depending on previous research. Alternatively, full time series

informed approaches like principal component analysis (PCA) may do a better job at retaining

more complex relationships between observations and parameters. We note that as an alterna-

tive to PCA, automatic extraction of summary statistics through embedding networks are

becoming increasingly common [17, 22, 45, 46]. However, a systematic analysis of the numer-

ous architectures employed in this domain is outside the scope of this study.

Given the current ambiguity around summary statistic selection, principled approaches to

compare alternate approximations of the posterior distribution are essential. To this end, we

have constructed educational examples which allow for an intuitive understanding of the role

of different summary statistics. Additionally, we introduce diagnostic analyses that can be used

to quantitatively compare desirable properties of posterior approximations produced using

different summary statistics, such as PPC, PRE, and OVL. Note that we use the term “desirable

properties” as the goals of inference may differ depending on the use-case. For example,
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predicting precise values for biophysical values (parameter recovery) may be one goal. Alterna-

tively, characterizing the range of parameters consistent with a known biomarker may be

another goal. These analyses are detailed in the examples below.

RC circuit: A simple example to describe indeterminacies that can occur

with time series inference

One of the most challenging aspects of likelihood free inference is that the models studied typi-

cally do not permit access to a ground truth posterior distribution, over which we can validate

our inferences. To highlight this challenge and better understand how decisions in the SBI

pipeline impact the resulting approximate posterior, we will first apply the SBI pipeline on a

model where the ground truth posterior is known; namely an RC circuit model.

The equation for the RC circuit simulations is as follows:

C
dV
dt
ðtÞ ¼

E � VðtÞ
R

þ IeðtÞ ð5Þ

where V(t) is the voltage response of an RC circuit to a current injection Ie(t). In our example

we use a capacitance C = 6 F, resistance R = 1O, and constant voltage source E = 0 V [1].

The example RC circuit simulations described here were parameterized in a way that will

enable comparison to similar simulations in the biophysically detailed simulations described

below for HNN (Fig 3C). More specifically, we drive the RC circuit with two square wave

pulse injections, with positive and negative amplitudes lasting 20 ms each. Two parameters (I+
and I−) controlled the magnitude of positive and negative square pulse current injections, such

that the sum Ie = I+ + I− determined the final injected current for each time step. A third

parameter, latency Δt, controlled the time delay between the two pulses. Specifically, Δt shifts

the negative current pulse in time, while the positive current pulse remains fixed. These inputs

play a similar role as excitatory proximal and distal inputs in HNN (Fig 2). Table 1 details the

prior distribution over the parameters used to generate training examples for SBI.

The relationship between current injection amplitude and the RC circuit voltage response

strongly depends on if Δt is zero or non-zero. When Δt is zero, the total injected current sums

to a single square pulse since the negative and positive pulses perfectly overlap. Fig 3A(top,

blue) shows an example of this where a -0.2 mA square pulse current injection is delivered at

80 ms producing a voltage response with an exponential rise and decay with one peak. Since

any combination of I+ and I− which sum to -0.2 mA will produce an identical voltage, there

will be an indeterminacy when attempting to infer these parameters from the voltage response.

In contrast, Fig 3A(top, orange) shows an example with a non-zero latency Δt 6¼ 0. Specifically,

the first current injection with I+ = 0.3 mA is delivered at 80 ms, and the second current injec-

tion with I− = 0.5 mA at 117.5 ms, therefore Δt = 37.5 ms. The voltage response exhibits two

unique peaks due to the offset between the square pulses. Since there is only one combination

of I+ and I− that can produce this waveform, their values can be inferred exactly from the wave-

form. In other words, the amplitude parameters underlying the voltage response can be

inferred exactly only when Δt 6¼ 0. Note that since we are approximating the posterior distribu-

tion, even values close to Δt� 0 will still produce an indeterminacy.

To visualize and interpret posterior distributions produced by SBI, we must first draw a suf-

ficient number of random samples from the distribution. Since posterior distributions are

often multidimensional, it is useful to plot the samples using a “pair-plot” (Fig 3B). The diago-

nal of the pair-plot is used to visualize the univariate (also known as marginal) distribution of

each parameter, here using a kernel density estimate of n = 1000 posterior samples. The

squares below the diagonal on the other hand visualize the bivariate distribution for pairs of
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parameters by plotting the samples explicitly on a scatter plot. This example highlights that

even with simple simulators, indeterminacies can easily arise necessitating the use of flexible

posterior approximators (like masked autoregressive flows).

Note that PCA with 30 components (PCA30, variance explained = 0.883) was used as the

summary statistic in this example (Fig 3A(bottom)) rather than the full time series to avoid the

potential computational issues of conditioning posteriors on high dimensional data, while still

retaining the majority of the waveform variance. Fig 3A (bottom) plots the inverse trans-

formed PCA30 waveform to highlight that the summary statistic retains almost identical infor-

mation. In all subsequent examples, PCA30 and PCA4 will refer to the d = 4 and d = 30

dimensional summary statistic vectors containing the loadings on the first 4 and 30 principle

components. The PCA transformation was fit separately for each example using the dataset of

100,000 simulated time series waveforms (see Materials and methods for simulation details).

The results in Fig 3B show that the expected posterior distribution described above can be

recovered with SBI. As shown in Fig 3B(a)–3B(e), when conditioned on the voltage response

with Δt = 0, any distribution involving I+ or I− (blue) will exhibit an indeterminacy (i.e., multi-

ple recovered values along one dimension). The high correlation between I+ and I− of 0.998 (p

Fig 3. RC circuit simulations. A: Simulated voltage and current dipole waveforms are shown for two exemplar parameter configurations with latency

between positive I+ and negative I− square current injections, Δt = 0 (blue), and Δt 6¼ 0 (orange). An example of the original “Raw” waveform (top), as

well as the PCA transformed waveform (bottom) with the first 30 components (PCA30) are shown to demonstrate that this summary statistic retains

almost identical information. B: Posterior distributions showing the inferred values that can generate the blue and orange waveforms from panel A

(PCA30 used to generate distributions) demonstrate that when the latency Δt between the inputs is zero, their amplitudes are indeterminate as visible

as a highly dispersed distribution on panels B(a-c, blue), and with a positive correlation between the parameters I+ and I− on panel B(b, blue). In

contrast, when Δt 6¼ 0 (orange), the distributions are tightly concentrated around the ground truth parameters (stars on panels B(a,c)) used to generate

each simulation. The posterior distributions for the parameter Δt are concentrated around the ground truth parameters for both conditions (panel B(f)).

