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IBM allowing non-conforming time-steps: application to fluid-structure
interaction in biomechanics
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SLHEEA Research Department, Ecole Centrale Nantes (ECN and CNRS), Nantes, France

Abstract

This paper presents a partitioned framework for the numerical simulation of fluid-structure interactions by
coupling the lattice Boltzmann method (LBM) and the finite element method (FEM). The two numerical
methods LBM and FEM are coupled with an implicit immersed boundary method (IBM) in a strong way,
which ensures exactly the no-slip condition and the continuities of velocity and stress at the fluid-solid interface
and each instant in time. In the proposed partitioned coupling procedure, the coupling system of equations are
first established and then condensed to the interface. By solving the condensed coupling system of equations,
the interface force field is obtained and sent to both solvers to accomplish time integrations in each sub-domain.
In addition, two strategies based on linear interpolation in time are proposed to handle the cases with non-
conforming time-steps in the fluid and solid sub-domains. Through several 2D and 3D numerical test-cases
on the mechanical heart valve, the fluid-induced vibration of a deformable solid beam, the flapping flag, the
proposed coupling framework is validated with good agreements with references. Finally, a test-case on the
interaction between the blood flow and the aortic valve is carried out, showing the applicability of the present
framework in realistic biomechanical applications.

Keywords: Strong partitioned coupling, lattice Boltzmann method, finite element method, implicit immersed

boundary method, fluid-structure interaction, non-conforming time-steps

1. Introduction

Fluid-structure interactions (FSI) are widely present within the human body, for instance, in the heart
between the pulsatile blood flow and the cardiac muscle and valves, the interaction between the urine and the
bladder, etc. With the fast development of computational techniques, numerical simulation plays a more and

more critical role in designing and assessing new patient-specific therapies. Indeed, as a secure analysis tool, the
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numerical simulation based on computational fluid dynamics (CFD) and computational solid dynamics (CSD)
can provide details which are unreachable today using experimental measurements.

Up to now, various types of numerical simulation methods have been proposed and applied in biomechanical
studies involving FSI, such as blood flows through mechanical and bioprosthetic heart valves [6, 9, 12, 15, 32, 44,
45, 48, 65], cerebral aneurysms [2] and pulmonary airways [37], etc. Over the past decades, lattice Boltzmann
method (LBM) [71] emerged as an efficient and reliable alternative to conventional CFD methods for simulating
various types of flows. Recently, a thorough review on the theory of LBM for nearly-incompressible fluid flows
has been given by Lallemand et al. [51]. Being highly parallelizable, LBM appears as a good candidate for
modeling biomechanical problems with high performance computing (HPC) techniques. In the present work,
we propose a coupling framework for the numerical simulation of FSI problems, in which the fluid sub-domain is
solved using LBM, whereas the deformable structures are modeled with the finite element method (FEM) [3, 42]
taking into account geometric non-linearities. Because of the radically different descriptions of LBM (Eulerian)
and FEM (Lagrangian), we choose to couple these methods through the use of the immersed boundary method
(IBM).

Initially proposed by Peskin [58] for simulating the blood flow in the heart, IBM and its variations have been
applied for handling different types of FSI problems. With IBM, it is straightforward and easy to incorporate
solid boundaries in fluid flows without changing the mesh of the fluid sub-domain. An insightful review on IBM
was recently given by Huang & Tian [41]. More specifically, some previous works on IB-LBM can be found in
[14, 24, 26, 43, 72, 77, 79]. In the present work, we adopt the implicit IB-LBM first proposed by Wu & Shu
[79], of which the key is to obtain the IB-related force at all IB-points simultaneously by solving a linear system
of equations at the fluid-solid interface. As a direct-forcing scheme, this implicit IBM does not require to tune
any artificial stiffness coefficient and can ensure exactly the no-slip condition, in the sense that the interpolated
fluid velocity is exactly equal to the solid velocity at the interface. Another reason why we prefer this implicit
IBM of Wu & Shu [79] is that it does not need iterative procedures to enforce the no-slip condition.

As for the FSI coupling algorithms, with the classifications given in [25], they can be categorized as monolithic
and partitioned procedures. In monolithic procedures, the fluid and solid discrete equations are established and
then solved in the same entity (solver or code). Whereas in partitioned procedures, the fluid and solid sub-
domains are solved separately in two entities and communications between these two entities are required.
Usually but not always, partitioned procedures are less stable than monolithic ones, as they do not fulfill
exactly the continuity conditions at the fluid-solid interface (velocity or stress continuity). However, partitioned
procedures are more flexible to be used in realistic applications, as the modularities of different solvers are
retained [25]. In addition, based on whether the continuity conditions are ensured at the interface and each

instant or not, partitioned coupling procedures can be classified as strongly-coupled or weakly-coupled (loosely-



coupled or staggered) algorithms [81]. A strong coupling can be obtained by means of sub-iterations during each
time-step, which might induce the degradation of coupling efficiency, due to the extra-cost for sub-iterations
and communications between the two solvers. To reduce this cost, some efforts have been made to significantly
decrease the sub-iteration steps or completely remove the sub-iterations [31, 76, 80].

Probably due to its implicit feature, to the best of our knowledge, this implicit IBM [79] has not been
applied in strong couplings between LBM and FEM. Wang et al. [78] coupled the non-linear FEM with the
lattice Boltzmann flux solver (LBFS) via this implicit IBM, however, in a weak way. Some other LBM-FEM
coupling algorithms can also be found in the literature, such as the ones in [13, 14, 20, 47], etc. However, they are
either weakly coupled or strongly coupled with the help of sub-iterations. To fill this gap, in the present work we
propose a coupling framework for simulating FSI problems involving deformable solid structures, in which the
LBM and FEM are coupled in a strong and partitioned way. Similar to the monolithic coupling procedure, in
the proposed partitioned coupling framework, the FSI coupling equations are expressed in a strong way without
destroying the continuity conditions at the interface. However, this coupling system will not be solved directly
in any solver, but will be firstly condensed to the interface. By solving this condensed coupling system, we can
obtain the interface force field which is then sent to the fluid and solid solvers to accomplish the time integration
in each sub-domain. The proposed coupling framework can ensure exactly the no-slip condition as well as the
continuity conditions at the fluid-solid interface and each instant, while avoiding sub-iterations during each
time-step. In the previous non-staggered coupling algorithms [55, 54|, the IBM is based on the computation
of the Lagrangian weight with the method proposed in [59]. However, it has been recently demonstrated that
this Lagrangian weight cannot ensure exactly the no-slip condition [85, 86] in general cases, although it does
remove the penetration of streamlines across the immersed boundary as shown in [56]. Moreover, in the present
work, two strategies based on linear interpolation in time for using non-conforming time-steps in fluid and solid
solvers are provided, which render the coupling framework more flexible and efficient to be used in realistic
applications, such as the biomechanical problems involving the interaction between the blood flow and heart
valves.

The rest of the paper is organized as follows. Sec.2 presents briefly the adopted LBM and the projection-
based regularization procedure. Sec.3 provides necessary details about the used FEM and the hyperelastic
material models. The implicit direct-forcing IBM as well as the evaluation of interfacial forces are presented in
Sec. 4. The proposed coupling algorithm is shown in Sec. 5, compared with an ordinary weak coupling algorithm
and a strong coupling one based on sub-iterations. In addition, two strategies based on linear interpolation
in time are provided in Sec.6 for the use of non-conforming time-steps in fluid and solid sub-domains. The
proposed strong coupling framework is validated with several validation test-cases and applied in a biomechanical

application case in Sec. 7. Finally, the conclusions are drawn in Sec. 8.



2. Lattice Boltzmann method for the fluid sub-domain

2.1. Lattice Boltzmann equation

The continuous Boltzmann equation with the BGK collision model [5] reads

of |, Of  Of g
Freslig L0 (1)

where f = f(x,&,t) is the single particle distribution function at the position @ and time ¢ for the microscopic
velocity €, g = g(x, t) is the external body force per unit mass, f¢? = f¢9(x, £, t) is the equilibrium distribution
function and 7 is the relaxation time.

He & Luo [36] first demonstrated that the lattice Boltzmann equation (LBE) is a finite difference form of
the continuous Boltzmann equation, which can be derived in an a priori way. In the present work, the LBE for

simulating isothermal weakly-compressible single-phase fluid flows is adopted, which is written as

Jalx+ E AL+ AL) = fo(x,t) — % (falm, t) — fl(x, 1)) + AL (1 — %) Folx, t), (2)

where f,(x,t) denotes the distribution function (after a change of variables) in the ath lattice direction with
£, being the corresponding lattice velocity, At is the time-step and the kinematic viscosity v is related to the
relaxation-time parameter 7 as vy = c?c (r — 0.5A¢) with ¢; = \/1/3Axs/At being the fluid sound speed for
the adopted types of lattices D2Q9 and D3Q19 [60] in the present work. In addition, Az denotes the lattice
spacing and f¢9(«,t) is referred to as the discrete equilibrium distribution function, which can be obtained by
the Hermite polynomial expansion of the Maxwell-Boltzmann equilibrium distribution [66]

Eo vy | (€a-v5)?  vpovs
> + 2c% e ’ (3)
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where py = py(x,t) and vy = vs(x,t) denote respectively the fluid density and macroscopic velocity, and wa
is the weight coefficient of the lattice. The last term Fq (2, 1) in Eq. (2) is the body force-related term given as
[34]

éa —v (éa ‘v )éa
Fa= PfWa < 2 ! + C4f (4)
f f
With the adopted force scheme of Guo et al. [34, 35], the macroscopic fluid density and velocity are computed
as
At
pr =2 far P55 =) Eufat S prs9. (5)

Finally, the pressure in the fluid domain is computed as py = pfc?c (barotropic equation of state), which is

sufficient for simulating isothermal weakly-compressible fluid flows.