C: Schematic of how RC circuit is driven by positive I+ and negative I− square current injections, where the amplitude and latency Δt between pulses

serve as parameters. This simulation parallels HNN simulations below in which a single excitatory proximal/distal input with variable synaptic

conductances and latencies produce positive/negative deflections in the current dipole.

https://doi.org/10.1371/journal.pcbi.1011108.g003
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� 0) demonstrates that the indeterminacy is characterized by a strong linear interaction

between these parameters. Specifically, the line in Fig 3B(b, blue) corresponds to all values in

which the amplitudes sum to a constant value of V = −0.2, and the resulting voltage waveform

is identical. In contrast, the voltage response with Δt 6¼ 0 (orange) produces a posterior distri-

bution concentrated on a single point around the ground truth parameters (Fig 3B(b, orange),

correlation between I+ and I−: 0.375; p< 1e-33).

Diagnostics enable comparison of posterior estimates using different

summary statistics

In the previous example, we utilized PCA30 as a summary statistic to learn a low dimensional

representation of the voltage time series. PCA is a common choice for dimensionality reduc-

tion, and has been used in historical MEG/EEG inference work with only the first 3-4 principal

components [15, 42]. However, it is not guaranteed that PCA, which aims to only capture vari-

ance, will retain the features that best allow SBI to map waveforms to simulation parameters.

An alternative approach is to leverage domain-expertise to construct hand-crafted summary

statistics specific to the model and inference problem. Unfortunately, it cannot be known a pri-

ori which summary statistic will allow SBI to perform best, necessitating quantitative diagnos-

tics that allow a systematic comparison. Here, we introduce two simple hand-crafted summary

statistics, as well as the posterior diagnostics PRE and PPC, with the intention to build an intu-

itive understanding of how emphasizing different summary statistics can impact the final esti-

mates produced by SBI.

The first hand-crafted summary statistic we defined is a four dimensional vector including

the magnitude and timing of the maximum and minimum peaks (Peak) in the time domain

of the simulated voltage response (Fig 4A(iii)). It can be readily seen that these features reflect

the underlying simulation parameters. Upon visual inspection of the voltage response with Δt
6¼ 0 (orange), the height of the maximum and minimum peak directly correspond to the

parameters I+ and I−, and the distance between these peaks correspond to the latency

Table 1. Simulation parameters and SBI training.

RC Circuit Range Transform

Amplitude 1 (mA) (0, 1) linear

Amplitude 2 (mA) (0, 1) linear

Latency (ms) (-75, 75) linear

HNN “RC” Range Transform

Distal Exc (nS) (1e-4, 1e-3) exponential

Proximal Exc (nS) (1e-4, 1e-3) exponential

Latency (ms) (-75, 75) linear

Beta Events Range Transform

Distal Var (ms2) (0, 10) linear

Proximal Var (ms2) (0, 40) linear

ERPs Range Transform

Distal Exc (nS) (1e-5, 1) exponential

Proximal Exc (nS) (1e-5, 1) exponential

Distal Inh (nS) (1e-5, 1) exponential

Proximal Inh (nS) (1e-5, 1) exponential

The prior support and transform function for the parameters of examples shown in the text.

https://doi.org/10.1371/journal.pcbi.1011108.t001
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parameter Δt. We’ll show below that Peak features permits inference that is close to that

achieved with PCA30 Fig 4A(i) and also PCA4 (variance explained = 0.610) Fig 4A(ii).

The second hand-crafted summary statistic we defined was a four dimensional vector

including the band power (BandPower) of common frequency ranges used to study neural

oscillations (Fig 4A(iv)). Specifically, we considered the beta (13-30 Hz), low-gamma (30-50

Hz), and high-gamma (50-80 Hz) ranges, as well as the aggregate band power of the alpha and

lower frequency ranges (0-13 Hz). As we’ll show below, this feature was intentionally selected

as a cautionary example of a summary statistic that is ill-suited for the inference problem, but

has a basis in previous neuroscience and Bayesian inference literature [47].

Next, we describe two diagnostics that allow comparison of desirable properties of the pos-

terior distribution for different summary statistics, namely PRE and PPC (see Fig 1 Step 6 and

Materials and methods). In the results below, we calculated PRE values over a grid, with 10

points for every parameter dimension, spanning the range of the prior distribution (Fig 4C).

Fig 4. Diagnostics to compare summary statistics on RC circuit model. A: Summary statistics applied to the simulated time series included: PCA30
(i), PCA4 (ii), Peak (magnitude and timing of max/min, iii), and BandPower (four bands between dotted lines, iv). PCA plots (i-ii) show the

associated inverse transformed signal. Two exemplar simulations with pulse latencies Δt = 0 (blue) and Δt 6¼ 0 (orange) are shown. B: Conditioning the

approximate posterior distribution on the Δt = 0 time series produces indeterminacies for all summary statistics, such that the ground truth (red dotted

lines) current injection amplitudes (I+ and I−) cannot be uniquely recovered. PCA30, PCA4, and Peak features exhibit a linear interaction between

parameters for the Δt = 0 time series, whereas the ground truth is recovered for the Δt 6¼ 0 (orange) time series. BandPower produces non-linear

interactions for both time series. C: Local parameter recovery error (PRE) heatmaps are shown. Brighter colors indicate higher dispersion of the

posterior around the ground truth parameters defined by each square. Errors tend to be concentrated around Δt = 0 for PCA30, PCA4, and Peak
features. D: Local posterior predictive check (PPC) heatmaps are shown. Brighter colors indicate regions where simulations generated from posterior

samples are further from the conditioning time series. For both diagnostics, it is clear that PCA30 produces the PRE and PPC across the parameter grid.

The ground truths of the exemplar simulations of panels A/B are indicated by blue/orange squares.

https://doi.org/10.1371/journal.pcbi.1011108.g004
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Taking inspiration from [48], we visualize the PRE as heatmaps over the parameter grid

(Fig 4C and 4D). One of the advantages of inspecting local posterior diagnostics (“local” as in

specific to the pair (x0, θ0)) is the ability to identify patterns. Fig 4C plots the PRE for the I+
parameter, with respect to different ground truth values of I+ itself, and the Δt parameter. Blue

and orange squares mark the ground truth values used to generate the waveforms in Fig 4A.

We observe that the summary statistics PCA30, PCA4, and Peak all exhibit a pattern where

Δt values near zero produce a larger PRE compared to the rest of the parameter grid (Fig 4C

(i)–4C(iii)). This is due to the indeterminacy in I+ as seen in the blue posterior samples of Fig

4B(i)–4B(iii). It is apparent, however, that PCA30 values produce the lowest PRE values, even

near a Δt of zero. In contrast, the BandPower summary statistic produces a posterior distri-

bution with complex indeterminacies for both observations. This results in high PRE values

across the entire parameter grid (Fig 4C(iv)), indicating that this summary statistic is not effec-

tive at recovering the ground truth parameters.

The PPC is a method to describe how well samples from the posterior match the condition-

ing observation [34, 35]. Given a well-estimated posterior distribution p(θ j x) and a condition-

ing observation x0 * p(x j θ0), one would expect simulations xi* p(x0 j θi) to be close to the

original conditioning observation. Unlike the PRE heatmaps, the PPC plots shown in Fig 4D

does not exhibit obvious patterns with respect to the underlying parameter grid.

These diagnostics demonstrate PCA30 performs the best for this inference problem. Addi-

tionally, the local PRE analysis revealed differences between summary statistics that were not

apparent with the global diagnostics. It is important to note that neither of these diagnostics

quantify the closeness of the approximation F to the true posterior. For instance, if there is an

interaction between parameters of the model causing a parameter indeterminacy, then the

PRE will always be non-zero, since the posterior distribution will be spread in the parameter

space. This is the case for the posterior of the RC circuit with Δt = 0 in Fig 3B. Similarly, if

model simulations are stochastic, then a given set of parameters may map to multiple equally

valid outputs, producing a non-zero PPC. Nevertheless, both diagnostics provide useful infor-

mation to compare desirable properties of the posterior approximation.

Subthreshold HNN simulations mimicking the RC circuit shows that

inference with summary statistics that account for the full time series

waveform perform best

Building from the RC circuit, we now describe a nearly identical inference problem in our

large-scale biophysically detailed model constructed to study the neural mechanisms of

human MEG/EEG, HNN (Fig 5). As described further in Materials and methods, HNN is a

neocortical column model with multiple layers and biophysically detailed local cell types. The

local network receives exogenous excitatory synaptic input through layer specific pathways

that effectively synapse on the proximal and distal dendrites of the pyramidal neurons, repre-

senting “feedforward” and “feedback” input from thalamus and higher order cortical areas.

These inputs are simulated with external “spikes” that activate layer specific excitatory synap-

ses (see Fig 2B and 2C, and reduced schematic in Fig 5C). This synaptic activity induces cur-

rent flow within the pyramidal neuron dendrites, which is summed across the population to

simulate a net current dipole that is directly comparable to that measured with MEG/EEG.

Several previous studies have shown that patterns of activation of the local network through

these pathways can generate commonly measured MEG/EEG current dipole signals such as

event related potentials and low frequency brain rhythms, e.g., see [5].

To set up an inference problem that is comparable to our RC circuit example, we begin by

considering patterns of drive to the network that create subthreshold current flow in the
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pyramidal neurons, effectively “disconnecting” the network, because local synaptic interac-

tions depend on local cell firing. Simulations with spiking dynamics will be demonstrated in

the following section. For simplicity, we first describe the subthreshold current flow in the L5

pyramidal cells only (Fig 5C). Specifically, we ran HNN simulations with single exogenous

spikes that activate excitatory synapses on the proximal and distal dendrites of L5 pyramidal

cells. Synaptic excitation of distal synapses generates current flow down the dendrites (e.g. see

green arrow Fig 5C), and excitation of proximal dendrites generates current flow up the den-

drites (e.g. see red arrow Fig 5C). A delay between these the time of the two driving spikes can

create a net current dipole signal that is analogous to that observed in the RC circuit for a non-

zero time delay between the applied currents (see Fig 5A, orange). Further, when the delay

between the spikes is zero (see Fig 5A, blue) an indeterminacy in parameter estimation can

occur, as described below.

With this set up, we applied SBI to infer parameters that mimic those of the RC circuit

example, using PCA30 (variance explained = 0.976) as the chosen summary statistic to con-

strain the inference problem. Namely, the strength of proximal and distal excitatory inputs,

referred to as P and D, parameterized as the maximal conductance at their respective synapses

and the latency Δt between the two inputs. We kept the proximal input time fixed, and let the

Fig 5. HNN simulations that mimic RC circuit. HNN simulations that reflect the nearly identical parameter configuration as the RC circuit in Fig 3.

A: Simulated current dipole waveforms are shown for two exemplar parameter configurations with Δt = 0 (blue) and Δt 6¼ 0 (orange). The original

“Raw” simulated waveform (top) is plotted in comparison with the PCA inverse transformed waveform with 30 components (PCA30, bottom). B:

Posterior distributions showing the inferred values that can generate the waveforms from panel A demonstrate that when the latency between the

inputs is zero (blue), their amplitudes are indeterminate as visible as a dispersed distribution on panels B(a-c, blue), with a positive correlation between

the parameters P and D on panel B(b, blue). Unlike the previous example (Fig 3), the indeterminacy is notably smaller for Δt = 0, with the posterior

distributions primarily being concentrated around the ground truth parameters for P and D (stars on panels B(a,c)). C: Schematic of HNN simulations

in which a single excitatory proximal/distal input with variable synaptic conductances and latencies produce positive (red)/negative (green) deflections

in the current dipole.

https://doi.org/10.1371/journal.pcbi.1011108.g005
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distal input time vary with Δt. The prior distribution over P and D was set to ensure that all

simulations remained subthreshold (see Table 1 for prior distribution ranges).

Similar to the RC circuit example, simulations with Δt = 0 produce a current dipole with a

reduced magnitude (Fig 5A(blue)), whereas Δt 6¼ 0 produces a clear positive and negative peak

(orange). As shown in Fig 5B(a-e, blue), when conditioned with Δt = 0, any posterior distribu-

tion involving P and D will exhibit an indeterminacy. Intuitively, this indicates that the proxi-

mal and distal inputs can compensate within a small range to produce similar current dipole

waveforms. Unlike the RC circuit, this interaction does not span the full range of input

strengths, and instead is more tightly concentrated around the ground truth (Fig 5B(a), 5B(c)

and 5B(f) stars).