2.2. Regularization procedure based on Hermite polynomial expansion

While being simple and straightforward to be implemented, the previously presented single-relaxation-time
(SRT) LBE often suffers from numerical instabilities, especially for simulating fluid flows of high Reynolds
numbers. To circumvent the instability issue of LBE, various collision models have been proposed in the
literature [10], such as the multi-relaxation-time (MRT) models [16, 17, 29, 50], the cascaded LBM [28] and its
central-moment version [21], the regularized LBM [11, 52, 84], the cumulant scheme [64] and the entropic LBM
[1, 46]. In the present work, we adopt the regularized LBM [84] based on the projection of the non-equilibrium
distribution function onto the sub-space spanned by the first N Hermite polynomials. The regularized discrete

LB scheme is written as

falx+ E AL+ AL) = fol(x, t) + (1 - %) fred (@ 1) + At (1 — %) Folm,t), (6)

k23

where the regularized non-equilibrium part of the pre-collision distribution function fa €4(x,t) is computed as

N
. 1
1Y, 1) = wa 3 QU (1) HE,) ™)
n=0 """

with Q(") (x,t) and ™) (¢,) being respectively the nth-order expansion coefficient and Hermite polynomial,

neq

which are computed as

QU@ ) =Y fa (@, )A ™M (€.) =D (falz,t) — fl(2, 1) (L), ®)

(83 (83

and the first few Hermite polynomials are given as

%(0)(604) = 15 %(1)(604) = i_a, %(2) (éa) - = 3
f Cy

with I being the second-order identity tensor.
By means of this regularization procedure (7), all the terms on the right hand side of Eq. (6) lie in the
sub-space spanned by the first N Hermite polynomials. For simulating isothermal weakly-compressible fluid

flows, it suffices to truncate at N = 2. In addition, it is noteworthy that the lst-order expansion coeflicient

Q'Y is not equal to zero due to the use of the adopted force model [54].

neq

3. Finite element method for the solid sub-domain

3.1. Total Lagrangian formulation
Using the principle of virtual work under the total Lagrangian formulation, the weak form of the dynamical

equilibrium equation is written as

d?u
s [ Pl—==2 Vo P d2y = 1
,/QD ou (ps ds2 VO ) 0 05 ( 0)



where u; = u4(X,t) denotes the solid displacement field, p? = p?(X) is the initial solid density, and P =
P(X,t) is the nominal stress tensor. In addition, {2y denotes the initial solid configuration and Vj- is the
divergence operator with respect to the material coordinate X. Finally, the solid velocity vs and acceleration
as can be obtained as vy = du,/dt and a; = d?u,/dt>.

With the finite element discretization dus = Ny(X)du;(t) and as = N;(X)a(t), from Eq. (10) one can

obtain

(/ p’NiN; dQO) ay +/ (VoNp) - Pde2y — NitodIy =0, (11)
20 20 882y

where Ny and Nj; are the shape functions for the Ith and Jth nodes, a; is the acceleration vector for the
Jth node, and g is the surface force (per unit area) defined on the boundary 9f2y. Notice that the Einstein
summation convention is adopted in Eq. (11). By defining the consistent mass matrix element My, the internal

nodal force q,,, ; and the external nodal force q.,; ;, Eq. (11) can be rewritten for the /th node as

MIJaJ = qert,] o qint,]a (12)

with

My, :/ pSNINJ dQOa Qeat, ] — Nrtg dFOa Qint,1 :/ (VONI) ’ Pd‘QO (13)
.Qg -QD
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Finally, the whole system of equations for all FFE-nodes can be obtained using the scatter-gather operation
and is expressed as

Msgszq q

Aozt Hine’

(14)

where M, is the global consistent mass matrix, and a

a., q_, and q, . are the global acceleration, the global

external and internal nodal force vectors for all FFE-nodes, respectively. For instance, in 3D cases, the accel-
eration vector is @, = [af,df,,af,...,a7,a7,a},.. ., aNS,aNS,aNS] where af is the acceleration component in

z-direction and N, denotes the total number of FE-nodes.

3.2. Hyperelastic material models

In the present work, to calculate the internal nodal force g;,, ; in Eq. (13), we adopt hyperelastic material
models in order to simulate moderately large deformations in solid structures. The nominal stress tensor P
is computed as P = § - F' where F = dx /0X is the deformation gradient tensor, @ the spacial coordinate,
and S the second Piola-Kirchhoff stress tensor related to the Green strain tensor E = (F' - F — I)/2 via a
hyperelastic material model as S = O¥/0F with ¥ being a strain energy density function.

In the following test-cases, two hyperelastic material models have been used. The first one is the Saint

Venant-Kirchhoff isotropic hyperelastic model

S = )\Lamétrace(E)I 4+ 2uLame (15)



where A[ame and prame are the two Lamé constants which are related to the Young modulus F; and the Poisson

ratio v as
Z/SES o Es
A+ )1 20y M= 515,y

The second isotropic hyperelastic material model is the Neo-Hookean model adopted by Sigiienza et al. [67]

)\Lamé —

(16)

for modeling the aortic heart valve. In this hyperelastic model, the strain energy function ¥ is given as

o G, —2/3 K 2
== (JO I 3)+ 5> (In Jo)’, (17)

where G, and K denote respectively the shear and bulk moduli, of which the values are determined by means
of a simulation-experiment fitting in a uniaxial tensile test [67]. In addition, Jy = Jo(X,1) = det(F') is the
Jabobian determinant of the deformation gradient tensor and I; = trace(F' - F) is the first invariant of the
right Cauchy-Green deformation tensor. Based on the strain energy density function given in Eq. (17), we can
derive the second Piola-Kirchhoff stress tensor S as

v _ A _
S:g—E:GSJO 3y (Ksln,]o%ll,]o 2/3) (F' . F)™" (18)

For the sake of completeness of the paper, we briefly provide here the major procedures for calculating the
internal nodal force vector q, . in Eq. (14). As mentioned previously, in practical implementation, the internal

nodal force is firstly calculated for the nodes of each element (25 by means of a Gauss quadrature as

e _
qint,] - /
£,

where [ denotes the parent domain of each element, Jf; is the Jacobian between the material and element

(VoNp)- Pdg = /D (VoNp) - PJd0 ~ Y " wy(VoNi)y - Pyt (19)

7
.
0 ¥

coordinates and w, is the quadrature weight for the yth quadrature point 7,. The previously presented material
models will be used to compute the nominal stress tensor P, = P(n,,t) at n,,.
Once all elemental internal nodal force g . vectors are obtained, one can carry out the gather operation in

order to get the global internal nodal force vector g, . as

4,,=> L4, (20)

where L. is the boolean connectivity matrix that gives the nodal values of a variable for the eth element from

the global vector. For instance, the acceleration for all nodes in the eth element is obtained as a$ = L.a..

4. Implicit direct-forcing immersed boundary method

4.1. Implicit formulation

The implicit direct-forcing IBM consists in finding the forces at all Lagrangian points simultaneously by

solving a linear system so as to ensure exactly the no-slip velocity boundary condition at the fluid-solid interface.



In FSI problems, this refers to imposing the velocity continuity condition at the interface in the sense that the
interpolated fluid velocity is exactly equal to the local solid velocity. This idea was proposed and applied by
Taira & Colonius [73] in the framework of a projection method. In the literature of LBM, the first implicit IBM
was proposed by Wu & Shu [79], which is adopted in the present work for the coupling of LBM and FEM.
As shown in Eq. (5), in the framework of LBM, the fluid macroscopic velocity v can be computed as
204: éa fOl At

vy = S o 59 (21)
which is sometimes written as vy = v} + dvy with v; =3 &€, fa/ >, fa being the intermediate velocity and
dvs = Atg/2 being the velocity-correction term.
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Figure 1: Immersed boundary method: the jth LB-node is located inside the support kernel Dy, of the kth IB-point.

The idea of IBM is to impose that the interpolated fluid velocity is equal to the one of the solid boundary,
by computing an appropriate body force field near the immersed boundary. For example, as shown in Fig. 1,
the IBM imposes that the interpolated fluid velocity Z[vs]s at the kth Lagrangian point is equal to the solid
velocity vg. Using Eq. (21), one has

Xo;éafa +§
> fa 2

k

v =Ivfly =7 Z[g]k, (22)

where Z[¢] denotes the interpolation operator giving the interpolated value of a certain variable ¢(x,t) at the

kth Lagrangian IB-point. The interpolation operator is defined as

Tlole = > dud; A, (23)

JED

where d is the number of dimensions, ¢; = ¢(x;,t) and &;, = d(x; — ) denotes the kernel function with @y

and x; being the coordinate of the kth IB-point and the jth LB-node within the support domain D} of the



kernel function, respectively. In the present work, the 3-points kernel function of Roma et al. [62] has been
used for all numerical simulations.

In the adopted implicit direct-forcing IBM, the IB-related force is computed at the Lagrangian IB-points
and then spread to the Eulerian LB-nodes. The body force term g = g(a,t) in Eq. (22) at LB-nodes is spread
from the IB-points by means of a spreading operator g; = S[g]; defined as

Slgl; = Z Sixpr Ak, (24)
keD;
where ¢, = ¢(xk,t) is the value of the variable ¢ at kth IB-point inside the support domain of the jth LB-node
and Awvy, is the volume weight of the kth IB-point.
Applying the definitions (23) and (24) in Eq. (22) gives

Z éa.fa +
« < d
I[vf]k =1 Z.f + 7 Z 5jkngxfa
R j€Ds
=7 [vf]k + 7 Z 5jkAxf Z 5jk/gk/Avk/,
J€Dg k'€D;
* At N d <k N
SZil 5 D 0T ) dwgi A,
J€Dg k=1
25
o A~ a4 - 3 (25)
=7 [vf]k —+ 7 Z 5JkA£Cf <5j191A01 -+ 5j292A1)2 + ...+ 5]ngN1AUN1) ,
JEDg
glAvl
At z oz ;o5 55 92802
=I[v}], + Az [_Z Okdjr 2, Okbjz - D 5jk5j1vi] ’ :
2 JEDg JEDg JEDg .
gNiAvNi
where N; denotes the total number of the IB-points on the fluid-solid interface.
We shall now rewrite Eq. (25) for all IB-points k € [1, V;] in a matrix form as
i o i IS PR DI 7 SUNUURI w U Y SO .
Tl Ivih JED; j j JED; j j J€ED: j j g1Av;
* > 65265 > b202 ... > 85205N,
Toslz | I[v_f]2 +%Am? 0. T E €D, gQévz . (26)
_I[vf]Ni_ _I[v;]Ni_ _e%: SjNiSjl _e%: SjNiSjQ _e%: SjNiSjNi _gNiAvNi_
Lfgf Lfﬂ; L7 N; J N; J N; _ —/_’Q
A
or in a more concise way as
. At
Ly, = Ly + S AR AG, (27)



where Ly is an interpolation matrix that relates the interpolated velocity on all IB-points with the global fluid
velocity vector wy = [(vp1) ", (vs2) ", ..., (Wen,)']T, where (vf ;)" = [v§ ;05 ;5 v ;] denotes the fluid velocity
at the jth LB-node for j € [I, Ny] with Ny being the total number of LB-nodes. In addition, v} is the global

intermediate velocity vector.