Once again, we show that the choice of summary statistics impact the learned posterior dis-

tribution approximation, and that diagnostics can be used to evaluate the quality of the param-

eter estimation (Fig 6A and 6B). When Δt 6¼ 0, both PCA30 and PCA4 (variance

explained = 0.665) produced a posterior that is localized around the ground truth (Fig 6B(i)

and 6B(ii), orange). When Δt = 0, the posterior was still concentrated but with a slight indeter-

minacy (Fig 6B(i) and 6B(ii), blue) that was less prominent than the analogous simulation in

the RC circuit (Fig 4B(i) and 4B(ii), blue). The Peak summary statistic produced a posterior

Fig 6. SBI diagnostics of summary statistics in HNN. The analysis shown in Fig 4 is repeated on a simplified HNN simulations for comparison. A:

Summary statistics included PCA30 (i), PCA4 (ii), Peak (iii), and BandPower (iv). Two exemplar simulations with input latencies Δt = 0 (blue) and

Δt 6¼ 0 (orange) are shown. B: We show the approximate posterior when conditioned on both the exemplar waveforms. The Δt = 0 time series produces

a positive correlation between P and D for all summary statistics. C: Local parameter recovery error (PRE) is shown. Unlike the RC circuit, PCA30 and

PCA4 permit better ground truth recovery even when Δt is near zero. In contrast, Peak features have poor parameter recovery similar to the RC

example D: Local posterior predictive checks (PPC) are shown. PCA30 and PCA4 produce the values across the parameter grid.

https://doi.org/10.1371/journal.pcbi.1011108.g006
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that is well clustered around the ground truth for Δt 6¼ 0 (Fig 6B(iii), orange), but for Δt = 0

exhibited a much more striking indeterminacy (Fig 6B(iii), blue). In contrast, BandPower
was insufficient for ground truth recovery for both the Δt 6¼ 0 and Δt = 0 as was the case for

the RC circuit simulations (Fig 6B(iv)).

We quantified desirable properties of the posterior estimates, with the local PRE and PPC

analysis described above. At Δt� 0, PRE values were large when using BandPower features

(Fig 6C(iv)), relatively smaller for PCA4 and Peak (Fig 6C(ii) and 6C(iii)), and almost

completely disappears for PCA30 (Fig 6C(i)). The PPC values for the BandPower show that

inference using this summary statistic produced results that were highly dissimilar to the con-

ditioning observations (Fig 6D(iv)), while PCA30, PCA4, and Peak exhibit a much lower

PPC values (Fig 6D(i)–6D(iii)). Local PRE and PPC analysis largely agrees with the summary

statistic performance captured by the RC circuit PPC heatmaps (Fig 4C and 4D).

In summary, intelligently chosen summary statistics like Peak features can perform well,

but leveraging information from the entire time series using PCA30 produced consistently

lower PRE and PPC values. The highly effective parameter recovery across the entire parame-

ter grid for PCA30 suggests that SBI permits a near unique mapping from dipole waveform to

parameters when the summary statistic accounts for the full time series waveform and the

parameters are kept in a subthreshold regime. In the next example, we show that this is not

true in general. Even when using information from the full dipole waveform with PCA, infer-

ence in HNN simulations that include stochasticity can produce substantial parameter

indeterminacies.

SBI expands previously proposed mechanisms of subthreshold Beta Event

simulations in HNN and shows stochastic simulation can lead to

indeterminancies

Previous studies have applied the HNN modeling framework to propose novel mechanisms

for the cellular and circuit level generation of transient low frequency oscillations in the 15-29

Hz beta-frequency band, referred to as Beta Events or beta bursts [24, 28, 49]. Many studies

have shown that Beta Events occur throughout the brain (e.g. see [50]) and their expression

correlates with healthy and pathological sensory and motor processing [38, 49, 51]. Further,

they often have a stereotypical waveform shape that resembles an inverted Ricker wavelet last-

ing *150 ms [24, 49, 51–53] (see Fig 7). HNN provides potential mechanistic explanations for

how the Beta Event waveform is generated and how changes in waveform shape may emerge.

The HNN derived novel Beta Event mechanism put forth by Sherman et al. [24] showed that

Beta Events can arise from the dendritic integration of coincident bursts of subthreshold prox-

imal and distal dendritic excitatory synaptic inputs to cortical pyramidal neurons [24, 28],

such that the distal drive is effectively stronger and lasts one beta period (*50 ms); a predic-

tion that was supported by invasive laminar recordings in mice and monkeys [24] and high-

resolution MEG in humans [49]. More specifically, HNN reproduced Beta Events with the

observed stereotypical shape when stochastic trains of action potentials were simulated to

drive the proximal and distal dendrites of the pyramidal neurons, nearly simultaneously.

Bursts of input whose mean timing and standard deviation where chosen from Gaussian dis-

tributions activated excitatory synapses in a proximal and distal connection pattern, as shown

in Fig 7A. The inverted Ricker waveform shape depended on the standard deviation of the

proximal burst being broader than the distal burst, with the proximal burst occurring over

*150 ms and the distal burst occurring over*50 ms, and the mean time of each burst being

the same, i.e. reminiscent of Δt = 0 above. The proximal drive pushes current flow up the pyra-

midal neuron dendrites, while the distal drive pushes it back down (see Fig 7A).
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Previous work also showed that, when the parameters of the proximal drive were held con-

stant, the magnitude of the prominent middle trough changed with the variance of the distal

drive, such that a parametric lowering of the variance pushed more current flow down the den-

drites generating an increased magnitude and sharper trough [24]. This previous study led to

the hypothesis that variance of the inputs impacted the waveform shape but was limited in that

it did not perform an automated parameter inference on empirical data, nor did it investigate

the additional role of proximal drive variance. Extending these prior results, here we hypothe-

sized that both proximal and distal drive variances can impact the waveform shape and thus

apply the SBI methods to HNN to infer distributions of proximal and distal drive variance in

empirical MEG data from two example subject’s whose average Beta Event trough magnitudes

are distinct, collected in the prior study (see Methods). In this example, Subject 1 (Fig 7B

Fig 7. HNN-SBI recovers circuit mechanism of Beta Event magnitude described in previous studies. A: Schematic of Beta Event simulations in

HNN. Beta Events are generated by a simultaneous burst of subthreshold proximal (red) and distal (green) excitatory inputs to L5 pyramidal neurons.

B: Average source localized MEG Beta Event waveforms recorded from two subjects. Subject 1 (top, blue) exhibits a larger magnitude trough compared

to subject 2 (bottom, orange). Simulations corresponding to a posterior predictive check (PPC) are shown in black, such that the parameters were

sampled from the posterior (panel C) of each respective waveform. C: Posterior distributions conditioned on large (blue) and small (orange) magnitude

Beta Events demonstrate that larger proximal variance produces a larger magnitude trough. Overlap coefficients (OVL) quantifying the separability of

the marginal posterior distributions conditioned on each waveform are shown on the diagonal for the corresponding parameters. The marginal

distributions for distal variance are highly overlapping, and non-overlapping for the proximal variance D: PRE heatmap of Ds2 shows accurate

parameter recovery (dark colors) when the ground truth parameters of Ds2 are around 5 ms2, and quickly worsen (light colors) as Ds2 increases or

decreases. E: PRE heatmap of Ps2 shows accurate parameter recovery across the entire range of the prior distribution for both Ps2 and Ds2 .

https://doi.org/10.1371/journal.pcbi.1011108.g007
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(blue)) had larger magnitude peaks and troughs compared to subject 2 (Fig 7B(orange)). The

same diagnostics used above are applied to assess the quality of the estimates.

We used the same parameters for Beta Event generation as in [24] and defined a prior dis-

tribution over proximal and distal input variance (Ps2 , Ds2 ), see Table 1. All other parameters,

including the number of spikes and mean input time, were held fixed as in [24]. We used

PCA30 (variance explained = 0.998) as the summary statistic motivated from the results

above. We ran the HNN-SBI workflow to obtain a posterior distribution approximation that

allows us to infer Ps2 and Ds2 for a given waveform (Fig 7B and 7C).

For both small and large magnitude Beta Events, there is a clear indeterminacy in Ds2 . such

that the distribution of Ds2 is widely spread over the range of the prior distribution, indicating

high uncertainty in the parameter estimates (Fig 7C). In contrast Ps2 exhibits highly concen-

trated distributions, with the larger magnitude (blue) Beta Event corresponding to larger val-

ues (Ps2 � 30 ms2), and the smaller magnitude (orange) Beta Event corresponding to smaller

values (Ps2 � 18 ms2). With a large proximal variance and smaller distal variance, the distal

drive is effectively stronger and able to counteract the upward current flow to create a large

downward deflection. With a small proximal variance, the stronger upward current flow is

more equally matched with the downward current flow to produce an overall smaller and nois-

ier downward deflection. This proof-of-concept example based on two subjects is not meant to

make strong scientific predictions on parameters controlling Beta Event shapes, but exempli-

fies how the HNN-SBI framework can be applied to real data.

To quantify the separability of these distributions, we can employ the distribution overlap

coefficient (OVL) which varies on a scale of [0, 1] such that 1 indicates complete overlap, and 0

indicates no overlap. Unsurprisingly, the Ds2 distributions for the large and small Beta Events

produce an OVL of 0.80 due to the clearly visible high degree of overlap, whereas when com-

paring the Ds2 distributions they exhibit almost no overlap with an OVL of approximately 0.00

(Fig 7C).

We note that unlike the simulations from the previous sections, where all parameters were

deterministic, the exogenous drive times considered here are stochastic. As a result, there is

not a 1:1 mapping from parameters to simulation output. To highlight this, Fig 7B shows simu-

lations with parameters drawn from their respective posterior distributions (black traces). This

visually represents the PPC diagnostic, where simulations from each posterior are close to the

conditioning observation, but not a perfect match. In this setting, the stochasticity in the simu-

lations make it so that measures such as PPC’s are not guaranteed to be zero even with a per-

fect approximation of the ground truth posterior distribution. We additionally observe a

pattern in the local PRE heatmap of Ds2 , indicating that this parameter is accurately recovered

from simulations generated with a Ds2 of approximately 5 ms2 (Fig 7D) and worsens for higher

and lower values of Ds2 . The PRE heatmap of Ps2 shows all values close to zero demonstrating

that the parameter is accurately recovered across the entire range of the prior distribution (Fig

7E).

In summary, the Beta Event example demonstrates how SBI can be used to estimate param-

eter distributions for given time series waveforms, and to compare potential mechanisms

underlying different waveforms. For the example comparison shown, the variance of the prox-

imal drive could be uniquely inferred while the variance of distal drive could not.

SBI reveals parameter interdependencies for suprathreshold event related

potential simulations in HNN

In the Beta Event example above, the effective strength of the proximal and distal input were

maintained in a range where the activity of the cells remained subthreshold, which naturally
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limits the dynamic range of the simulation. Next, we consider a more complex example, in

which the cells are driven to a suprathreshold spiking regime and show that this additional

complexity can lead to parameter estimation indeterminacy that indicates a compensatory

interaction between parameters.

The example considered describes simulations of a sensory evoked response or event

related potential (ERP). HNN has been applied to study source localized ERPs in primary

somatosensory cortex from tactile stimuli (e.g. [25, 26]) and in primary auditory cortex from

auditory stimuli (e.g. [27]). In both cases, ERPs were simulated with a sequence of exogenous

input that represented an evoked volley of drive to the local circuit that occurs after a sensory

stimulus. The drive sequence consisted of a proximal drive representing the initial feedforward

input from the thalamus, followed by a distal drive representing feedback input from higher

order cortex, followed by a second proximal drive representing a loop of re-emergent thalamo-

cortical drive (see schematic red and green arrows in Fig 8A. These drives were strong enough

to generate spiking interactions in the local network and induced current flow up and down

the pyramidal neuron dendrites to generate a current dipole ERP waveform analogous to

those experimentally recorded (Fig 8A). Note, here we are not examining recorded data, but

only example simulations. The specific timing of this exogenous drive sequence for example

simulations is shown with arrows in Fig 8B. The parameters regulating the timing and the

strength of these drives were fixed to the same values for the different conditions considered.

HNN has also been applied to infer neural mechanisms underlying differences in ERP

waveform shapes recorded across different experimental conditions (e.g, for tactile evoked

responses in [25]). Here, we are not trying to reproduce any empirical findings but rather

apply SBI to an ERP simulation as in [25] to examine the influence of changes in local network

connectivity on the ERP waveform as a proof of concept example that examines a small subset

of parameters distinct from our prior investigation.

We start by simulating example ERPs with different peak magnitudes as shown in Fig 8B as

follows. ERPs were generated using a sequence of exogenous proximal-distal-proximal inputs

(Fig 8A and as described above). The parameters representing the timing and strength of the

sequence of exogenous proximal and distal input to the local circuit were chosen to be those

distributed with the HNN software representing an example tactile evoked response simula-

tion and fixed to those values (see Table 1). We then defined a prior distribution over parame-

ters that define a small subset of the local network excitatory and inhibitory connectivity Fig

2A. These parameters included the maximum conductance (�g ) of layers 2 and 5 excitatory

AMPA (EL2 / EL5) and inhibitory GABAA (IL2 / IL5) connections to the L5 pyramidal cell. Spe-

cifically, EL2 and IL2 pertains to synapses on the distal dendrites, EL5 on proximal dendrites,

and IL5 on the soma. Note that there exist more local network connections than those varied

here as shown in Fig 2A and this chosen prior distribution was not based on any hypothesis or

prior knowledge of the impact of local parameters on the ERP, but rather as a tractable

example.