Remark 1. As will be shown subsequently, there is never need to provide explicitly the form of Ly in practical
numerical simulations. The purpose of using Eq. (27) is to express the fluid coupling equalions in a concise and

clear way.

Remark 2. Due to the compaciness of the kernel function, the malriz A in Eq. (27) is o large bul sparse
matriz. In FSI problems with moving solid boundaries, one needs to compute the mairiz A at each time-step
as long as the solid boundary moves. Nevertheless, the computation of A can be largely accelerated by means
of a neighbor list for the Lagrangian IB-points. In addition, when discretizing the fluid-solid interface I using
IB-points, it is suggested to verify that the distance between IB-points is slightly greater than the lattice spacing,
i.e. Axg > Axy, for the sake of numerical stability.

The linear system of equations (26) is the formulation of the implicit IBM proposed by Wu & Shu [79]. In
a one-way FSI problem where the movement of the solid boundary is prescribed, Lyvy, L fy; and A are all
known, hence one can compute the unknown vector G by solving the linear system. It is here worth noting
that there is no need to specify the volume weight Avy for each IB-point with k& € [1, N;], because Gy = g, Avg
can be directly used in the spreading operation (24). As mentioned previously, this implicit IBM can ensure

exactly the no-slip condition at the fluid-solid interface.

4.2. Evaluation of the interface force field A

Besides the velocity continuity (no-slip) condition, the force should also be continuous across the fluid-solid
interface. Hence, the evaluation of the interface force field is particularly important in FSI simulations.

We shall now demonstrate how to obtain a conservative force formulation. To this end, let us consider the
spreading stage (24) of the IBM, in which the fluid and solid communicate with each other by means of the
body force term g. As shown in Fig. 1 and Eq.(24), the IB-related acceleration (body force per unit mass)
received by the jth LB-node from the kth IB-point is equal to

9 — Sjka - SjkgkAvk’ (28)
which means that the force exerted on the jth fluid control volume from the £th IB-point can be expressed as

Frsi = Pf.iGus;02F = pr 0 Gr AT, (29)

10



where ps ; = ps(a;,t) denotes the density of fluid at the jth LB-node.
By means of the Newton’s third law, the force exerted on the kth IB-point by the jth LB-node is then

Fjok = —Tnesj = —psidnGrATs. (30)

By taking into account the forces from all LB-nodes within the support kernel Dy of the kth IB-point, one
can then compute the total force exerted on the kth IB-point from the fluid as

gf%k = Z ﬂj%k = — Z pfngjkaAx? = -Gy, Z pr-SjkAx?, (31)

JEDy JED JEDg

Zlpslw
in which one may observe that the last term corresponds to the interpolated fluid density on the kth IB-point.
Hence, if one applies Eq. (31) to evaluate the force at the fluid-solid interface, one can ensure that this
force formulation is conservative in the sense that the forces between the fluid and solid domains are equal

and opposite.

p
[/

Ll
’

o0
\\/ 7

s

(a) (®)

Figure 2: Discretization of the fluid-solid interface.
As done in our previous works [54, 55], we shall define an interface force X in order to couple with the finite-
element method. Supposing that the fluid-solid interface is discretized into a finite number N, of elemental

surfaces and the force is piece-wise constant on the interface, at the kth interface-element, one can get the

surface force as Ay = Frrn/Aspy = —GrLlpslr/Asy with Asy being the surface area of the kth interface-

11



element, as shown in Fig. 2. In practice, A and G are related as A = —BG

- [Zlpsh o
1 0 .. 0
Al As; ; G,
A, 0 lpelay 0 G
- Asy p (32)
A, | 0 o ... Heslngl G
N—— L ASNi e
A G
B
Substituting Eq. (32) into Eq. (27) yields
Liv,+ EA 1AB 'A = L;v; (33)
fUp T+ 52Ty A= Lfly,

which will be used subsequently for solving the coupled system of equations.

5. Coupling algorithms

5.1. Fluid coupling equations

In the fluid sub-domain, after the streaming step of the LBM, one can update the distribution function

St = fo(z,t"Y) at all LB-nodes so that the new macroscopic density p;}“ = ps(x, t") can be calculated

with Eq. (5). However, the macroscopic velocity v}”l cannot be computed, because the IB-related body force
is not known yet and will be obtained after solving the coupling system of equations.

To get the fluid coupling equations, let us rewrite Eq. (5) in a matrix form for all LB-nodes as

_ 1]
p}zjll 0 o 0 ’U}ljl p}zjlgflwrl 20; éafa,l
n+1
2 0 p}lgll e 0 v?zl B p}lglggﬂ 2 20; Eatas (34)
At : : : : : At : ’
n+1 n+1 n+1l _n+1 1
0 0 : prVfI YNy Pr.NsIN; Zéafgjvf
N N —— L o |
Ry 2}1+1 pntl >

2
which can also be expressed in a concise form as
Rfy}ﬂrl o 2n+1 _ Qfa (35)

where only the velocity g}”l and force @"! vectors are unknown. In addition, the force vector "' can

be related with the interface force field A as " = —C fA"H with Cy being a matrix related to the
spreading operation (24). Like the interpolation matrix L, one does not need to provide explicitly the matrix

Cy. As aresult, Eq. (35) can then be rewritten as

Ry + CpA™ = by | (36)
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5.2. Solid coupling equations

5.2.1. FEuxplicit Newmark time inlegrator
In the present work, we choose the explicit Newmark time integration scheme [57] to update the solid state.

n+1

The major advantages of this choice are: (i) the solid displacement u?*! (geometry) can be explicitly updated to

the next instant " ™1; (ii) the ‘single-step, single-solve’ feature of the Newmark scheme [49]; (iii) there is no need

n+1

n+1
2int

to carry out sub-iterations, because the internal nodal force can be computed once u2"" is known. Notice
that although these can significantly simplify the coupling procedure, the time-step At in the solid sub-domain
is restricted due to the explicit feature.

In addition, instead of the consistent mass matrix M, in Eq. (13), diagonal mass matrices M g““g are used
for the sake of numerical stability in explicit dynamical simulations. For linear elements, we simply apply the
row-sum method [22, 87] to get the diagonal mass matrix, whereas for quadratic elements, we adopt the diagonal
scaling method [39] in order to avoid negative components in the mass matrix.

The explicit Newmark scheme is given as

t2
u =t Ate? + 5 a;,
At (37)
oitt = ul+ - (af T +al),
which will be used to solve the solid dynamical equilibrium equation (14) at the instant "1
Mg =gl - gp (38)

5.2.2. External nodal force
As fluid-structure interactions happen at the fluid-solid interface I';, the flow-induced force can be considered
as an external surface force exerted on the solid structure. In FEM, the external nodal force for the /th FE-node

is computed as
Ni Ni
R / Ngdl'=>" [ NptdIF =) "t / NdIk, (39)
7 I k=171 k=1 rf

where ¢ denotes the flow-induced surface force (per unit area) exerted on the fluid-solid interface I; which is
constituted of N; surface element I'* with k € [1, N;], as shown in Fig. 2. Additionally, # is the surface-average
value of £, which can be approximated with A; defined in Sec. 4.2. Substituting £, ~ A into Eq. (39), one may

observe that the external nodal force vector q,., can be related with the interface force field A as
q - 70545 (40)

Zext

where the matrix C; depends on the current geometry of the fluid-solid interface.
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To obtain the components of the matrix C', we follow the steps proposed in [55]: (i) impose a force boundary
condition where A, = I and A\; = 0 with k,1 € [I, N;] and [ # k; (ii) compute the external nodal force vector
g’; . under this condition with Eq. (39); (iii) assign the kth column of the matrix C with the obtained g’; .-
For instance, as shown in Fig. 2, if the kth interface element possesses four nodes, then only four lines have
non-zero values in the kth column of Cj,.

With Eq. (37) and Eq. (40), we shall rewrite Eq. (38) as

2 - 2 - At
MUt oAt = Zonter (1 Sar) - at (a1)

R, b

=s

or in a more concise form as

RSQ?Jrl + CsAnJrl - Q (42)

s |

Remark 3. In the present work, essential boundary conditions (fized FE-nodes) are imposed by means of the
elimination method. To this end, it suffices to set the nth rows of the matriz Cs and the vector bs to zero, where

‘n’ denotes the number of the node that is fized in space.

5.8. Coupling system of equations and partitioned coupling procedure

At the fluid-solid interface, the no-slip condition is imposed, which implies

Lyvp't + Ll =0) (43)

where L, is an interpolation matrix of dimension dN; x dN4, which gives the opposite of the interpolated solid
velocity at the center of each interface element.

Now, combining Eq. (36), Eq. (42) and Eq. (43) yields

Rf 0 Cf y}”l Qf
0 R, C; Q?+1 =1b.|> (44)
L; L, o] A" 0

which is the coupling system of equations for fluid-structure interaction problems by means of the coupling of
LBM and FEM via the implicit IBM.