Two example ERPs produced by networks with different local connectivity are shown in

Fig 8B. The ground truth parameters that created these waveforms are shown with stars in Fig

8D. Despite being activated by an identical exogenous input sequence, it is apparent that the

local network connectivity differences lead to dramatically distinct current dipole ERP wave-

forms and corresponding spiking activities. In Fig 8C the spiking activity associated with each

waveform is largely distinguished by the activity of L5 pyramidal neurons (red dots), with

more firing in Condition 2 (orange waveform). For Condition 1 (blue), the first proximal

input leads to the beginning of a sustained negative deflection in the current dipole, which per-

sists during the subsequent distal input due to prolonged activation of the L5 basket cells

which inhibit the L5 pyramidal neuron soma to pull current flow down the dendrites. Once
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this inhibition ends, the L5 pyramidal neuron is able to spike, pushing current flow back up

the dendrites and the subsequent volley of proximal drive continues to push current flow up

and down the pyramidal neuron dendrites due to a similar spiking dynamic. This is in contrast

to Condition 2 (orange) in which L5 pyramidal neuron spiking starts almost immediately after

the first proximal input and persists, pushing current flow up the dendrites to create a sus-

tained positive deflection in the current dipole that persists through the entire simulation.

Fig 8D shows the results of applying the HNN-SBI framework with the PCA30 (variance

explained = 0.999) summary statistic to estimate the ground truth parameters that generated

Fig 8. Inferring local connectivity parameters from ERP waveforms. A: Schematic of ERP simulations in HNN. Evoked activity is driven by a fixed

sequence of proximal-distal-proximal exogenous inputs. SBI is used to infer the maximal conductance strength (�g�) of local excitatory/inhibitory

connections to the proximal/distal dendrites of L5 pyramidal neurons for example waveforms. B: Exemplar simulated ERPs (blue and orange solid

lines) with differing local connectivity strengths chosen from a defined prior distribution (described in the text) are shown, along with the fixed timing

of the sequence of exogenous inputs for each simulation (red and green arrows). C: Spike raster plots of cell specific firing for the two ERP simulation

conditions from panel B. D: Posterior distributions over local connectivity parameters alongside ground truth parameters (stars on diagonal) for

conditioning observations. A strong interaction between excitatory/inhibitory distal inputs (EL2 and IL2) is visible in the lower square. Overlap

coefficients (OVL) quantifying the separability of the marginal posterior distributions conditioned on each waveform are shown on the diagonal for the

corresponding parameters. EL2 and IL2 exhibit a small amount of overlap with OVL values of 0.011 and 0.190 respectively. In contrast EL5 and IL5 were

much more distinguishable, exhibiting OVL values of 2.28e-5 and 1.59e-13 respectively. E: Local parameter recovery error (PRE) for distal inhibition

IL2 indicates errors are higher for observations generated with strong excitatory EL2 and weak inhibitory IL2 distal connections.

https://doi.org/10.1371/journal.pcbi.1011108.g008
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the ERP waveforms described above. It is apparent that the posterior distributions conditioned

on each waveform place high probability mass around the corresponding ground truth param-

eters (Fig 8D, stars on diagonal), but also exhibit strong indeterminacies. For example, for

each condition, there is a clear interaction between EL2 and IL2, such that as one parameter

increases the other also increases, suggesting that these two parameters can compensate one

another in a limited range to maintain a constant waveform. We can also observe that between

the two conditions there are apparent differences in L5 pyramidal neuron spiking, as well as

the sustained negativity (blue) and positivity (orange) observed in the current dipole due to

the complex dynamics that each parameter configuration creates.

To quantify the separability of these distributions, we calculated the OVL coefficient for the

marginal distributions of all parameters (Fig 8D diagonal). Estimated parameter distributions

of the synapses on the layer 5 distal dendrites, EL2 and IL2, exhibit a small amount of overlap

across conditions with OVL values of 0.190 and 0.011 respectively. The parameter distribution

of the synapses on layer 5 somas however were much more distinguishable for the two condi-

tions, exhibiting OVL values of 2.28e-5 for EL5, and 1.59e-13 for IL5. We additionally per-

formed diagnostic analysis of the local PRE to see how recovery of IL2 changes as a function of

IL2 itself, and EL2. Fig 8E exhibits a clear pattern indicating that the recovery of IL2 is worse

when the network exhibits low IL2 and large EL2.

In summary, the ERP example provides another demonstration of how SBI can be used to

estimate parameter distributions for given time series waveforms and to compare potential

mechanisms underlying different waveforms. For the hypothetical example comparison

shown, EL5 and IL5 were uniquely inferred with distributions for the waveforms compared

exhibiting very little overlap. Distributions for EL2 and IL2 were also separable, albeit with

slightly more overlap, and a marked interaction between these two parameters.

Discussion

Inference in detailed biophysical models like HNN is far from a solved problem. Nevertheless,

the recent developments in likelihood-free inference techniques have enabled predictions of

parameter distributions with a level of detail and complexity that was simply not feasible until

now. In this study, we detailed step-by-step methods to employ SBI in detailed models of neu-

ral time series data and to assess the quality and uniqueness of the estimated parameter distri-

butions. We began with a simplified RC-circuit example which exemplified the possibility of

parameter interactions and highlighted limitations with chosen summary statistics that do not

consider the full time series waveform. We then demonstrated how distributions of biophysical

parameters that can account for a given time series waveform can be inferred using an inte-

grated HNN-SBI workflow applied to two common MEG/EEG signal motifs (Beta Events and

ERPs) and how to assess overlap of the distributions from two different waveforms. This work

does not aim to be an exhaustive guide to inference in HNN, nor to focus on specific neurosci-

entific questions, but instead to provide useful examples and methods to highlight critical deci-

sions in the inference pipeline. There are several major takeaways from our study. First, highly

non-linear biophysically detailed neural models like HNN are not suitable for Bayesian estima-

tion methods that require access to a likelihood function (e.g. variational inference) or that

approximate posterior distributions with independent Gaussians (a.k.a Laplace approxima-

tion). Rather they necessitate a method that can estimate complex posterior distributions and

parameter interactions from a simulated dataset (e.g. SBI with masked autoregressive flows).

Second, an important initial step in the SBI process is to identify a limited set of parameters

and a range of values for those parameters that are assumed to be able to generate the wave-

form of interest and variation around it (i.e. the prior distribution). Due to the large-scale
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nature of biophysically detailed network models, it is not possible to perform SBI on all param-

eters at once. The choice of the prior distribution represents a hypothesis about parameters

that are assumed to contribute to variation in the waveform. This hypothesis can be informed

by domain knowledge of the question of interest. In the HNN examples shown, the hypothe-

sized parameters of interest for estimation were the strength of the proximal and distal excit-

atory synaptic drive for the Beta Event simulation, and local excitatory and inhibitory

connectivity for the ERP simulation; these parameters were chosen only for didactic purposes.

All other parameters were fixed based on previous studies. Third, posterior diagnostics like

PRE and PPC, are valuable tools to guide decisions in the inference pipeline, e.g. optimal sum-

mary statistic selection, and OVL can be used to assess the uniqueness of estimated distribu-

tion for two different waveforms. Fourth, when estimating parameters that account for time

series waveforms, summary statistics informed by the full time series such as PCA are the most

effective at retaining essential information for mapping recorded signals to underlying param-

eters. While hand-crafted summary statistics, such as peak latency or magnitude, can permit

an accurate mapping for certain waveform features, their selection may be insufficient to iden-

tify unique parameters distributions.

Comparison with inference in MEG/EEG neural modeling frameworks that

rely on dynamic causal modeling

To our knowledge, while there are several modeling frameworks for simulating MEG/EEG sig-

nals, the other frameworks that use likelihood-based Bayesian inference to estimate parameters

fall in the category of Dynamic Causal Modeling (DCM) [15, 54]. It is important to emphasize

that while the HNN-SBI framework conceptually overlaps with DCM, they are two fundamen-

tally distinct techniques which address different questions. At its base, DCM combines varia-

tional inference, a computationally efficient Bayesian inference algorithm, with neural mass

models, as well as an observation model which translates simulated activity to experimental

measures (e.g., MEG/EEG). Neural mass models refer to a specific class of neural models

where a single variable represents the aggregate activity of large neural populations (e.g. popu-

lation spike rates). The inferred parameters in the DCM framework most often represent the

coupling strength between distinct neural masses (e.g. population nodes). By making simplify-

ing anatomical and physiologic assumptions, neural mass models in the DCM framework can

be employed in a large variety of inference problems due to their computational efficiency.

However, their ability to make precise biophysical predictions on cellular and local circuit level

processes is limited as the parameters are an abstraction representing population level activity

[54], preventing a one-to-one comparison between model predictions and experimental mea-

surements. Further, physiologically important effects like dendritic backpropagation are not

represented in neural mass models unlike HNN. There are, however, advantages of DCM over

the HNN-SBI framework that access to a known likelihood function and other simplifying

assumptions allow. For example, one critical question that the HNN-SBI framework is cur-

rently not suited to address is inference with multiple spatially separated cortical sources.

While theoretically possible, the high computational demands of HNN-SBI severely limit the

ability to explore multi-area interactions, and highlight the importance of using neural mass

models and DCM in the analysis of whole-brain neuroimaging data. Recent work has shown

that neural mass models can also be integrated with the SBI-framework for whole-brain stud-

ies [23], highlighting the adaptability of the SBI methodology to a wide variety of neural mod-

els. Another major limitation of the current framework is that a small number of parameters

must be chosen to create a sufficiently large dataset for amortized inference. Recent methodo-

logical developments in Bayesian model reduction with DCM have shown that large parameter
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spaces can be searched over in a computationally efficient manner [55]. Alternatively, previous

works have attempted to merge the DCM and HNN modeling frameworks [56, 57]. This

approach potentially enables one to benefit from the computationally efficient inference proce-

dures offered by DCM, as well as the biophysical interpretability offered by HNN. Importantly,

this approach necessitated 1) grouping of biophysical parameters in HNN to enable a one-to-

one mapping to DCM parameters, and 2) an equivalent number of excitatory and inhibitory

neurons in each cortical layer to permit a mean-field approximation and was applied to infer

parameters in non-spiking HNN simulations of brain rhythms. For hypotheses where these

assumptions apply and precise biophysical detail and network heterogeneity is not a focus the

HNN-DCM approach offers a compelling alternative to HNN-SBI inference framework.

Comparison to other biophysically detailed neural modeling studies and

estimation techniques

The simulation process outlined here extends prior work using SBI to estimate parameters in

detailed neural models. Prior work applying SBI to neural models has included a single com-

partment Hodgkin-Huxley model, and the stomatogastric ganglion model [18], both of which

include an extensive parameter set, but contain significantly less detail and are smaller scale

models than HNN. Additionally, non-amortized inference was performed in these models

using sequential neural posterior estimation, allowing a much larger parameter set to be

inferred, but only for a specific single observation. In contrast, we omit the use of sequential

methods to perform inference on multiple observations using the same trained neural density

estimator, but at the expense of the number of parameters that can be inferred simultaneously.

Nevertheless, when only a few parameters are necessary for estimation, SBI offers a powerful

tool for amortized inference in high-dimensional models, with examples ranging from whole-

brain models in systems neuroscience [23, 58], to particle physics models investigating the for-

mation of the Higgs boson [59]. The SBI workflow applied here used the neural density estima-

tion technique known as masked autoregressive flows. There are currently a large number of

neural density estimation techniques beyond this choice, each offering distinct advantages

such as sample efficiency, expressivity, and likelihood evaluation [16]. While this field is rap-

idly evolving, recent concerns have been raised about the limits of such tools in the domain of

Bayesian inference for scientific discovery [44, 60]. Unfortunately, there currently exist very

few techniques for the validation of posterior distributions learned through neural density esti-

mation beyond PPC and PRE diagnostics shown here. One promising work is simulation-

based calibration [61], which plays a similar role as PPC’s by measuring properties the poste-

rior approximation should satisfy if it is close to the ground truth. It is important to note, how-

ever, that this technique assesses the quality of the posterior approximation for the marginals

of each parameter separately. More research in the domain of multidimensional calibration in

the context of likelihood-free inference will be crucial to better represent complex parameter

interactions like local E/I balance, as shown in Fig 8. Nearly all parameter estimation tech-

niques in high-dimensional biophysically detailed neural modeling will be computationally

expensive. Indeed, SBI with HNN has a high computational load (for each example shown

here, 100,000 simulations were run on a computing cluster in parallel over 512 CPU cores).