It is here worth noting that the system (44) possesses a large dimension, as the number of unknowns or
equations is equal to d(Ny + Ny + N;). In a monolithic coupling procedure, the whole system of equations is
built up and solved in the same solver or code. In the present work, we propose to use a partitioned coupling

procedure to solve the system (44), which benefits from the modularities of LBM, IBM and FEM solver packages.
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Instead of directly solving the system of equations (44), the proposed partitioned coupling procedure requires
some mathematical operations to the system in advance. Multiplying Eq. (36) and Eq. (42) with L fRJT1 and

LSRQI, respectively, we can obtain

LiR'Rpv}"' + LyR;'Cs A" — LyR;'b;,

(45)
L.R,'Rv"™ + L.R,'C. A" = L.R,'b,.
Adding together the two equations in Eq. (45) gives
Lywjtt o+ Lt (LyRy Cy + LR;CL) A = LRy b + LR b, (46)

0 H b
where the sum of the first two terms is equal to zero due to the no-slip condition (43). As a result, we obtain a

condensed system of equations

HA™™ = b, (47)

in which H = L fRJTIC F+ LSRSACS is the condensed matrix of size dN; X dN;, which is much smaller than
the one in the original coupling system of equations (44).
By solving this condensed system of equations, one can obtain the interface force field A™"'. To this end,

we need to prepare

) LSRQICS: L, and R;l are both constant, hence they can be calculated only once at the beginning of
the simulation. In addition, R, is diagonal and easy to inverse, due to the use of a diagonal mass matrix,

and C'; can be calculated using the method presented previously in Sec. 5.2.2.

o L.R_'b,: b, is the vector defined in Eq. (41), which depends partially on the internal nodal force vector
q?ntl. Notice that g?ntl can be calculated with Eq. (19) and Eq. (20), once the new displacement w? ™! is

updated using the explicit Newmark scheme (37).

o L fRJTIC ¢ As mentioned previously, we do not need to compute explicitly the matrix Ly, R;l or Cy,
because by comparing the first equation in Eq. (45) with the implicit IBM formulation (33), we can obtain
that Ly R;*Cy = (At/2)AzAB™".

. LfRJTIQf: Similarly, from the comparison between Eq. (33) and Eq. (45), we can obtain that Lnglgf =
Lsv} which is just the interpolated intermediate velocity on the IB-points.

After solving Eq. (47), the interface force field A™™" will be sent to the fluid and solid solvers in order for

them to accomplish the time-step in each sub-domain.
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5.4. Summary of the coupling algorithm

A summary of the major steps in the proposed coupling algorithm is provided as follows:
(1) Separate simultaneous computations in the LBM (fluid) and FEM (solid) solvers

(1.1) LBM solver:

1.1.1) Compute the equilibrium distribution function f5? with p} and v’} using Eq. (3)

1.1.2) Compute the force-related term JF, with p%, v’} and g" using Eq. (4)

1.1.4) Collision and streaming with Eq. (6) to update the distribution function f2t1

3
4 n
5 n+1

Compute the macroscopic density py "~ and the intermediate velocity v} with fort

(1.
(1.
(1.1
(1.
(1.1

)
)
) Compute the regularized non-equilibrium distribution function fg}eq using Eq. (7)
)
)

(1.2) FEM solver:

n+1

(1.2.1) Update the displacement vector 42" with the explicit Newmark scheme (37)

(1.2.2) Compute the internal nodal force vector g?ntl with Eq. (19) and Eq. (20), and then b,
(2) Solve the FSI couping system in the coupler

(2.1) Receive ™ from the solid solver and compute the new geometry of the interface
2.2) Compute the matrix A in Eq. (26) and the matrix C; in Eq. (44)

)

2.3) Interpolation stage of the IBM to get I[p}”l]k and Z[v}]k, and then B Lyv;

2.4) Compute L,R;'Cs, LiR;'Cy, LR, 'b, and LyR;'b;, and then H and b in Eq. (47)
)

(2.
(2.
(2.
(2.5) Solve the condensed coupling system of equations (47) to get A™ ™"

(2.6) Compute G""' = —B'A""! and ¢"! = —C.A™"!

(3) Finalize separately the time-steps in the LBM and FEM solvers

(3.1) LBM solver:
(3.1.1) Spreading stage of the IBM to get g"™! at the LB-nodes near the interface
(3.1.2) Update the macroscopic velocity v}”l =v;+ Atg™tt/2

(3.2) FEM solver:
(3.2.1) Update the acceleration vector @?*! = (Mg“‘lg) o (q’“rl - q"“)

=S5 Zext Zint

3.2.2) Update the velocity vector 21! = o7 + At/2 (a?t! + a”
y -5 -5 -5 -5

16



5.5. Comparison with a weakly-coupled algorithm

It is worth noting that Eq. (44) is a strong coupling system of equations for FSI problems, because the
solution to this system of equations satisfies both the velocity- and stress-continuity condition at the fluid-solid
interface at each time instant. As shown in the previous summary, compared to a monolithic coupling procedure,
the proposed method solves exactly the same system of equations (44), except in a partitioned way where the
fluid and solid simulations are carried out separately and simultaneously in two solvers. Hence, the present
method can be categorized as a strongly-coupled partitioned coupling algorithm.

To better illustrate the procedure and advantages of the proposed coupling method, we briefly provide here
a weakly-coupled partitioned algorithm, in which the coupling system (44) is not solved. Instead, the interface
force field A is assumed to be constant during one time-step, so that one can approximately consider that
AV~ A" and thus ﬂ:;tl ~ql . = —C,A"™. This is a typical solution in a weakly-coupled or loosely-coupled
algorithm, as the new interface force field A" ignot available for the FEM solver to compute the external nodal

force qgjtl at the instant T, Next, the solid solver can compute an approximate acceleration vector @?H,

+1

and then the velocity vector 7', Finally, the fluid solver will use """ as a boundary condition to compute

the body force §""' with the IBM, and finally update the macroscopic velocity 'T);?H. This weakly-coupled
algorithm is also shown in Fig. 3 and compared with the proposed strongly-coupled algorithm.

Although this weak coupling strategy is simple and retains the modularities of the adopted solvers, it
sometimes suffers from numerical instability issues, as the approximation A" ! ~ A™ induces a time-lag between
the time integrations of the fluid and solid sub-domains. In other words, the stress-continuity condition is not

satisfied at the fluid-solid interface, because the interface force fields A used by the fluid and solid solvers are

not the same.

NN N an n+1 n+l non g gh n+1l ,n+1
fa?pf? fag LB-Solver f¢:1+1ap{b+l ( ) < )foup]w fag LB-Solver ?n—’_;pfn—i_l ( )
: : g 7’Uf g ’vf

n+1 n+1 n+1 ~n+1
pf ? ’U} Q pf ? 'v; Q
A 4
Coupler Coupler
A
n+l nitl n+1 +1 +1 ~n+l
Us " 9, L H? ’g?nt 1 Vg

N ngTl 4N n+1 N g7t 47 n+1
Uy, 05,484 FE-Solver n+1ﬂsn+1 Ys, %3 195 FE-Solver _,n_i_lgi P |
o™ gn a., oyt a;

(a) (b)

Figure 3: Comparison between strong (left) and weak (right) coupling algorithms.
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In order to improve the numerical stability of this weak coupling strategy, it is possible to add a loop of
sub-iterations within each physical time-step. One example of sub-iteration-based coupling algorithms is shown
in Fig.4, in which the solid solver provides a first guess 87" of the ‘real’ solid velocity vector v2*!. After
applying the IBM in the coupler, a new external nodal force vector gf;tl can be obtained, where 3 is the current
sub-iteration number. Next, one can get a new solid velocity vector v#*1 using gf;tl, which will give a new
external nodal force vector. When the residual R = || gf;tl — gfm .|| is small enough, the sub-iteration-loop stops

and the fluid and solid solvers finalize the time-steps in both sub-domains.

C faPpvha o fath e C
gn+1,,v'l;+1

ntl , o« G
Py V5
a2 — a2, 1L
Coupler ----=22-------=- ?
B B+1
Y% T ey N
1 1 ~n+l
uptl, gt oy gmi
v

1

ug,vg,ay [ upt
n olver ,un+1 an—i—l

gewt =8 1=8

Figure 4: Strongly-coupled algorithm based on sub-iterations.

The sub-iterations within each time-step allow one to couple the fluid and solid solvers in a strong way,
which means the velocity- and stress-continuity conditions can be ensured with a controllable precision. Hence,
less instability issues will be encountered with sub-iteration-based coupling algorithms. However, as an extra
computational cost, the sub-iteration-loop degrades the coupling efficiency, especially with a large number of
sub-iterations. Moreover, when the FSI effects are significant or the first guess is far from the solution, the
sub-iteration-loop might even not converge.

With these comparisons, we summarize here several features of the proposed coupling method: (i) it is
categorized as a strongly-coupled algorithm; (ii) the strong coupling property maintains the numerical stability;
(iil) the key point is to build and solve the condensed coupling system of equations; (iv) the modularities of
solvers are preserved with the proposed partitioned coupling method; (v) the sub-iteration-free feature makes

the coupling procedure more efficient.

6. Coupling strategies with non-conforming time-steps

In the previous section, the proposed strongly-coupled partitioned algorithm was introduced assuming iden-

tical time-steps for the fluid and solid solvers, i.e. Aty = At,. However, due to the different material properties
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and heterogeneous features of the numerical schemes, the suitable time-steps for fluid and solid solvers are often
different. Some previous works allowing the use of non-conforming time-steps can be found in the literature, e.g.
the partitioned coupling between LBM and p-FEM [47], the SPH-FEM coupling algorithm involving free-surface
flows [38], etc., however, few of them ensure a strong coupling.

In the following, we shall discuss first how to choose time-steps in the adopted LB- and FE-solvers and
then propose a simple strategy for using non-conforming time-steps, based on a linear interpolation in the time

domaln.

6.1. Choice of time-steps in both sub-domains
6.1.1. Fluid sub-domain simulated with LBM

As recently reviewed in [51], one of the special features of LBM is that the physical lattice-spacing Ax?hy
and the time-step At?hy are tied up in a way that the lattice speeds &, are directly related with the ratio
Ax?hy / At?hy. In a LB-solver, the space and time rescaling factors are usually chosen as C, = Ax?hy and
Ci = At?hy such that the rescaled lattice-spacing and time-step are both equal to one, i.e. Axéc‘” = Ax?hy /Cr=1
and Atéﬁ” = At?hy /Cy = 1. This limits, to some extent, the choice of the time-step in LB solvers. Although
several solutions such as the multi-grid techniques [33] have been proposed in the literature to overcome this
constraint, the present paper focuses on providing a coupling strategy using non-conforming time-steps with
the classic LBM.

Given C, and C;, the characteristic velocity in the lattice scale U'% is related to the physical one UP™W as
Ulet = yrhy /C,, where C, = C,/C; denotes the velocity rescaling factor. Additionally, the characteristic length
L't in the lattice scale represents the number of LB-nodes used to discretize the physical characteristic length
LPM | as they are related as L'¢t = LPW/C, — [P/ Ax?hy. Finally, the kinematic viscosity is computed as
vlat = ()2 (19t — 0.5), where ¢t =1/ V3 and 7'%t denote respectively the speed of sound and the relaxation
time parameter in the lattice scale.

lat

The stability condition for LBM requires that the relaxation time parameter 7°“* should be greater than

lat

0.5. In practical simulations, 7°** is usually tuned to impose the desired Re number, satisfying a constraint

condition that 7'%t > 74! with 713! being a critical value not too close to 0.5. With Re = U'etLlat /ylat " this

cri

stability condition can be rewritten as

latLlat phy . Lphy " PhyLPhy
ploe  BUZLT g5 BWH/C /C)+0.5:3U—h
Re Re Re(Ax™)?

Atfﬁy 1 0.5 > rlat (48)

cry)

which indicates that, given a physical problem and a lattice (i.e. Re, UP™, LP" and Ax?hy are fixed), the
physical time-step in LBM At?hy is limited as

(rlat — 0.5)Re(Ax?™)?
3Uphy [ phy

AR > (49)
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Moreover, for weakly-compressible isothermal LB schemes, the Mach number Ma = U'at/ ciﬁ” in the lattice
scale should be small enough to satisfy the weakly-compressible assumption. For instance, one may consider

that the variation of density is negligible when Ma < 0.1, which implies that

. Urhy A
Ma = /30U = /3 AP <01, (50)
Ax?hy f

which is another constraint condition when choosing the physical time-step in a LB-solver.

Combining Eq. (49) and Eq. (50) gives

lat Phy 2 phy
(Teri — 0.5)Re(Ax™) < AP < 0.1Az% (51)

3UPhy [phy f V3urhy

which is the range of the acceptable time-step used in the adopted LB-solver.

6.1.2. Solid sub-domain simulated with FEM
The explicit Newmark time scheme is stable under a CFL-like condition
A min

Aty < Koot (52)

>~ e ,—Es/pg,

where K. € [0, 1] denotes the CFL coefficient and Az™" is the minimal distance between two FE-nodes of the
solid mesh.

As shown in Eq. (51) and Eq. (52), the time-steps in LBM and FEM are limited by different criteria, as a
consequence, it is not always easy to use the same time-step in both solvers. In addition, depending on the
physical problem solved, characteristic time variations could be of different scales in the two media, thus leading
to very different optimal time-step choices in the two solvers. Hence, we propose subsequently two simple
strategies based on linear interpolation in time allowing the use of non-conforming time-steps (At; # At,),

which make the proposed coupling algorithm more flexible and efficient.

6.2. Coupling strategy for Aty < At,

Due to the numerical limitations or different physical characteristics mentioned above, if one finds that the
solid time-step At is larger than the fluid time-step Aty (Ats = rAty with r € Z and r > 1), it is not necessary
to carry out the FEM computation using the smaller time-step.

To save the computational resources, we propose to replace the FEM computation by a linear interpolation

in time. To do so, we need to firstly update the new displacement vector w?"! using the explicit Newmark
scheme (37) and the solid time-step Atg, based on which we can calculate the internal nodal force vector gﬁjtl.

Next, we shall assume that both u, and q, . vary linearly in time, which is equivalent to ignore the higher order
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terms in the Taylor expansion in time. As a consequence, we can obtain a reasonable approximation of u, and

q, . at the mth sub-instant within the time interval At, as

—Ss 8

m
n+m/r n n+1 n
wT =l — (T g,

+m/ m +1 (53)
2int - gint + 7 <glnt - glnt) ’
wherem e Z and 1 <m <r.
With Eq. (53), the solid coupling equation (42) can be established at the mth sub-instant as
RYwt 7 4 O A = b, (54)
with 5
R™ — diag
S At;n s ? (55)
m 2 diag n At;n n n+m/r
b= g M- (Q t % ) L

where At™ = mAt,/r and the matrix C™ can be obtained with u?™/".

On the other hand, the fluid coupling equation (36) and the velocity condition (43) remain the same, except
that they are established at the mth sub-instant with Aty, e.g. Lijile = (Atf/2)Ax?AB71. By solving
the coupling system, we can obtain the interface force field AT and GMP™T at each sub-instant, which is
then used at the spreading stage to accomplish the time-steps in the fluid sub-domain. It is important to note

n+1

that A™7/" is used to update the solid velocity ¥771 and acceleration a?*! vectors only at the last sub-step,

i.e. when m =r.

6.3. Coupling strategy for Aty > At,

Conversely, if the fluid time-step At is greater than the solid time-step At, (Aty = rAt, with r € Z and
r > 1), it is then unnecessary and sometimes even impossible to carry out the LB computations using the
smaller time-step.

In this case, the fluid coupling equation (36) is established at the mth sub-instant as

Ry} o AT = b (56)

in which R}, C¥" and b}* are not explicitly required. Instead, we need to compute
-1 Aty a -1
Ly (R}) Cf = —-Az7AB,,

1 67)
Ly (RY) by = Lgvy™,
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m/r

*,nt+m/r

where B! and L fy;’m require the fluid density p}H and the intermediate velocity v f at the mth

sub-instant, which are obtained by means of a linear interpolation in time as
+ m 1
o (),

xntmfr _ w«n T «nt+l | wn
vy =Y +T<”f ”f)’

(58)

*1 can be calculated, once the distribution function fort

in which p} ™" and v}" n

step (1.1.4) in Section 5.4.

is updated with the streaming

The solid coupling equation (42) and the velocity condition (43) remain the same and are established at the
mth sub-instant with Af,. Solving the coupling system gives the interface force field A"™/" which is used
to compute the external nodal force ggjtm/ " in order for the FE-solver to update the solid state. Similarly,
A7 5 used to update the fluid macroscopic velocity v;}“ only at the last sub-step, i.e. when m =r.

The two proposed strategies in Sections 6.2 and 6.3 are graphically illustrated in Fig. 5, in which the ratio of
time-steps is equal to 4 as an example. The solid lines represent the LBM and FEM computations (filled circles),
whereas the dashed lines correspond to the linear interpolations in time (empty circles), and the dash-dot lines
denote the solution of the FSI coupling equations.

In summary, first, these two strategies allow the use of non-conforming time-steps, which makes the proposed
framework more flexible for coupling LBM and FEM for FSI simulations. Second, because costly computations,
for instance, the collision-streaming steps in LBM for the whole fluid sub-domain and the calculation of the
internal nodal force vector in FEM, are replaced by fast linear interpolations, the proposed strategies can help
to save computational resources in the FSI simulations with non-conforming time-steps. Third, thanks to the
FSI coupling at each sub-instant, the numerical stability can be retained so long as the variation in time of the
interpolated variables are almost linear. In other words, if the ratio of time-steps is too large

, the coupling scheme might encounter

instabilities. 4.2
However, the maximal value of the ratio highly depends on each investigated
test-case. Hence, it is impossible to find out a universal maximal ratio and it does not make much sense to
attempt to obtain the maximal ratio in a specific test-case, as the coupling scheme might fail to remain stable

with this maximal ratio in other test-cases.

7. Numerical validations and applications

7.1. Rigid mechanical heart valve
The first validation test-case is about the transient interaction between a rigid mechanic heart valve and the

blood flow, which was initially introduced by Stijnen et al. [70] in order to evaluate a fictitious domain method
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(a) (b)

Figure 5: Coupling strategies for non-conforming time-steps based on linear interpolation in time: (a) Aty < Ats; (b) Aty > Ats.

by means of comparison with experimental measurements. This test-case has been adopted in several previous

works [23, 27, 30, 83] for validating different numerical methods, e.g. an ALE-dynamic mesh formulation in [23]
and an iterative IB-LB coupling scheme in [83].

7.1.1. Configuration and numerical setup

£ o1 / \
= & 0 S
- c
0 02 04 0.6 038 1
L t/T,
- P
(a) (b)

Figure 6: Rigid valve test-case: (a) geometric configuration; (b) inlet velocity boundary condition.

The configuration of this test-case is shown in Fig. 6-(a), where the fluid flows through a 2D channel of
height H = 0.02 m and length L. = 6H. A cylindrical cavity of radius R = H is located halfway along the
length of the channel, with a distance from the inlet D = 2H, which represents the sinus cavity of the aortic
valve. The downstream side of the cavity is connected to the outflow channel with a rounded transition of
radius » = 0.0075 m. A rigid valve leaflet of length [ = 1.07H is installed at the point O on the upstream
side of the cavity with an initial inclination angle of 8y = 22°. In the experiment carried out in [70], the rigid
leaflet has a thickness of + = 0.001 m and a density of p; = 1100 kg/m?, which gives the moment of inertia

Io = psl?t/3 ~ 3.9 x 107% kg.m? with respect to the point O. The dynamic equilibrium equation for the
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rotating rigid valve is written as

Iob = Mo, (59)

where 6 = () = df/dt and 6 = 0(t) = df/dt denote the first and second derivatives in time of the inclination
angle 8 = 0(t), respectively. Additionally, Mo is the total moment of force exerted on the immersed moving

solid valve I3, which is defined as

Moez.(/F_prdr), (60)

i

where e, denotes the unit vector of the rotation axis, p = & —ao with xo being the position of the point O, and
A is the interface force per unit length in this 2D test-case. The total moment of force Mo can be numerically

computed as

Ni Ni
Mo ~e. - < P, X AkAsk> = (PFA — PEAT) Asp = —C.A, (61)
k=1 k=1

where p;, Ar and Asy denote the relative vector, the local interface force per unit length and the length of the
kth IB-segment, respectively. Moreover, the matrices C; and A are expressed as
C, = [pll’Asl —piAst pyAsy —piAsy ... pR Asn, —pK,Asw, |
N (62)
A= o AN o ]
As for the modeling of the blood flow, the fluid has a density of py = 1090 kg/m?® and a kinematic viscosity

of vy =4 x 1075 m?/s. At the inlet of the channel, a time-varying uniform velocity profile is imposed as

ot/ T,
Usng + Usmypsin (%) , if 0 < t/T, < 0.37,
Uinlet(t) - ' (63)
am; . 2 t T .2 .
UavngUzpsm( ”(/1”220 6)>, if 0.37 < /T, < 1,

where Uy = 0.04 m/s and Ugpp = 0.11 m/s denote respectively the average value and amplitude of the inlet
velocity during the time period T, = 2.45 s, which give a peak value of Uy,q, = 0.15 m/s. Meanwhile, Fig. 6-(b)
shows the time evolution of the inlet velocity during one period. These parameters lead to a Reynolds number
of Re = Upasl/vy ~ 750 and a Strouhal number of St = H/(UpazTp) = 0.055.