While the upfront computational costs are high, there are advantages to SBI over other estima-

tion techniques, for example COBYLA estimation, which has also been applied in HNN [5].

The main distinguishing factor is that SBI makes use of every simulation to build an accurate

approximation of the posterior distribution for many waveforms. In contrast, COBYLA uses

simulations to iteratively search for an optimized parameter set for a single waveform. Once

trained, the neural density estimator in the SBI framework can be applied again on new time
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series waveforms (that fall within the prior distribution) without retraining. As shown in the

results, the posterior distribution is an object with several utilities. We emphasize the mapping

between observations and ground truth parameters in this paper, but there are alternative uses

such as parameter optimization via non-amortized inference [17], as well as building a more

basic understanding of the model itself. Further, significant research efforts currently under-

way have the potential to decrease the computational cost of likelihood-free inference, making

these techniques more accessible.

As an alternative to SBI, there has been substantial work in using probabilistic program-

ming languages (PPL) to enable Bayesian inference on stochastic simulators. Models imple-

mented in a PPL can be used in combination with modern inference algorithms (i.e. NUTS

and ADVI) which have a dramatically lower computational cost compared to SBI [36, 62–64].

Unfortunately such approaches have the drawback that existing simulators must be completely

rewritten in a PPL which may even compromise the efficiency of running forward simulations.

Nevertheless, these techniques have proved highly useful for inference in large-scale neural

simulators, and can potentially be combined with surrogate models that approximate the for-

ward simulations of existing models.

Other important future directions

In this study, we showed that PCA is the appropriate choice when compared to simple hand-

crafted summary statistics when performing SBI on time series waveforms. However, PCA is

constrained to preserve high-variance features, when in fact low-variance features may also be

critical for identifying certain parameters. An important line of future work is the improve-

ment of methods to learn summary statistics from neurophysiological signals that can help

identify features of the signal that are essential for accurate parameter estimation. A promising

development in this domain is the use of embedding networks that are trained to estimate

summary statistics simultaneously with the neural density estimator used to approximate the

posterior distribution that can account for those summary statistics [17, 22, 45, 46]. Currently,

it is unclear if existing methods to train these embedding networks coupled to neural density

estimators are sufficient and require further analysis. Our HNN-SBI examples focused on

making inferences by constraining only to one output of the model; namely simulated current

dipole waveforms. However, due to the multi-scale nature of the HNN model there are many

other model outputs that could help constrain the inference problem, such as cell spiking pro-

files, and/or local field potential signals. A major advantage of the Bayesian framework is the

ability to flexibly integrate multiple features into the parameter estimation. If additional multi-

scale data is known, properties of this data can provide further summary statistics over which

the inference problem can be constrained. An important limitation of the current study is a

characterization of how observation noise impacts posterior parameter inferences, and which

summary statistics are more or less robust to such noise. In our study, PCA30 was found to

perform best for parameter recovery, however the information gained from such low variance

features may be highly sensitive to noise. Similarly, the hand-crafted summary statistics like

Peak and BandPower may be particularly impacted by noise. The sensitivity of neural den-

sity estimators to observation noise, and more generally identifying model misspecification, is

an open problem in the SBI field [16, 44] and an important direction for future research. Care-

ful parameterization of observation noise, and establishment of predictive validity of the

model using real data, will be critical next steps for robust inferences with the HNN-SBI

framework.
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Conclusion

Using detailed neural models in a Bayesian framework is the product of significant develop-

ments in machine learning, biophysical modeling, and high-performance computing that have

evolved largely independently. Our results demonstrate that large-scale biophysically detailed

models, like HNN, are now amenable to Bayesian methods via the SBI framework, an

approach that has not been feasible in the past. However, this novel combination produces

new conceptual and technical challenges that must be addressed to effectively use these tech-

niques. While in this work we provide guidelines for addressing such challenges, more

research in the domains of neural modeling and likelihood-free inference are needed. It is

apparent that the combination of HNN with SBI is a step forward for making mechanistic

inferences underlying MEG/EEG biomarkers, with the potential to provide novel circuit-level

predictions on disease and neural function. Our results lay the foundation for similar integra-

tion of SBI into the growing number of biophysically detailed neural modeling frameworks to

advance neuroscience discovery.

Acknowledgments

Simulations were implemented using HNN-core [65], a command line interface to the HNN

model: https://github.com/jonescompneurolab/hnn-core.

Experiments were made possible thanks to the Python scientific ecosystem: Python [66],

SBI [67], PyTorch [68], NumPy [69], SciPy [70], Matplotlib [71], Seaborn [72], and Dask [73].

We’d like to thank Ryan Thorpe for feedback on the manuscript, and Blake Caldwell for

technical guidance early on in this study.

Author Contributions

Conceptualization: Nicholas Tolley, Pedro L. C. Rodrigues, Alexandre Gramfort, Stephanie

R. Jones.

Data curation: Nicholas Tolley.

Formal analysis: Nicholas Tolley, Pedro L. C. Rodrigues.

Funding acquisition: Alexandre Gramfort, Stephanie R. Jones.

Investigation: Nicholas Tolley.

Methodology: Nicholas Tolley.

Software: Nicholas Tolley, Pedro L. C. Rodrigues.

Supervision: Pedro L. C. Rodrigues, Alexandre Gramfort, Stephanie R. Jones.

Visualization: Nicholas Tolley.

Writing – original draft: Nicholas Tolley.

Writing – review & editing: Nicholas Tolley, Pedro L. C. Rodrigues, Alexandre Gramfort, Ste-

phanie R. Jones.

References

1. Abbott LF, Dayan P. Theoretical Neuroscience: Computational and Mathematical Modeling of Neural

Systems. Computational Neuroscience Series. MIT Press;.

2. Einevoll GT, Destexhe A, Diesmann M, Grün S, Jirsa V, Kamps Md, et al. The Scientific Case for Brain

Simulations; 102(4):735–744. PMID: 31121126

PLOS COMPUTATIONAL BIOLOGY Applying simulation based inference to biophysically detailed neural models

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011108 February 26, 2024 26 / 29

https://github.com/jonescompneurolab/hnn-core
http://www.ncbi.nlm.nih.gov/pubmed/31121126
https://doi.org/10.1371/journal.pcbi.1011108
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