The numerical velocity inlet and pressure outlet boundary conditions are imposed by means of the Zou-He's
method [88]. For the lower and upper fixed rigid solid walls, we adopt the linear interpolated bounce-back
scheme [7] with the mass-conserving correction [82].

The objective of using this test-case is to validate the capability of the proposed coupling framework for
handling FSI problems with rigid solid bodies. To this end, it suffices to modify the solid coupling equations,

while retaining the fluid coupling equations and the solving procedure as presented in Sec. 5. Combined with
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the explicit Newmark scheme (37), the solid dynamic equilibrium equation (59) can be written at the instant

"1 ag
Io0™t = M5t

. A .
Ol = 9 4 At 0" + —=07, (64)

2
) . Aty /s .
9n+1 _ on 4 T <9n+1 4 on) ,

which can then be rewritten in a concise form as

2 . 2 . ..
T 9n+1 SAn+1 -7 on 0" .
(Ats o) +C.A Jo) At + (65)
R bs

Tt is here worth noting that Eq. (65) has the same form as Eq. (42), hence the FSI-solving procedure remains
the same as the one presented in Egs. (46) and (47). In order to compute the condensed matrix H, we need
to prepare the operator L relating the solid velocity vector v, at all IB-points to the rotation speed 0 as
v, = —Ls0 with Ly = [p}, —p{,p5, 05, ... 0%, —2R,] "

7.1.2. Numerical results, mesh convergence and comparison with references

We first carry out a mesh convergence study using three lattice resolutions: H = 80Axzy, 100Az; and
160Az¢. During the mesh convergence, the number of IB-points is changed accordingly in order to maintain a
constant ratio between Az, and Azy. Based on the suggestion given in Remark 2, we choose to use a value of
Azxg/Azy ~ 1.11 for all the three lattice resolutions.

Initially, the fluid and solid sub-domains are both at rest. However, as shown in Fig. 6-(b), the inlet velocity
is not equal to zero at ¢ = 0. Hence, in order to avoid sudden changes of boundary condition, we multiply the

inlet velocity Uiplet with a coefficient KCipnjet, which is set as

1 1 t
__Cos(ﬂ. )a lftgﬂn’u

Tini (66)

1, if t > i,
where T;,; = 1 s is the duration of the starting stage.

The time evolutions of the inclination angle 8(¢) are given in Fig. 7, from which one may observe that the
movement of the rigid valve leaflet becomes stabilized (periodic) after two periods (¢/7, > 2). In the zoomed
area during one period, the three lattice resolutions give very similar results, which means that the numerical
simulations converge, as the lattice is refined and that visual-accuracy convergence is already obtained. We will
use the lattice resolution H = 100Axy in the following analysis and comparisons.

A comparison of the time evolution of the inclination angle 6(t) between the present result and some

references is shown in Fig. 8. In this comparison, we observe that all the numerical results agree well with
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Figure 7: Mesh convergence study in the rigid valve test-case: (a) time evolutions of the inclination angle; (b) zoomed area for one

period.

each other, although different numerical methods have been applied: a fictitious domain method in [70] and
an ALE formulation in [23]. However, an obvious discrepancy can be observed between the numerical results
and the experimental measurement carried out in [70]. As commented in [70], this mismatch may be due to

the leakage of fluid over the top of the valve between the strips of adhesive tape that are used to fix the valve

leaflet.
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Figure 8 Comparison of the evolution in time of the angle 8(¢) in the rigid valve test-case.

Moreover, the velocity field in the fluid domain is compared in Fig.9 between the present numerical result
and the experimental PIV measurement carried out in [70]. The discrepancy mentioned previously can be

easily seen in the sub-figure (a) corresponding to the moment when the valve is fully opened. Apart from this
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discrepancy, the present numerical result agrees well with the PIV measurement, for instance, the double-vortex
flow pattern has been successfully captured as shown in the sub-figures (¢) and (d).

Interestingly, in the present numerical simulations, we observe that the rigid valve leaflet stops itself due
to the hydrodynamic force before touching the lower solid wall. Hence, no contact model was needed in this

test-case.

7.1.3. Strong coupling vs. weak coupling

To show the importance of the strong coupling feature, we shall compare the proposed strong coupling
procedure with a weak one, such as the weak coupling algorithm presented in Fig. 3-(b). In this case, the total
moment is assumed to be constant during one time-step, i.e. Mg+1 ~ M@, which allows the coupler to get an
approximate body force vector QHH for the LB-solver to update the macroscopic velocity after the spreading
step of the implicit IBM.

The numerical result obtained with this ordinary weak coupling algorithm (without synchronization tech-
nique or sub-iterations) is compared with the one obtained using the present strong coupling algorithm in
Fig. 10-(a). Some numerical oscillations appeared after about 1500 time-steps with the weak coupling algo-
rithm, which finally induced the divergence of the simulation due to the numerical instability. In the meantime,
the present strong coupling algorithm remained stable during the whole period of the numerical simulation. It
is here worth noting that the density ratio between solid and fluid in the present test-case is almost equal to
one, i.e. ps/ps ~ 1, which means the FSI effect cannot be ignored in both sub-domains and a weak coupling
algorithm may often suffer from numerical instabilities.

As presented in Sec. 5.5, one may add sub-iterations within each time-step, as shown in Fig.4, in order to
improve the numerical stability. In the present test-case, we define a residual R = |M£+1 — M£| with 3 being
the current sub-iteration number. Notice that the first guess M is equal to M3 and Mg“ is obtained at the
interpolation stage of the IBM using the rotation speed 0P+1. When the residual R is sufficiently small, the
procedure becomes a strong coupling algorithm based on sub-iterations. In the present work, we choose to stop
the sub-iterations when R/(0.5p;U2,  H?) < 10719

Thanks to the sub-iterations, the numerical simulation is stable during the whole period and the result is
extremely close to the one of the proposed sub-iteration-free strong coupling algorithm. However, as shown in
Fig. 10-(b), the number of sub-iterations is around 12 for each time-step, which degrades the coupling efficiency
due to the extra cost related to the computations during sub-iterations and the communications between both
solvers.

In summary, this test-case showed that (i) the proposed coupling framework can also be applied to simulate

FSI problems involving rigid solid bodies; (ii) a good agreement has been found between the present result and
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Figure 9: Comparison of the velocity field between the present numerical result and the experimental PIV measurement [70] in
the rigid valve test-case (the figures in [70] are reprinted with permission from the publisher). The sub-figures from (a) to (e)

correspond to the five instants indicated in Fig. 6-(b).
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Figure 10: Rigid valve test-case: (a) comparison between the strong and weak coupling results; (b) number of sub-iterations within

each time-step for the sub-iteration-based strong coupling algorithm.

the ones obtained using different numerical methods in the references; (iii) the strong coupling feature maintains
the numerical stability, while avoiding sub-iterations. Notice that, in the following, all strong coupling results

are carried out with the proposed algorithm without sub-iterations.

7.2. 2D flow-induced vibration of an elastic beam

Next, we choose to validate the proposed coupling framework in the presence of deformable solid structures

with a widely used benchmark, which was initially introduced by Turek & Hron [75].

7.2.1. Configuration and numerical setup

A fluid flow is simulated within a 2D channel of length L = 2.5 m and height H = 0.41 m. A fixed rigid
cylinder of diameter D = 0.1 m is located 0.2 m from the inlet of the channel. A deformable solid beam of
length [ = 0.35 m and thickness A~ = 0.02 m is attached behind the cylinder. A parabolic velocity profile is
imposed at the inlet and the pressure is kept constant at the outlet of the channel. The velocity inlet, pressure
outlet and no-slip wall boundary conditions are imposed with the Zou-He’s method [88].

In the present work, we have adopted the FSI2 (Re = 100) and FSI3 (Re = 200) test-cases in [75], in which
the Reynolds number is defined as Re = UyD/vy with Uy = 1 m/s (FSI2) and 2 m/s (FSI3) being the mean
inlet velocity. In addition, the material parameters are provided in Table 1. The fluid flow is simulated by the
LBM and the solid deformable beam is modeled using the FEM with the Saint Venant-Kirchhoff constitutive
model (15).

As for the numerical discretization, the fluid sub-domain is discretized using a lattice of size 1251 x 206
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Table 1: Material parameters in the 2D flow-induced vibration test-case.

FSI2 (Re = 100) FSI3 (Re = 200)
Initial fluid density (p%) 10% kg/m? 103 kg/m?
Fluid kinematic viscosity () 1073 m? /s 1073 m?/s
Initial solid density (p2) 10* kg/m? 103 kg/m?
Solid Poisson ratio (vs) 0.4 0.4
Solid Young’s modulus (E;) 1.4 x 10° Pa 5.6 x 10° Pa
Solid-to-fluid density ratio (p3/p}) 10 1

LB-nodes for both of the FSI2 and FSI3 test-cases. The solid beam is discretized using 160 x 9 linear FE-
elements. Based on the criteria presented in Sec. 6.1, the time-steps are chosen as Aty = Aty = 107% s and
1.6 x 107? s in the FSI2 and FSI3 test-cases, respectively. The CFL numbers in Eq. (52) for the solid sub-domain
are approximately equal to 0.6 for both of the FSI2 and FSI3 test-cases.

7.2.2. Numerical results and comparisons with references

The snapshots of the vorticity fields in the FSI2 and FSI3 test-cases are shown in Fig. 11, in which one may
observe that the vortex intensity in FSI3 is higher than in FSI2. Moreover, the time evolutions of the vertical tip
displacement u, of the beam are shown and compared with the reference [75] in Fig. 12. Finally, a quantitative
comparison with several references [4, 74, 75] is given in Table2, in which A = (max(u,) — min(u,))/2 denotes
the oscillation amplitude, St = fD /Uy is the Strouhal number with f being the oscillation frequency, and Cp is
the average drag coefficient. As shown in Fig. 12 and Table 2, good agreements can be found with the references

for both the FSI2 and FSI3 test-cases.

Vorticity (s71)
-50.0 -250 00 25.0 50.0
ﬂ‘\\\\\\\\\‘\\\\\\‘\“
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—— - —— —

Figure 11: Vorticity fields in the 2D flow-induced vibration test-case.
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Figure 12: Time evolution of the vertical tip displacement of the beam in the 2D flow-induced vibration test-case.

Table 2: Numerical results of the 2D flow-induced vibration test-case.

FSI2 (p0/p% = 10, Re = 100) FSI3 (p0/p% = 1, Re = 200)

A/D St Cp A/D St Cp
Turek & Hron 2006 [75] 0.83  0.19 413 0.36  0.26 2.30
Bhardwaj & Mittal 2012 [4]  0.92  0.19 3.56 041 028 2.20
Tian et al. 2014 [74] 0.78  0.19 411 032 029 2.16
Present 087  0.19 4.39 041 026 2.44
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7.2.3. Non-conforming time-steps

Now, we shall make use of the Turek-Hron’s test-cases to validate the proposed temporal interpolation
strategies in Sec. 6 for using non-conforming time-steps in the coupling of LBM and FEM.

After analyzing the acceptable time-steps with the criteria given in Sec. 6.1, we found that it is more suitable
to use Aty > Aty in FSI2 and At, < Aty in FSI3 test-cases. Additionally, the ratio of time-steps cannot be
too large due to the constraints shown in Sec.6.1. As a consequence, we have carried out the simulations with
the ratios of time-steps up to 4.

In the present validation, the physical parameters and meshes remain unchanged. The time-steps and other
numerical parameters are provided in Table 3. As one may observe in Table 3, we modify the fluid time-steps
Aty to have different ratios, while fixing the solid time-step At,. The purpose of doing so is to minimize the

changing parameters in order to have a meaningful comparison.

Table 3: Numerical parameters used in the 2D flow-induced vibration test-case with non-conforming time-steps.

FSI2 FSI3
Ratio r = At, /Aty
r=1 r=2 r=4 1/r=1 1/r=2 1/r=4
At (s) 10x107% 1.0x107% 1.0x10%  1.6x105 1.6x105 1.6x 1075
Aty (s) 1.0x107* 50x107® 25x%x107° 1.6 x107% 3.2x107% 6.4 x107°
rlat 0.57500 0.52400 0.51875 0.51200 0.52400 0.54800
Ul“t/céc‘” 0.08660 0.04330 0.02165 0.02771 0.05542 0.11085

The numerical results using non-conforming time-steps are shown in Fig.13, in which one may observe a
good agreement with the result using the same time-step (ratio = 1), especially for the FSI2 test-case. A slight
discrepancy can be found in the FSI3 test-case for the ratio Aty/At, = 4, which might be due to the high Mach
number in the lattice scale Ma'®t = Ul‘”/cic‘” = 0.11085, as shown in Table 3. As stated previously in Sec. 6.1.1,
when this Mach number is not small enough, the fluid flow simulated by the adopted LBM cannot be assumed
to be weakly-compressible or nearly-incompressible.

By means of the present test-case, we have validated the proposed LBM-FEM coupling framework in the
presence of deformable solid structures. The proposed temporal interpolation strategies for using non-conforming
time-steps have also been assessed and validated, which make the coupling framework more flexible in realistic

applications.

7.3. 3D flapping flag
A 3D flapping flag test-case is considered here to further validate the proposed coupling framework for

handling 3D FSI problems. The adopted 3D test-case involves the transient interaction between a thin elastic
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Figure 13: Numerical results of the 2D flow-induced vibration test-cases using non-conforming time-steps: (a) Aty < Ats; (b)

Atf > Ats.

flag and a uniform incoming fluid flow. The initial configuration is shown in Fig. 14-(a), in which L denotes the
size of the square flag in a fluid domain of size 8L x 2L x 8L in z-, y- and z-directions, respectively. The flag is
fixed at its leading edge and initially inclined with an angle # = 0.17 from the z-y plane. A uniform velocity Uy
is imposed at the inlet, upper and lower boundaries of the fluid domain. Periodic boundary condition is applied
at the lateral surfaces in the spanwise direction. The pressure is fixed at the outlet of the fluid domain.

Initially conducted by Huang & Sung [40], this flapping flag test-case has been widely used for validations
of various different numerical methods [15, 20, 53, 74]. In the present work, we choose the case with a Reynolds
number Re = UyL/vs = 200. As done in [74] with the second flag model, we set the thickness of the flag as
h = 0.01L in the present 3D FE-simulation. In addition, the solid Poisson ratio is v, = 0.4 and the Young
modulus Fj is computed such that the bending rigidity of the flag is equal to Esh?®/(12(1—v7)p$Ug L*) = 0.0001,
where p} is the reference fluid density giving a unit mass ratio pJh/(p}L) = 1.

As for the discretization parameters, the fluid domain is discretized by means of a lattice of size 401 x 101 x401
LB-nodes, which means that L = 50Az;. Choosing Uy = 0.04Az¢/Aty, the relaxation time in the LB-solver is
set as 7't = 0.53 for Re = 200. The solid structure is discretized with a mesh of size 49 x 49 x 2 FE-elements. In
the present test-case, the fluid and solid time-steps are the same and set as Aty = At, = 0.0008L /Uy satisfying
the criteria shown in Sec. 6.1 for both of the LB- and FE-solvers.

The vortical structures in the fluid domain are shown in Fig. 14-(b), which are obtained with the iso-surface
of the Q-criterion. In addition, the time evolution of the position in z-direction of the middle point at the
trailing edge is shown and compared with the references in Fig. 15-(a) and the drag coefficient Cy during two

periods of flapping cycle is shown in Fig. 15-(b). Moreover, Table 4 shows the results of the flapping amplitude
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Figure 14: 3D flapping flag test-case: (a) initial configuration; (b) vortical structures in the fluid domain.

A/ L and the Strouhal number St = fL/Uy with f being the flapping frequency. In these comparisons, one may

observe a good agreement between the present results and the references, which validate the proposed coupling

framework in this test-case of a flapping flag in the presence of a 3D deformable structure.
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Figure 15: 3D flapping flag test-case: (a) time history of the position in z-direction of the middle point at the trailing edge; (b)
evolution in time of the drag coefficient.

7.4. Blood flow through the aortic valve

At last, we apply the present LBM-FEM coupling framework to simulate a 3D blood flow passing through
the aortic valve. This biomechanical test-case was initially conducted by Sigilienza et al. [67] in a combined

experimental and numerical study, in which one of the purposes is to assess the immersed thick boundary
method previously developed by Siglieneza et al. [68].
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Table 4: Numerical results of the 3D flapping flag test-case at Re = 200.

A/L St
Huang & Sung 2010 [40] 0.780 0.260
Tian et al. 2014 [74] 0.806 0.266
Lee & Choi 2015 [53] 0.752 0.265
de Tullio & Pascazio 2016 [15] 0.795 0.265
Present 0.711 0.269

The configuration is shown in Fig. 16, where we consider to simulate the blood flow inside a rigid duct
composed of three parts of diameters Dy = 25 mm and D3 = 31 mm, and of lengths Ly = 2Dq, Ly = D,
and L3z = 2D3. The first part starts with the inlet of the duct, which corresponds to the left ventricle side of
the heart, the second part represents the aortic root and the third part is the ascending aorta ending with the
outlet. The geometry of the three sinuses of Valsalva is computed with the method given by Reul et al. [61].
The aortic valve (red) composed of three deformable leaflets of thickness ¢; = 0.15 mm is installed on a rigid
frame (green) of thickness ey = 1.45 mm representing the inter-leaflet triangle. It has to be noted here that
some geometlric details are not provided in [67], hence some parts used in the present work, e.g. the rigid frame

and the sinus, do not have exactly the same geometries as the ones in [67], although they look like quite similar.

Outlet

Figure 16: Configuration of the blood flow through the aortic valve 3D application case.

At the inlet of the fluid sub-domain simulated with LBM, a pulsatile and periodic volume flow rate @,

is imposed and shown in Fig. 17-(a), where one may observe that each cycle of period T = 1 s starts with a
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forward flow (@, > 0) and ends with a backward flow (Q, < 0). The peak value of the Reynolds number
Re = pUqD1/py with Ug = 4Q, /(7 D7) is about 2800, when the aortic valve is fully opened. In addition,
the pressure is fixed at the outlet. The deformable aortic valve is modeled using FEM with the Neo-Hookean
hyperelastic material model previously presented in Sec. 3.2 by Eq. (18). The material parameters are given in
Table5. In order to validate the hyperelastic material model implemented in the present FE-solver, we have
carried out a numerical uniaxial tensile test and compare the results with the ones presented in [67]. As shown
in Fig. 17-(b), a good agreement can be found between the present result and the numerical and experimental

results in [67].

Table 5: Material parameters in the blood flow through the aortic valve test-case.

Parameter Value
Fluid density (p}) 1100 kg/m?
Dynamic viscosity (pr) 3.6 x 1072 Pa.s
Solid density (p2) 1000 kg/m?
Shear modulus (G;) 2.4 MPa
Bulk modulus (K;) 1.6 MPa
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Figure 17: Blood flow through the aortic valve test-case: (a) pulsatile and periodic volume flow rate at the inlet; (b) results in the

uniaxial tensile test.

A rectangular cuboid including the rigid duct is used as the computational fluid sub-domain, which is
discretized by a uniform lattice of size 89 x 89 x 275 LB-nodes with Azy = 0.5 mm. Notice that only the
LB-nodes inside the duct are involved in the computation. No-slip condition is applied on all rigid walls, which
is imposed by means of the interpolated bounce-back scheme [7] combined with the mass-conservation correction

[82]. In addition, the aortic leaflets are discretized with 1536 quadratic hexahedral FE-elements, leading to the
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same mesh resolution as in [67].
As for the modeling of turbulent effects, we choose to adopt the LBM-LES model [18, 19, 63] based on the
Smagorinsky eddy-viscosity 14 [69], which is computed as

— _ 1 /o, 7
Vg = (CsAxf)z vV 2SabSab with Sab = = 8U + 8Ub 5 (67)
2 8xb 8$a

where the coefficient Cs = 0.17 in the present work and @, denotes the filtered macroscopic velocity component
in the ath direction. At each LB-node, after obtaining the eddy-viscosity vy, the total viscosity v, will be
computed as the harmonic average , /1/}% + 12, which is then used to obtain the relaxation time 7 in the collision
step of the LB-solver.

As done in [67], the initial shapes of the valve leaflets are obtained after a non-linear static FE-computation
with a constant normal pressure loading on the outer surface of the leaflets. The initial state without stress in
the valve leaflets is shown in Fig. 16. Furthermore, it is worth noting that during the closing phase of the aortic
valve, significant contact may happen between the leaflets. Various types of contact models can be adopted to
take into account the contact effects, such as the geometrical approach in [15] and the penalty force models in
[6, 8, 45]. In the present work, we applied a simple strategy based on a repulsive force computed as

0, if dyp —do > 0,
Feontact = (68)
—ke(dop — do)rrup, if dyp —dp <0,
where d,, is the distance between the FE-node and the nearest trileaflet-symmetry virtual plane [12] with n,,
being its normal vector pointing towards the FE-node side. In addition, k. = 0.1 N/mm and dg = 0.25 mm are
two constant coefficients which are chosen such that no penetration occurs between the leaflets.

In the present test-case, the solid time-step is 80 times smaller than the fluid time-step, i.e. Aty = 80At, =
5x107% s, due to the thin leaflet of thickness e; = 0.15 mm and the use of the explicit Newmark time integrator
in the solid sub-domain. In this situation, we applied the coupling strategy presented in Sec.6.3 for using
non-conforming time-steps. Here, it is worth noting that the proposed strategies render the coupling framework
more flexible and efficient, as they prevent the LB-solver from using the same time-step as the FE-solver, which
is unnecessarily too small for the numerical simulation in the fluid sub-domain.

Starting from the initial state presented previously, the FSI simulation has been carried out for five cardiac
cycles (5T = 5 s) and we observed that the opening-closing motion of the aortic valve became almost periodic
after three cycles. The shapes of the aortic valve at nine instants ¢ = 0.00 s, 0.15 8, 0.20 s, 0.26 s, 0.35 8, 0.55 s,
0.80 s, 0.93 s and 1.00 s during one cycle of period T'= 1 s are shown in Fig. 18. Moreover, the time evolution
of the opening area is shown and compared with the reference [67] in Fig. 19. By comparing Fig. 18 (b) and
Fig. 18-(c) at t = 0.15 s and 0.20 s, we observed that the shape of the opening valve in the present result is quite
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similar to the one of the numerical simulation in [67], except that the opening area is slightly smaller than that of
[67]. This discrepancy can be easily seen in the comparison shown in Fig. 19. Notice that when the valve is fully
opened, the shapes as well as the opening areas shown in Fig. 18 and Fig. 19 agree well between the present and
reference results. This means that the opening of the valve is slightly delayed in the present numerical result.
Additionally, we found that the valve is closed a little earlier in the present result. As we used the same mesh
resolution and the same material model for the deformable valve leaflets, one of the possible reasons might be
the difference in the geometry of rigid walls such as the sinus of Valsalva, as mentioned previously. Nevertheless,
despite these discrepancies, a globally good agreement can be found between the present numerical result and

the reference, at least for 0.00 s < ¢ < 0.6 s.

to =0.00 s t1 =0.15s t2=020s t3 =0.26s t4 =035s ts =0.55s te =0.80 s t7 =093 s ts =1.00 s
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Figure 18: Shapes of the aortic valve at different instants: (a) experimental measurement in [67]; (b) numerical simulation in [67];

(c) present numerical result (the figures in [67] are reprinted here with permission from the publisher).

Finally, the vortical structures in the blood flow are visualized using the iso-surface of the Q-criterion in
Fig.20 at four instants: early-systole (ES) at ¢ = 0.20 s, peak-systole (PS) at ¢ = 0.26 s, mid-systole (MS)
at ¢ = 0.35 s and late-systole (I.S) at ¢ = 0.55 s. From this comparison, one may observe that the vortical
structures are quite similar between the present result and the reference simulation result. However, as shown
in the ES and PS instants, the front of the vortical structures moves slightly faster in the present numerical
simulation, which is related to the delayed opening of the valve. Since the volume flow rate @, is imposed the

same as in the reference, when the opening area is smaller, the local mean velocity is greater, which explains
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Figure 19: Time evolution of the opening area of the aortic valve during one cycle of period T'= 1 s.

why the front moves slightly faster in the present result.

21

8. Conclusions

In the present work we proposed a coupling framework for the numerical simulation of fluid-structure inter-
actions, in which the regularized lattice Boltzmann method (LBM) and the non-linear finite element method
(FEM) are coupled via an implicit immersed boundary method (IBM) in a partitioned but strong way. Thanks
to the use of the implicit IBM, the no-slip condition can be exactly ensured at the fluid-solid interface. In
addition, while avoiding sub-iterations during each time-step, the proposed strong coupling algorithm satisfies
the velocity and stress continuity condition across the interface. Moreover, in order to use non-conforming
time-steps, we proposed two temporal interpolation strategies by assuming that several quantities vary linearly
in time, which avoid LB- or FE-computations with unnecessarily small time-steps.

In the first test-case involving the interaction between the blood flow and a rigid mechanical heart valve,
the coupling framework is shown to be capable of handling not only deformable solid structures but also rigid
thin solid objects. The flow patterns and the valve motion have been correctly reproduced, compared with
the reference numerical and experimental results. Then, the proposed coupling algorithm is validated in a
2D fluid-induced vibration test-case, followed by an assessment of the validity and correctness of the temporal
interpolation strategies. A series of tests using different time-steps showed that the proposed strategies give
good results, which are quite close to the ones using the same time-step. After being validated in a 3D flapping

flag test-case, the proposed coupling framework has been applied in a 3D biomechanical case involving the
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(b)

Figure 20: Vortical structures plotted with the iso-surface of the Q-criterion of value 5000 s~2 in the blood flow through the aortic
valve test-case: (a) numerical result of Siglienza et al. [67]; (b) present numerical result (the figures in [67] are reprinted here with

permission from the publisher).
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Figure 21: Pressure fields at the opening and closing instants: (a) slice plane; (b) pressure fields at ¢ = 0.1 s and ¢t = 0.9 s.
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pulsatile blood flow through the deformable aortic valve in realistic physiological conditions. A time-step ratio
of 80 was used in this test-case, which showed the flexibility and robustness of the proposed LBM-FEM coupling
framework. However, it is noteworthy that shell-FEM seems to be more appropriate for modeling the thin heart
valves, because the solid time-step would be less restrictive in shell-FEM. Hence, incorporating shell-FEM in
the coupling framework will be considered in the future work in order to make it more efficient for simulating

blood flows through heart valves.
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Appendix: Conservation of the angular momentum

As mentioned in Sec. 4.2, although the adopted force formulation (31) conserves exactly the linear mo-
mentum, it does not conserve locally the angular momentum. Now, we shall briefly show that the angular
momentum can be globally conserved with an approximation and it tends to be zero as the mesh is refined.

With the help of Eq. (29), one can compute the torque T, ¢ applied on the whole fluid sub-domain by the
kth IB-point as

Tisp= Y Thsy= Y @ X Ty = | > @pri0Aaf | xGy. (A1)

JEDy JED JEDy

Tlxyspsl,

Meanwhile, the torque T's_,; applied on the kth IB-point from the fluid can be computed with Eq. (31) as

Tf%k = I X 910%]6 = — | Tr Z pr-SjkAx? XGk. (A2)
JEDg

mkI[pf]k

Summing up Eq. (A.1) and Eq. (A.2) gives the local contribution from the kth IB-point to the variation of

the total angular momentum for the whole system as
5Tk<_>f — Tk%f +Tf%k — (I [:Efpf]k —x L [pf]k) X Gk, (A3)

which is approximately equal to zero, as I [xfps], and x,Z [pf], are not strictly the same, even though they
are quite close.

Here, it is important to notice that, if the fluid is strictly incompressible with a constant density pf = p?c,
then one has 6T = p?c(I [€f]x — xk) X Gk = 0, because the adopted approximate delta function 8 ensures
that the interpolation operator Z[e|; can give the exact value of a linear function, i.e. Z[xf]x = ®s.

However, in the present weakly-compressible LB scheme, the fluid density is not a constant, hence 6Ty ¢ # 0
in general cases, which cannot conserve strictly the angular momentum.

To assess the order of approximation about the angular momentum conservation, let us first look at the

following proposition regarding the interpolation operator.

Proposition 1. Given two smooth funclions x = x(x) and ¢ = ¢(x), with the inlerpolation operator Z[e]y,
one can have

Ilxolk — x»Ildlk = Az} + O(Az}), (A.4)

where xx = x(xx) and & is o coefficient independent of Axy.
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Proof. Given a smooth function ¢ = ¢(a), its interpolated value at @, is computed by the interpolation operator
Tle]) as
Ilgle = > ¢i0 Ay, (A.5)

JEDy
where ¢; can be replaced by its Taylor expansion around xj. Thanks to the properties of the approximate delta

function [62], Eq. (A.5) can be rewritten as

T[glk = ¢k + DyAx; + O(Ax}), (A.6)
where Dy is defined as
Foats) Foats) 0%
Dy = e x .92 A.
) C GRS kJrCyaxaykJrny 8y2 . ( 7)

in which Cy, Cy and Cy, are three coefficients depending only on xj.

Now, let us apply the interpolation operator to the product of two smooth functions y and ¢, which gives

Z[xlk = xrx + DypAz; + O(Az}), (A.8)
with
9% (xo) 9% (xo) & (xo)
Dyy = Cpp —- . . A.
w =C B2 L+0y T2y k+ w7 | (A.9)

Finally, one can have

Ilxolk — XxZ[Blk = Xxdk + Dyo Az — xk(dr + DpAz3) + O(Az}),

A10
= (DX¢ — Xqub) Ax?c + (’)(Ax:}), ( )
N———
&
where &), is independent of Axy. O

Now, if we use Proposition 1 to Eq. (A.3) with x = @y and ¢ = ps, we can observe that 6Tk r = (’)(Ax?c),
i.e. the local contribution from the £th-IB point to the variation of the total angular momentum of the whole
system including both fluid and solid is approximately equal to zero and of order (’)(Ax?c).

As a consequence, by summing up 6Tk ¢ for all the IB-points (k € [1, N;]), one has the variation of the

total angular momentum
N;

0T sesp = ZCSTka = O(Azxy), (A.11)
K

which is generally small and tends to be zero as Azy — 0.
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